
Regular Symmetry
Patterns

Anthony W. Lin (Yale-NUS), Khanh Nguyen (Autocad)
Philipp Ruemmer (Uppsala), Jun Sun (SUTD)

Symmetries in systems

Symmetry examples
Reflection

Rotation

Symmetries are closed
under composition

Symmetries as
automorphisms

The behaviour of systems is indistinguishable
under an automorphism

Automorphism: structure-preserving bijection on
system configurations by permuting indices

(Critical)(Idle)(Idle) ——> (Idle)(Critical)(Idle)

Automorphism example
Idle,Idle

Try,IdleIdle,Try

Try,Try

Critical,Try

Idle,Critical Critical,Idle

Try,Critical

Symmetry: 1 —> 2 —> 1

Symmetries help model
checking

Gist: Prune branches from states in the same
equivalence class as visited states

The space reduction can be exponential!

~ ~

Works on all properties (safety, liveness, …)

Two problems
• Symmetry identification: how to identify

symmetries in a given system

• Symmetry exploitation: (1) once symmetries are
identified, check two states are similar (up to
symmetries), (2) compute the “quotient” systems

Both problems are in general computationally
difficult!

Challenge: devise practical solutions to the problems

Say, we mainly attack the first problem
and, to some extent, the second
problem.

Concurrency by Replication

Think

RightLeft

Drop

Template 1

Think

LeftRight

Drop

Template 2

Parameterised systems

Definition: an infinite family of finite-state systems

……..

Instance with any number of processes can be
obtained by replicating templates (a.k.a. parameterised

systems)

Parameterised Systems
Help Verification

Instance-by-instance (using finite-state model checkers):
Size 1 0.1s
Size 2 0.1s
…
Size 5 1.5s
…
Size 10 62s
…
Size 15 Timeout

Parameterised verification (regular model checking, etc.):
Replication tends to produce “similar correctness proofs” for each size
and can be symbolically represented

Success on safety, but not so on other properties (e.g. liveness)

Can Parameterised Systems
Help for Symmetry Finding?
Instance-by-instance (using finite-state symmetry finders):
Size 1 0.01s
Size 2 0.01s
…
Size 5 0.2s
…
Size 15 80s
…
Size 20 Timeout

Parameterised:
??

Symmetry “Patterns” for
Parameterised Systems

Instances of parameterised systems (obtained by)
replications tend to exhibit similar-looking symmetries

Observation:

Pattern Example: Rotation

These 5 symmetries (case n=5) can be generated by

For general n, this rotation symmetry pattern is

Pattern Example: Reflection

These 2 symmetries (case n=5) can be generated by

(in cycle notation)

For general n, the reflection pattern is

Other patterns

Full symmetry (all permutations
on {1,…,n})

Full symmetry on subsystem
(all permutations on {1,…,n}
that fix the center point 1)

Broadcast protocol

Resource allocator

1

Contributions
Symbolic Framework for Symmetry Patterns in
Parameterised Systems

Language for Describing Systems: letter-to-letter
transducers (standard in regular model checking)

Language for Describing Symmetries: letter-to-letter
transducers (NEW)

automatic verification and synthesis of symmetry patterns

Expressive for describing practical symmetry patterns

Symmetry verification
Does the given parameterised system exhibit …?
• Rotations
• Reflections
• Full symmetries
• Above symmetries in a subsystem …

Key Contribution: Each can be expressed and automatically
checked in our framework!

Good news: there is a “library” of common symmetries

Symmetry synthesis
Symmetries in parameterised systems may not be
obvious …
• Data symmetries (e.g. fork position swapped)

• Symmetries in a subsystem (but which?)

Contribution: a CEGAR method for synthesising
symmetry patterns in a parameterised system

The symbolic framework:
more technical details

Transducers

Symbolic representations of infinite binary relations

(Finite) Automata over the alphabet

Example:

Automaton:
a b c
a a c

Automatic transition systems
(Regular Model Checking)

Set of states: (or a regular subset thereof)

Labelled transitions: defined by a finite family of
transducers (one transducer for each action label)

Example: Dining-
Philosopher (pick left first)

