Regular Symmetry
Patterns

Anthony W. Lin (Yale-NUS), Khanh Nguyen (Autocad)
Philipp Ruemmer (Uppsala), Jun Sun (SUTD)

Symmetries in systems

Symmetry examples

Reflection

Symmetries are closed

under composition
&

Symmetries as
automorphisms

Automorphism: structure-preserving bijection on
system configurations by permuting indices

T:1—=2—=3—- ---—n—1
(Critical)(Idle)(ldle) > (Idle)(Critical)(Idle)

The behaviour of systems is indistinguishable
under an automorphism

Automorphnism example

dle,Idle

N

ldle, Try E Try,ldle

NN

|dle,Critical Try, Try Critical,ldle

LN

Critical,Try : Try,Critical

Symmetry: 1 —> 2 —> 1

Symmetries help model
checking

Gist: Prune branches from states in the same
eqgulivalence class as visited states

The space reduction can be exponential!

Works on all properties (safety, liveness, ...)

Say, we mainly attack the first problem
‘ and, to some extent, the second
\ problem.

 Symmetry identification: how to identify
symmetries in a given system

 Symmetry exploitation: (1) once symmetries are
identified, check two states are similar (up to
symmetries), (2) compute the “guotient” systems

Both problems are in general computationally
difficult!

Challenge: devise practical solutions to the problems

Concurrency by Replication

Think <— Drop Think «<——Drop

Riavqt — Left

N

Left——Right
Template 1

Template 2

Parameterised systems

Instance with any number of processes can be
obtained by replicating templates (a.k.a. parameterised
systems)

Definition: an infinite family of finite-state systems
éx x 6&

V.

Parameterised Systems
Help Veritication

Instance-by-instance (using finite-state model checkers):

Size 1 0.1s
Size 2 0.1s
éi.ze 5 1.58
éi.ze 10 62s
éi.ze 15 Timeout

Parameterised verification (regular model checking, etc.):
Replication tends to produce “similar correctness proofs” for each size

and can be symbolically represented

1

O R RN =
Success on safety, but not so on other properties (e.q. liveness)

Can Parameterised Systems
Help for Symmetry Finding”?

Instance-by-instance (using finite-state symmetry finders):

Size 1 0.01s
Size 2 0.01s
éi.ze 5 0.2s
Size 15 80s
éi.ze 20 Timeout

Parameterised:
??

Symmetry “Patterns” for
Parameterised Systems

Observation:

Instances of parameterised systems (obtained by)
replications tend to exhibit similar-looking symmetries

Pattern Example: Rotation

These 5 symmetries (case n=5) can be generated by

o5 :1l—2—3—4—5—1

For general n, this rotation symmetry pattern is

Pattern Example: Reflection

These 2 symmetries (case n=5) can be generated by
ms : (1,5)(2,4)(3) (in cycle notation)

For general n, the reflection pattern is

Other patterns

Full symmetry (all permutations
on{1,...,n})

Broadcast protocol

./ _« Full symmetry on subsystem
A (all permutations on {1,...,n}
SN that fix the center point 1)

Resource allocator

Contributions

for Symmetry Patterns in
Parameterised Systems

Language for Describing Systems: letter-to-letter
transducers (standard in regular model checking)

anguage for Describing Svmmetries: letter-to-letter
fransducers (NEW)

Expressive for describing practical symmetry patterns

automatic verification and synthesis of symmetry patterns

Symmetry verification

Does the given parameterised system exhibit ...”?
* Rotations

* Retlections

e Full symmetries

* Above symmetries in a subsystem ...

Key Contribution: £ach can be expressed and automatically
checked in our framework!

Good news: there is a “library” of common symmetries

Symmetry synthesis

Symmetries in parameterised systems may not be
obvious ...

* Data symmetries (e.qg. fork position swapped)

e Symmetries in a subsystem (but which?)

