
Detecting Redundant CSS Rules in HTML5
Applications: A Tree Rewriting Approach

Anthony W. Lin (with Matthew Hague and Luke Ong)

Yale-NUS College, Singapore
Royal Holloway, University of London, UK

Oxford University, UK

Introduction to Webpages

<html>

<head>

<title>Super Heroes</title>

<style>

.side-img { float: left; height: 3cm;}

.info { background-color: lightgray; }

.info > .name { font-weight: bold; }

.info > .date { font-style: italic; }

</style>

</head>

<body>

<h1>Super Heroes</h1>

<div class="info">

<div class="name">Superman</div>

<div class="date"/>

</div>

<button class="del">Delete</button>

<script src="jquery-1.9.0.min.js"></script>

<script>

$(document).ready(function() {

// add date
$(".info > .date").html("1938");

// remove if clicked
$(’.del’).click(function(e){

$(’.side-img’).remove();

$(’.info’).remove();

$(’.del’).remove();

});

});

</script>

</body>

</html>

A webpage has three main components...

Introduction to Webpages

<body>

<h1>Super Heroes</h1>

<img class="side-img"

src="superman.jpg"/>

<div class="info">

<div class="name">Superman</div>

<div class="date"/>

</div>

<button class="del">Delete</button>

</body>

The Document Object Model (DOM) tree.

Introduction to Webpages

<script>

$(document).ready(function() {

// add date

$(".info > .date").html("1938");

// remove if clicked

$(’.del’).click(function(e){

$(’.side-img’).remove();

$(’.info’).remove();

$(’.del’).remove();

});

});

</script>

A dynamic / scripting component.

Introduction to Webpages

<script>

$(document).ready(function() {

// add date

$(".info > .date").html("1938");

// remove if clicked

$(’.del’).click(function(e){

$(’.side-img’).remove();

$(’.info’).remove();

$(’.del’).remove();

});

});

</script>

A dynamic / scripting component.

Introduction to Webpages

<style>

.side-img { float: left; }

.info { background-color: lightgray; }

.info > .name { font-weight: bold; }

.info > .date { font-style: italic; }

</style>

The CSS component.

The CSS Redundancy Problem
CSS Stylesheets can become very large.

Usual development bloat (e.g. plugins with generic stylesheets).

E.g. Nivo-Slider has 172 selectors, 131 redundant in demo above.

The CSS Redundancy Problem
CSS Stylesheets can become very large.

Usual development bloat (e.g. plugins with generic stylesheets).

E.g. Nivo-Slider has 172 selectors, 131 redundant in demo above.

60% of them are redundant... [Mesbah and Mirshokraie]

30% of rendering time is spent on selectors [Meyerovich and

Bodik].

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.
Both of these approaches can remove useful CSS rules.

This can ruin the look of your website.

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.
Both of these approaches can remove useful CSS rules.

This can ruin the look of your website.

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.
Both of these approaches can remove useful CSS rules.

This can ruin the look of your website.

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.
Both of these approaches can remove useful CSS rules.

This can ruin the look of your website.

Existing Solutions

Existing tools for cleaning CSS are quite limited:

Cilla [Mesbah and Mirshokraie] and UnCSS [Martino]

Explores as much of a page as it can.

Reports which selectors were not used.

Unsound.
Both of these approaches can remove useful CSS rules.

This can ruin the look of your website.

And break functionality (UnCSS breaks Nivo-Slider).

Static Analysis?

Static Analysis?

Leading tools: WALA and TAJS

Static Analysis?

Leading tools: WALA and TAJS

Using them to identify redundant CSS is challenging.

Static Analysis?

Leading tools: WALA and TAJS

Using them to identify redundant CSS is challenging.

Problem 1: Call graph of JS+jQuery is hard to construct

Static Analysis?

Leading tools: WALA and TAJS

Using them to identify redundant CSS is challenging.

Problem 1: Call graph of JS+jQuery is hard to construct

Problem 2: DOM tree is not precisely tracked

Static Analysis?

Leading tools: WALA and TAJS

Using them to identify redundant CSS is challenging.

Problem 1: Call graph of JS+jQuery is hard to construct

Problem 2: DOM tree is not precisely tracked

See Andreasen and Moller’14 for an up-to-date survey on static analysis of JavaScript+jQuery.

Our Contributions

Clean tree-rewriting model of DOM dynamics due to JS.

Precise

Automatic analysis (via reduction to symbolic pushdown systems)

Our Contributions

Clean tree-rewriting model of DOM dynamics due to JS.

Precise

Automatic analysis (via reduction to symbolic pushdown systems)

Proof-of-concept translation from HTML5 to our model.

Models jQuery functions in how they modify the DOM.

Does not yet support many features of JavaScript.

Our Contributions

Clean tree-rewriting model of DOM dynamics due to JS.

Precise

Automatic analysis (via reduction to symbolic pushdown systems)

Proof-of-concept translation from HTML5 to our model.

Models jQuery functions in how they modify the DOM.

Does not yet support many features of JavaScript.

Promising experimental results.

