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Abstract. Word equations are a crucial element in the theoretical foundation of
constraint solving over strings. A word equation relates two words over string
variables and constants. Its solution amounts to a function mapping variables to
constant strings that equate the left and right hand sides of the equation. While
the problem of solving word equations is decidable, the decidability of the prob-
lem of solving a word equation with a length constraint (i.e., a constraint relating
the lengths of words in the word equation) has remained a long-standing open
problem. We focus on the subclass of quadratic word equations, i.e., in which
each variable occurs at most twice. We first show that the length abstractions
of solutions to quadratic word equations are in general not Presburger-definable.
We then describe a class of counter systems with Presburger transition relations
which capture the length abstraction of a quadratic word equation with regular
constraints. We provide an encoding of the effect of a simple loop of the counter
systems in the existential theory of Presburger Arithmetic with divisibility (PAD).
Since PAD is decidable, we get a decision procedure for quadratic words equa-
tions with length constraints for which the associated counter system is flat (i.e.,
all nodes belong to at most one cycle). In particular, we show a decidability re-
sult (in fact, also an NP algorithm with a PAD oracle) for a recently proposed
NP-complete fragment of word equations called regular-oriented word equations,
when augmented with length constraints. Decidability holds when the constraints
are extended with regular constraints with a 1-weak control structure.

1 Introduction

Reasoning about strings is a fundamental problem in computer science and mathemat-
ics. The first order theory over strings and concatenation is undecidable. A seminal
result by Makanin [24] (see also [11, 15]) shows that the satisfiability problem for the
existential fragment is decidable, by giving an algorithm for the satisfiability of word
equations. A word equation L = R consists of two words L and R over an alphabet
of constants and variables. It is satisfiable if there is a mapping σ from the variables to
strings over the constants such that σ(L) and σ(R) are syntactically identical.

An original motivation for studying word equations was to show undecidability of
Hilbert’s 10th problem (see, e.g., [26]). While Makanin’s later result shows that word
equations could not, by themselves, show undecidability, Matiyasevich in 1968 con-
sidered an extension of word equations with length constraints as a possible route to



showing undecidability of Hilbert’s 10th problem [26]. A length constraint constrains
the solution of a word equation by requiring a linear relation to hold on the lengths of
words in a solution σ (e.g., |x| = |y|, where | · | denotes the string-length function). The
decidability of word equations with length constraints remains open.

In recent years, reasoning about strings with length constraints has found renewed
interest through applications in program verification and reasoning about security vul-
nerabilities. The focus of most research has been on developing practical string solvers
(cf. [1, 5, 6, 14, 16, 21, 28, 31–33]). These solvers are sound but make no claims of com-
pleteness. Relatively few results are known about the decidability status of strings with
length and other constraints (see [9] for an overview of the results in this area). The
main idea in most existing decidability results is the encoding of length constraints into
Presburger arithmetic [1, 9, 13, 22]. However, as we shall see in this paper, the length
abstraction of a word equation (i.e. the set of possible lengths of variables in its solu-
tions) need not be Presburger definable.

In this paper, we consider the case of quadratic word equations, in which each vari-
able can appear at most twice [12, 19], together with length constraints and regular
constraints (conjunctions

∧n
i=1 x ∈ Li of assertions that the variable x must be as-

signed a string in the regular language Li for each i). For quadratic word equations,
there is a simpler decision procedure (called the Nielsen transform or Levi’s method)
based on a non-deterministic proof tree construction. The technique can be extended
to handle regular constraints [12]. However, we show that already for this class (even
for a simple equation like xaby = yabx, where x, y are variables and a, b are con-
stants), the length abstraction need not be Presburger-definable. Thus, techniques based
on Presburger encodings are not sufficient to prove decidability.

Our first observation in this paper is a connection between the problem of quadratic
word equations with length constraints and a class of counter systems with Presburger
transitions. Informally, the counter system has control states corresponding to the nodes
of the proof tree constructed by Levi’s method, and a counter standing for the length
each word variable. Each step of Levi’s method may decrease at most one counter.
Thus, from any initial state, the counter system terminates. We show that the set of
initial counter values which can lead to a successful leaf (i.e., one containing the trivial
equation ε = ε) is precisely the length abstraction of the word equation.

Our second observation is that the reachability relation for a simple loop of the
counter system can be encoded in the existential theory of Presburger arithmetic with
divisibility (PAD). The encoding is non-trivial in the presence of regular constraints,
and depends on structural results on semilinear sets. As PAD is decidable [18, 23], we
obtain a technique to symbolically represent the reachability relation for flat counter
systems, in which each node belongs to at most one loop.