0 - Thinking

0 0 0
0 1 0

1 - Pick Left 2 - Pick Right

3 - Drop Left

Symmetry Pattern

Bijection, Homomorphism, …

Regular Symmetry Pattern

View a function as a binary relation

Examples (next few slides): rotation, swap, …

Rotation is regular
I C I I I I I I I I

I I C I I I I I I I

Automaton remembers when reading ith position:
1. ith position, 1st letter
2. 1st position, 2nd letter

Symmetry Pattern
Verification

Verifying Regular Symmetry
Patterns

Theorem: Checking whether a given automatic system
exhibits a given regular symmetry pattern is PTIME checkable

Proof Idea: automata construction

Corollary: Checking whether a given automatic system
exhibits a rotation symmetry is PTIME checkable

Full Symmetry Pattern
All permutations on {1,…,n}

This corresponds to n! automorphisms

Key: the set of automorphisms forms a group under functional
composition generated by:

(1,2) —— a swap

(1,…,n) ——— a rotation

Swap is also regular!

Full Symmetry in a
Subsystem

All permutations on {1,…,n} that fix 1

This corresponds to (n-1)! automorphisms

1

These can be generated by (2,3) and (2,3,….,n)

Verifying full symmetry

Corollary: Checking whether a given automatic system
exhibits a full symmetry pattern (in a fixed subsystem) is

PTIME checkable

What about reflection?

Unfortunately, it is NOT regular!

a b c d e

e d c b a

You have to compare the first half of the string
with the second half of the string

Verifying reflection symmetry

Theorem: Checking whether a given automatic system
exhibits a given reflection symmetry pattern is PTIME

checkable

Proof idea: introduce a subclass of pushdown automata called

Key Property: they can be synchronised (unlike general PDA)

Automatic symmetry verification extends to huCF patterns

Symmetry Pattern
Synthesis

Synthesise-Verify Loop
Synthesise (SAT-solver)

1. Encode Transducers as
 Boolean Formulas
2. Maintain a set of boolean
 constraints that has to satisfy
3. Initialise to constraints like
 is not trivial, is infinite, …

Verify (automata method)

1. Is a (partial) function?
2. Is total?
3. Is injective?
4. Is surjective?
5. Is a homomorphism?

YES

FINISH

NO

“Smart” enumeration of regular symmetry patterns:
guess a transducer with 1 state, 2 states, 3 states,
4 states, …

Counterexamples
Three forms of counterexamples:
1. has to be included in the domain of
2. has to be included in the range of
3. One of two contradictory pairs and must be
 eliminated.

Each can be encoded as a boolean constraint!

Synthesis of Finite Existential
Abstractions (for Proving Safety)

Can automatically check safety with a simple fixpoint
computation (will terminate since range of is finite)

Verify (automata method)

1. Is a (partial) function?
2. Is total?
3. Is injective?
4. Is surjective?
5. Is a homomorphism?

Relax (3) and (4) in our
synthesis-verify loop

Add to Synthesis (boolean constraint):
- “The range of finite?”

Add to Verify:
- “Does the abstraction satisfy safety?”

Experiments and
Examples

Synthesised Transducer for
Dining Philosopher

1

8

1/
1

9

0/
0

10

2/
2

11

3/
3

2

1/
3

3
1/
0

4

1/
2

5

2/
3

6

2/
0

7

0/
3

12

3/
0

13

0/
2

14

3/
2

15
2/
1

16

0/
1

17

3/
1

1/
1

2/
1

0/
1

3/
1

0/
0

1/
0

2/
0

3/
0

2/
2

1/
2

0/
2

3/
2

3/
3

1/
3

2/
3

0/
3

3/
1

1/
1

2/
1

0/
1

0/
1

1/
1

2/
1

3/
1

2/
1

1/
1

0/
1

3/
1

3/
2

1/
2

2/
2

0/
2

0/
2

1/
2

2/
2

3/
2

3/
0

1/
0

2/
0

0/
0

0/
3

1/
3

2/
3

3/
3

2/
0

1/
0

0/
0

3/
0

2/
3

1/
3

0/
3

3/
3

1/
2

2/
2

0/
2

3/
2

1/
0

2/
0

0/
0

3/
0

1/
3

2/
3

0/
3

3/
3

Conclusion and Future
Work

Conclusion
• Look for symmetry patterns instead of symmetries (for

an individual instance)
• Expressive symbolic framework for automatically

verifying and synthesising symmetry patterns

Future Work
• Synthesis of huCF symmetry patterns
• Synthesis of multiple symmetry patterns