Contribution: a CEGAR method for synthesising
symmetry patterns in a parameterised system

The symbolic framework:
more technical detalls

Transducers

(Finite) Automata over the alphabet » X X,

Symbolic representations of infinite binary relations

Example:
>, ={a,b,c}
R ={(v,w) : w is v with b replaced by a}

b/a

@ abc

Automaton: @ 9 4 C

Automatic transition systems
(Regular Model Checking)

Set of states:),* (or a regular subset thereof)

Labelled transitions: defined by a finite family of
transducers (one transducer for each action label)

Example: Dining-
Philosopher (pick left first)
> ={0,1,2,3}

l T

1 - Pick Left — 2 - Pick Right

Symmetry Pattern

Defu: a length-preserving automorphisi on an automatic
Fransition system

faXr =3
len(f(v)) = len(v)

Bijection, Homomorphism, ...

Regular Symmetry Pattern

Defn: Symmmetry pattern that can be represented by a transducer

View a function as a binary relation

Examples (next few slides): rotation, swap, ...

Rotation Is regular

O B I A

NN VAN
1C Il

Automaton remembers when reading th position:
1. 1th position, 1st letter
2. 1st position, 2nd letter

Symmetry Pattern
Verification

Veritying Regular symmetry
Patterns

Theorem: Checking whether a given automatic system
exhibits a given regular symmetry pattern is PTIME checkable

Proof |dea: automata construction

Corollary: Checking whether a given automatic system
exhibits a rotation symmetry is PTIME checkable

Full Symmetry Pattern

All permutations on {1,..., n}

This corresponds to n! automorphisms

Swap is also reqular!

Full Symmetry in a
Subsystem

All permutations on {1,...,n} that fix 1

/. This corresponds to (n-1)! automorphisms

These can be generated by (2,3) and (2,3,...., n)

Veritying full symmetry

What about reflection?

Unfortunately, it is NOT regular!

abcde

e

edchba

You have to compare the first half of the string
with the second half of the string

Veritying retlection symmetry

Theorem: Checking whether a given automatic system

exhibits a given retlection symmetry pattern is P
checkable

IME

Proof idea: introduce a subclass of pushdown automata called

Height-Unambiquous Pushdown Automata

Key Property: they can be synchronised (unlike general PDA)

Automatic symmetry verification extends to huCF patterns

Symmetry Pattern
Synthesis

Synthesise-Verify Loop

Verify (automata method)

Synthesise (SAT-solver) T
» 1. Is T a (partial) function?

1. Encode Transducers T as 5 s T total?

Boolean Formulas L
2. Maintain a set S of boolean p NO i z 1 Isntsztclz\t/iiz?

Cc?r?st.raints that T ha§ to §atisfy C-EX. 5: «Ta homomérphism?
3. Initialise S to constraints like

T is not trivial, T is infinite, ... YES

FINIS

“Smart” enumeration of regular symmetry patterns:
guess a transducer with 1 state, 2 states, 3 states,

4 states, ...

Counterexamples

hree forms of counterexamples:
1. v has to be included in the domain of T

2. w has to be included in the range of T

3. One of two contradictory pairs T(v,w) and T(v',w’) must be
eliminated.

Fach can be encoded as a boolean constraint!

Synthesis of Finite Existential
Abstractions (for Proving Safety)

Relax (3) and (4) in our
synthesis-verity loop

Add to Synthesis (boolean constraint):
- “The range of T finite?”

Add to Verity:
- “Does the abstraction satisty safety?”

Can automatically check safety with a simple fixpoint
computation (will terminate since range of T is finite)

EXperiments and
Examples

Symmetry Systems (#letters)

Transducer states

Verif. time Synth. time

Herman Protocol (2)
Israeli-Jalfon Protocol (2)
Gries’s Coffee Can (4)
Resource Allocator (3)
Dining Philosopher (4)

5
S
8
11
17

0.0s
0.0s
0.1s
0.0s
0.4s

4s

5s
3m19s
4mS6s
26m

Synthesised Transducer for
Dining Philosopner

0 .
2 «@ S .
m — m o
g .

= ‘
~

=g
~N —
—
~
\

Conclusion and Future
Work

Conclusion

* Look for symmetry patterns instead of symmetries (for

an individual instance)
* Expressive symbolic framework for automatically

veritying and synthesising symmetry patterns

Future Work

o Synthesis of huCF symmetry patterns
e Synthesis of multiple symmetry patterns