Moreover, the same encoding shows decidability for word equations with length
constraints, provided the proof tree is associated with flat counter systems. In partic-
ular, we show that the class of regular-oriented word equations, introduced by [10],
have flat proof trees. Thus, the satisfiability problem for quadratic regular-oriented word
equations with length constraints is decidable (and in NEXP3).

3 In fact, it is a NP algorithm with an oracle access to PAD. The best complexity bound for the
latter is NEXP and NP-hardness [18].



While our decidability result is for a simple subclass, this class is already non-trivial
without length and regular constraints: satisfiability of regular-oriented word equations
is NP-complete [10]. Our result generalizes previous decidability results [9]. Moreover,
we believe that the techniques in this paper — the connection between acceleration and
word equations, and the use of existential Presburger with divisibility — can pave the
way to more sophisticated decision procedures based on counter system acceleration.

2 Preliminaries

General notation: Let N = Z≥0 be the set of all natural numbers. For integers i ≤ j,
we use [i, j] to denote the set {i, i+ 1, . . . , j − 1, j} of integers. If i ∈ N, let [i] denote
[0, i]. We use � to denote the component-wise ordering on Nk, i.e., (x1, . . . , xk) �
(y1, . . . , yk) iff xi ≤ yi for all i ∈ [1, k]. If x̄ � ȳ and x̄ 6= ȳ, we write x̄ ≺ ȳ.

If S is a set, we use S∗ to denote the set of all finite sequences, or words, γ =
s1 . . . sn over S. The length |γ| of γ is n. The empty sequence is denoted by ε. Notice
that S∗ forms a monoid with the concatenation operator ·. If γ′ is a prefix of γ, we write
γ′ � γ. Additionally, if γ′ 6= γ (i.e. a strict prefix of γ), we write γ′ ≺ γ. Note that the
operator � is overloaded here, but the meaning should be clear from the context.
Words and automata: We assume basic familiarity with word combinatorics and au-
tomata theory. Fix a (finite) alphabet A. For each finite word w := w1 . . . wn ∈ A∗, we
write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj .

Two words x and y are conjugates if there exist words u and v such that x = uv and
y = vu. Equivalently, x = cyck(y) for some k and for the cyclic permutation operation
cyc : A∗ → A∗, defined as cyc(ε) = ε, and cyc(a · w) = w · a for a ∈ A and w ∈ A∗.

Given a nondeterministic finite automaton (NFA) A := (A,Q,∆, q0, qF ), a run of
A on w is a function ρ : N → Q with ρ(0) = q0 that obeys the transition relation ∆.
We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q. The run ρ
is said to be accepting if ρ(n) = qF , in which case we say that the word w is accepted
by A. The language L(A) of A is the set of words in A∗ accepted by A. In the sequel,
for p, q ∈ Q we will write Ap,q to denote the NFA A with initial state replaced by p
and final state replaced by q.
Word equations: Let A be a (finite) alphabet of constants and V a set of variables;
we assume A ∩ V = ∅. A word equation E is an expression of the form L = R,
where (L,R) ∈ (A ∪ V )∗ × (A ∪ V )∗. A system of word equations is a nonempty
set {L1 = R1, L2 = R2, . . . , Lk = Rk} of word equations. The length of a system of
word equations is the length

∑k
i=1(|Li| + |Ri|). A system is called quadratic if each

variable occurs at most twice in all. A solution to a system of word equations is a
homomorphism σ : (A ∪ V )∗ → A∗ which maps each a ∈ A to itself that equates the
l.h.s. and r.h.s. of each equation, i.e., σ(Li) = σ(Ri) for each i = 1, . . . , k.

For each variable x ∈ V , we shall use |x| to denote a formal variable that stands for
the length of variable x, i.e., for any solution σ, the formal variable |x| takes the value
|σ(x)|. Let LV be the set {|x| | x ∈ V }. A length constraint is a formula in Presburger
arithmetic whose free variables are in LV .

A solution to a system of word equations with a length constraint Φ(|x1|, . . . , |xn|)
is a homomorphism σ : (A ∪ V )∗ → A∗ which maps each a ∈ A to itself such that



σ(Li) = σ(Ri) for each i = 1, . . . , k and moreover Φ(|σ(x1)|, . . . , |σ(xn)|) holds.
That is, the homomorphism maps each variable to a word in A∗ such that each word
equation is satisfied, and the lengths of these words satisfy the length constraint.