Our approach (in a nutshell)

Aim to overapproximate DOM dynamics with tree-rewriting

model R

Our approach (in a nutshell)

Aim to overapproximate DOM dynamics with tree-rewriting

model R

Redundant node selectors in R ⇒ redundant in HTML5

Our Tree-Rewriting Model: Domain

<body >

<h1 > <div info >

<div name > <div date >

DOM is abstracted as an (unordered) unranked tree with class labels.

Our Tree-Rewriting Model: Domain

<body >

<h1 > <div info >

<div name > <div date >

DOM is abstracted as an (unordered) unranked tree with class labels.

HTML elements and node IDs are treated as constant classes

Our Tree-Rewriting Model: Rewrite Rules

A rewrite rule is a pair (g, χ), where:

g is a “guard” (a.k.a. “node selector”): modal logic formula with

modalities ⟨↑⟩, ⟨↑+⟩, ⟨↓⟩, ⟨↓+⟩,

χ is a rewrite operation: AddClass, AddChild, RemoveClass,

RemoveNode.

Our Tree-Rewriting Model: Rewrite Rules

A rewrite rule is a pair (g, χ), where:

g is a “guard” (a.k.a. “node selector”): modal logic formula with

modalities ⟨↑⟩, ⟨↑+⟩, ⟨↓⟩, ⟨↓+⟩,

χ is a rewrite operation: AddClass, AddChild, RemoveClass,

RemoveNode.

A tree-rewrite system is a finite set of rewrite rules.

Examples

<body >

<h1 > <div info >

<div name > <div date >

A jQuery line

$(".info").appendChild("<div class=’comic’>DC Comics</div>")

is represented by

(info,AddChild(div comic))

Examples

<body >

<h1 > <div info >

<div name > <div date > <div comic >

A jQuery line

$(".info").appendChild("<div class=’comic’>DC Comics</div>")

is represented by

(info,AddChild(div comic))

Examples

<body >

<h1 > <div info >

<div name > <div date > <div comic >

A CSS Selector

.info > .date { font-style: italic; }

can be represented by

(date ∧ ⟨↑⟩info,AddClass(cssrule1))

Operational Semantics of TRS

T1 →R T2 if T1 can be rewritten into T2

i.e. ∃ a node v in T1 where some rule (g, χ) in R can be “fired”.

Redundancy Problem

INPUT : a TRS R, an initial DOM tree T ,

and a S set of node selectors

QUESTION : Identify selectors in S that cannot be matched

(in all reachable trees)

Solving the Redundancy Problem

Q: given a tree, rules and classes, which classes are redundant?

Solving the Redundancy Problem

Q: given a tree, rules and classes, which classes are redundant?

CSS redundancy is undecidable in general

Solving the Redundancy Problem

Q: given a tree, rules and classes, which classes are redundant?

CSS redundancy is undecidable in general

In practice, suffices to restrict to positive guards

Solving the Redundancy Problem

Q: given a tree, rules and classes, which classes are redundant?

CSS redundancy is undecidable in general

In practice, suffices to restrict to positive guards

e.g. date ∧ ⟨↑⟩info

Solving the Redundancy Problem

Q: given a tree, rules and classes, which classes are redundant?

CSS redundancy is undecidable in general

In practice, suffices to restrict to positive guards

e.g. date ∧ ⟨↑⟩info

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

The Reduction

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

One boolean variable for each class

The Reduction

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

One boolean variable for each class

Stack used in a “depth-first search” of the tree.

The Reduction

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

One boolean variable for each class

Stack used in a “depth-first search” of the tree.

New nodes can be created by pushing onto the stack.

The Reduction

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

One boolean variable for each class

Stack used in a “depth-first search” of the tree.

New nodes can be created by pushing onto the stack.

Backtrack by popping.

The Reduction

Theorem: The redundancy problem for positive TRS is

efficiently reducible to analysis of symbolic PDS,

which is EXP-complete, but for which fast

solvers exist.

One boolean variable for each class

Stack used in a “depth-first search” of the tree.

New nodes can be created by pushing onto the stack.

Backtrack by popping.

(Since guards are positive, we can always recreate nodes.)

Implementation

We implemented a tool TreePed to test the approach.

A rough tool for extracting rules from jQuery script.

jMoped used as a pushdown backend.

Tested on a number of examples (next slide).

Reasonable run times.

Identified all and only redundant rules.

Two real-world examples, five made up examples.

Results Table

Case Study Ns Ss Ls Rs Time

bikes.html 22 18 (0) 97 37 3.6s
comments.html 5 13 (1) 43 26 2.9s
example.html 11 1 (0) 28 4 .6s
example-up.html 8 1 (1) 15 3 .6s
igloo/ 261 (89) 3.4s

index.html 145 24 1
engineering.html 236 24 1

Nivo-Slider/

demo.html 15 172 (131) 501 21 6.3s
transactions.html 19 9 (0) 37 6 1.6s

Ns — # of HTML elements in the initial tree

Ss — # of CSS rules (redundant CSS rules)

Ls — # of lines of JavaScript (cloc)

Rs — # of rules extracted from JS

Summary and Future Work

Web pages are dynamic programs:

Manipulate a tree data structure (DOM).

Can be modelled by tree rewrite systems.

Model-checking can be used for optimising CSS rules.

Future work:

Systematically extracting rewrite rules from JavaScript.

JavaScript analysis is hard! (c.f. Moller et al)