The satisfiability problem for word equations with length constraints asks, given a
system of word equations and a length constraint, whether it has a solution.

We also consider the extension of the problem with regular constraints. For a sys-
tem of word equations, a variable x ∈ V , and a regular language L ⊆ A∗, a regular
constraint x ∈ L imposes the additional restriction that any solution σ must satisfy
σ(x) ∈ L. Given a system of word equations, a length constraint, and a set of regu-
lar constraints, the satisfiability problem asks if there is a solution satisfying the word
equation, the length constraints, as well as the regular constraints.

In the sequel, for clarity of exposition, we restrict our discussion to a system con-
sisting of a single word equation.

Linear arithmetic with divisibility: Let P be a first-order language with equality,
with binary relation symbol ≤, and with terms being linear polynomials with integer
coefficients. We write f(x), g(x), etc., for terms in integer variables x = x1, . . . , xn.
Atomic formulas in Presburger arithmetic have the form f(x) ≤ g(x) or f(x) = g(x).
The language PAD of Presburger arithmetic with divisibility extends the language P
with a binary relation | (for divides). An atomic formula has the form f(x) ≤ g(x)
or f(x) = g(x) or f(x)|g(x), where f(x) and g(x) are linear polynomials with inte-
ger coefficients. The full first order theory of PAD is undecidable, but the existential
fragment is decidable [18, 23].

Note that the divisibility predicate x|y is not expressible in Presburger arithmetic: a
simple way to see this is that {(x, y) ∈ N2 | x|y} is not a semi-linear set.

Counter systems: In this paper, we specifically use the term “counter systems” to mean
counter systems with Presburger transition relations (e.g. see [3]). These more gen-
eral transition relations can be simulated by standard Minsky’s counter machines, but
they are more useful for coming up with decidable subclasses of counter systems. A
counter system C is a tuple (X,Q,∆), where X = {x1, . . . , xm} is a finite set of coun-
ters, Q is a finite set of control states, and ∆ is a finite set of transitions of the form
(q, Φ(x̄, x̄′), q′), where q, q′ ∈ Q and Φ is a Presburger formula with free variables
x1, . . . , xm, x

′
1, . . . , x

′
m. A configuration of C is a tuple (q, v) ∈ Q× Nm.

The semantics of counter systems is given as a transition system. A transition system
is a tuple S := 〈S;→〉, where S is a set of configurations and → ⊆ S × S is a
binary relation over S. A path in S is a sequence s0 → · · · → sn of configurations
s0, ..., sn ∈ S. If S′ ⊆ S, let pre∗(S′) denote the set of s ∈ S such that s →∗ s′ for
some s′ ∈ S′. We might write pre∗→(S′) to disambiguate the transition system.

A counter system C generates the transition system SC = 〈S;→〉, where S is
the set of all configurations of C, and (q, v) → (q′, v′) if there exists a transition
(q, Φ(x̄, x̄′), q′) ∈ ∆ such that Φ(v, v′) is true.

In the sequel, we will be needing the notion of flat counter systems [3, 4, 7, 20].
Given a counter system C = (X,Q,∆), the control structure of C is an edge-labeled
directed graph G = (V,E) with the set V = Q of nodes and the set E = ∆. The
counter system C is flat if each node v ∈ V is contained in at most one simple cycle.



3 Solving Quadratic Word Equations

We start by recalling a simple textbook recipe (Nielsen transformation, a.k.a., Levi’s
Method) [11, 19] for solving quadratic word equations, both for the cases with and with-
out regular constraints. We then discuss the length abstractions of solutions to quadratic
word equations, and provide a natural example that is not Presburger-definable.

3.1 Nielsen transformation

We will define a rewriting relation E ⇒ E′ between quadratic word equations E,E′.
Let E be an equation of the form αw1 = βw2 with w1, w2 ∈ (A ∪ V )∗ and α, β ∈
A ∪ V . Then, there are several possible E′:

– Rules for erasing an empty prefix variable. These rules can be applied if α ∈ V
(symmetrically, β ∈ V ). We nondeterministically guess that α be the empty word
ε, i.e., E′ is (w1 = βw2)[ε/α]. The symmetric case of β ∈ V is similar.

– Rules for removing a nonempty prefix. These rules are applicable if each of α
and β is either a constant or a variable that we nondeterministically guess to be
a nonempty word. There are several cases:
(P1) α ≡ β (syntactic equality). In this case, E′ is w1 = w2.
(P2) α ∈ A and β ∈ V . In this case, E′ is w1[αβ/β] = β(w2[αβ/β]). In

the sequel, to avoid notational clutter we will write βw2[αβ/β] instead of
β(w2[αβ/β]).

(P3) α ∈ V and β ∈ A. In this case, E′ is α(w1[βα/α]) = w2[βα/α].
(P4) α, β ∈ V . In this case, we nondeterministically guess if α � β or β � α.

In the former case, the equation E′ is w1[αβ/β] = β(w2[αβ/β]). In the latter
case, the equation E′ is E′ is α(w1[βα/α]) = w2[βα/α].

Note that the transformation keeps an equation quadratic.

Proposition 1. E is solvable iff E ⇒∗ (ε = ε). Furthermore, checking if E is solvable
is in PSPACE.

See [11] for a proof. Roughly speaking, the proof uses the fact that each step either
decreases the size of the equation, or the length of a length-minimal solution. It runs in
PSPACE because each rewriting does not increase the size of the equation.

3.2 Handling regular constraints

Nielsen transformation easily extends to quadratic word equations with regular con-
straints (e.g. see [12]). We assume that a regular constraint x ∈ L is given as an NFA
Ap,q representing L. If q0 and qF are the initial and final states (respectively) of an NFA
A, we can be more explicit and write Aq0,qF instead of A.

Our rewriting relation⇒ now works over a pair consisting of an equation E and a
set S of regular constraints over variables inE. LetE be an equation of the form αw1 =
βw2 with w1, w2 ∈ (A ∪ V )∗ and α, β ∈ A ∪ V . We now define (E,S) ⇒ (E′, S′)
by extending the pervious definition of⇒ without regular constraints. Firstly, we make



sure that S is satisfiable by a standard automata-theoretic algorithm, which can be done
in PSPACE. In particular, it has to be the case that E ⇒ E′ and additionally do the
following:

– Rules for erasing an empty prefix variable α. When applied, ensure that each reg-
ular constraint α ∈ L in S satisfies ε ∈ L. Define S′ as S minus all regular con-
straints of the form α ∈ L.

– Rules for removing a nonempty prefix. For (P1), we set S′ to be S minus all con-
straints of the form α ∈ L if α is a variable. For (P2)–(P4), assume that E′ is
w1[αβ/β] = β(w2[αβ/β]); the other case is symmetric. For each regular con-
straint β ∈ L(Ap,q), we nondeterministically guess a state r, and add α ∈ L(Ap,r)
and β ∈ L(Ar,q) to S′. In the case when α ∈ A, we could immediately perform
the check α ∈ L(Ap,r): a positive outcome implies removing this constraint from
S′, while on a negative outcome our algorithm simply fails on this branch. For any
variable y that is distinct from β, we add all regular constraints y ∈ L in S to S′. If
α still occurs in E′, add regular constraints α ∈ L in S to S′. If S′ is unsatisfiable,
fail on this this branch.

Proposition 2. (E,S) is solvable iff (E,S) ⇒∗ (ε = ε, ∅). Furthermore, checking if
(E,S) is solvable is in PSPACE.

Note that this is still a PSPACE algorithm because it never creates a new NFA or adds
new states to existing NFA in the regular constraints, but rather adds a regular constraint
x ∈ L(Ap,q) to a variable x, whereA is an NFA that is already in the regular constraint.

3.3 Generating all solutions using Nielsen transformation

One result that we will need in this paper is that Nielsen transformation is able to gen-
erate all solutions of quadratic word equations with regular constraints. To clarify this,
we extend the definition of⇒ so that each a configuration E or (E,S) in the graph of
⇒ is also annotated by an assignment σ of the variables in E to concrete strings. We
writeE1[σ1]⇒ E2[σ2] ifE1 ⇒ E2 and σ2 is the modification from σ1 according to the
operation used to obtain E2 from E1. Observe that the domain of σ2 is a subset of the
domain of σ1; in fact, some rules (e.g., erasing an empty prefix variable) could remove
a variable in the prefix in E1 from σ1. The following example illustrates how⇒ works
with this extra annotated assignment. Suppose that σ1(x) = ab and σ1(y) = abab and
E1 := xy = yx and E2 is obtained from E1 using rule (P4), i.e., substitute xy for y.
In this case, σ2(x) = σ2(y) = σ1(x) = ab. Observe that E2[σ2]⇒ E3[σ3]⇒ E4[σ4],
where E3 := E2, σ3(x) = ab, σ3(y) = ε, E4 := x = x, and σ4(x) = ab. The
definition for the case with regular constraints is identical.

Proposition 3. (E,S)[σ] →∗ (ε = ε, ∅)[σ′] where σ′ has the empty domain iff σ is a
solution of (E,S).

This proposition immediately follows from the proof of correctness of Nielsen transfor-
mation for quadratic word equations (cf. [11]).



3.4 Length abstractions and semilinearity

Given a quadratic word equation E with constants A and variables V = {x1, . . . , xk},
its length abstraction is defined as follows

LEN(E) = {(|σ(x1)|, . . . , |σ(xk)|) : σ is a solution to E},

namely the set of tuples of numbers corresponding to lengths of solutions to E.

Example 1. Consider the quadratic equation E := xaby = yz, where V = {x, y, z}
and A contains at least two letters a and b. We will show that its length abstrac-
tion LEN(E) can be captured by the Presburger formula |z| = |x| + 2. Observe
that each (nx, ny, nz) ∈ LEN(E) must satisfy nz = nx + 2 by a length argu-
ment on E. Conversely, we will show that each triple (nx, ny, nz) ∈ N3 satisfying
nz = nx+2 must be in LEN(E). To this end, we will define a solution σ to E such that
(|σ(x)|, |σ(y)|, |σ(z)|) = (nx, ny, nz). Consider σ(x) = anx . Then, for some q ∈ N
and r ∈ [nx + 1], we have ny = q(nx + 2) + r. Let w be a prefix of σ(x)ab of length
r. Therefore, for some v, we have wv = σ(x)ab. Define σ(y) = (σ(x)ab)qw. We then
have σ(x)abσ(y) = σ(y)vw. Thus, setting σ(z) = vw gives us a satisfying assignment
for E which satisfies the desired length constraint. ut

However, it turns out that Presburger Arithmetic is not sufficient for capturing length
abstractions of quadratic word equations.

Theorem 1. There is a quadratic word equation whose length abstraction is not
Presburger-definable.

To this end, we show that the length abstraction of xaby = yabx, where a, b ∈ A and
x, y ∈ V , is not Presburger definable.

Lemma 1. The length abstraction LEN(xaby = yabx) coincides with tuples (|x|, |y|)
of numbers satisfying the expression ϕ(|x|, |y|) defined as:

|x| = |y| ∨ (|x| = 0 ∧ |y| ≡ 0 (mod 2)) ∨ (|y| = 0 ∧ |x| ≡ 0 (mod 2))

∨ (|x|, |y| > 0 ∧ gcd(|x|+ 2, |y|+ 2) > 1)

Observe that this would imply non-Presburger-definability: for otherwise, since the first
three disjuncts are Presburger-definable, the last disjunct would also be Presburger-
definable, which is not the case since the property that two numbers are relatively prime
is not Presburger-definable. Let us prove this lemma. Let S = LEN(xaby = yabx). We
first show that given any numbers nx, ny satisfying ϕ(nx, ny), there are solutions σ to
xaby = yabx with |σ(x)| = nx and |σ(y)| = ny . If they satisfy the first disjunct in ϕ
(i.e., nx = ny), then set σ(x) = σ(y) to an arbitrary word w ∈ Anx . If they satisfy the
second disjunct, then aby = yab and so set σ(x) = ε and σ(y) ∈ (ab)∗. The same goes
with the third disjunct, symmetrically. For the fourth disjunct (assuming the first three
disjuncts are false), let d = gcd(nx + 2, ny + 2). Define σ(x), σ(y) ∈ (ad−1b)∗(ad−2)
so that |σ(α)| = nα for α ∈ V . It follows that σ(x)abσ(y) = σ(y)abσ(x).

We now prove the converse. So, we are given a solution σ to xaby = yabx and let
u := σ(x), v := σ(y). Assume to the contrary that ϕ(|u|, |v|) is false and that u and v
are the shortest such solutions. We have several cases to consider:



– u = v. Then, |u| = |v|, contradicting that ϕ(|u|, |v|) is false.
– u = ε. Then, abv = vab and so v ∈ (ab)∗, which implies that |v| ≡ 0 (mod 2).

Contradicting that ϕ(|u|, |v|) is false.
– v = ε. Same as previous item and that |u| ≡ 0 (mod 2).
– |u| > |v| > 0. Since ϕ(|u|, |v|) is false, we have gcd(|u|+2, |v|+2) = 1. It cannot

be the case that |u| = |v| + 1 since then, comparing prefixes of uabv = vabu, the
letter at position |u|+2 would be b on l.h.s. and a on r.h.s., which is a contradiction.
Therefore |u| ≥ |v| + 2. Let u′ = u[|v| + 3, |u|], i.e., u but with its prefix of
length |v| + 2 removed. By Nielsen transformation, we have u′abv = vabu′. It
cannot be the case that u′ = ε; for, otherwise, abv = vab implies v ∈ (ab)∗ and
so u = vab, implying that 2 divides both |u| + 2 and |v| + 2, contradicting that
gcd(|u| + 2, |v| + 2) = 1. Therefore, |u′| > 0. Since gcd(|u′| + 2, |v| + 2) =
gcd(|u|+2, |v|+2) = 1, we have a shorter solution to xaby = yabx, contradicting
minimality.

– |v| > |u| > 0. Same as previous item.

4 Reduction to Counter Systems

In this section, we will provide an algorithm for computing a counter system from
(E,S), where E is a quadratic word equation and S is a set of regular constraints. We
will first describe this algorithm for the case without regular constraints, after which we
show the extension to the case with regular constraints.

Given the quadratic word equation E, we show how to compute a counter system
C(E) = (X,Q,∆) such that the following theorem holds.

Theorem 2. The length abstraction of E coincides with

{v ∈ N|V | | (E, v) ∈ pre∗C(E)({ε = ε} × N|V |)}

Before defining C(E), we define some notation. Define the following formulas:

– ID(x̄, x̄′) :=
∧
x∈x̄ x

′ = x
– SUBy,z(x̄, x̄′) := z ≤ y ∧ y′ = y − z ∧

∧
x∈x̄,x6=y x

′ = x
– DECy(x̄, x̄′) := y > 0 ∧ y′ = y − 1 ∧

∧
x∈x̄,x 6=y x

′ = x

Note that the 6= symbol in the guard of
∧

denotes syntactic equality (i.e. not equality
in Preburger Arithmetic). We omit mention of the free variables x̄ and x̄′ when they are
clear from the context.

We now define the counter system. Given a quadratic word equation E with con-
stants A and variables V , we define a counter system C(E) = (X,Q,∆) as follows.
The counters X will be precisely all variables that appear in E, i.e., X := V . The
control states are precisely all equations E′ that can be rewritten from E using Nielsen
transformation, i.e., Q := {E′ : E ⇒∗ E′}. The set Q is finite (at most exponential in
|E|) as per our discussion in the previous section.

We now define the transition relation ∆. We use x̄ to enumerate V in some order.
GivenE1 ⇒ E2 withE1, E2 ∈ Q, we then add the transition (E1, Φ(x̄, x̄′), E2), where
Φ is defined as follows:



– If E1 ⇒ E2 applies a rule for erasing an empty prefix variable y ∈ x̄, then Φ :=
y = 0 ∧ ID.

– If E1 ⇒ E2 applies a rule for removing a nonempty prefix:
• If (P1) is applied, then Φ = ID.
• If (P2) is applied, then Φ = DECβ .
• If (P3) is applied, then Φ = DECα.
• If (P4) is applied and α � β, then Φ = SUBβ,α. If β � α, then Φ = SUBα,β .

Observe that if (E1, v1) → (E2, v2), then |E1| ≤ |E2| and v1 � v2. In addition, if
v1 = v2, then |E1| < |E2|. This implies the following lemma.

Lemma 2. The counter system C(E) terminates from every configuration (E0, v0).

The proof of Theorem 2 immediately follows from Proposition 3 that Nielsen transfor-
mation generates all solutions.

Extension to the case with regular constraints: In this extension, we will only
need to assert that the counter values belong to the length abstractions of the regular
constraints, which are effectively semilinear due to Parikh’s Theorem [27]. Given a
quadratic word equation E with a set S of regular constraints, we define the counter
system C(E,S) = (X,Q,∆) as follows. Let C(E) = (X1, Q1, ∆1) be the counter
system from the previous paragraph, obtained by ignoring the regular constraints. We
define X = X1. Let Q be the finite set of all configurations reachable from (E,S), i.e.,
Q = {(E′, S′) : (E,S) ⇒∗ (E′, S′)}. Given (E1, S1) ⇒ (E2, S2), we add the tran-
sition ((E1, S2), Φ(x̄, x̄′), (E2, S2)) as follows. Suppose that (E1, Φ

′(x̄, x̄′), E2) was
added to ∆1 by E1 ⇒ E2. Then,

Φ := Φ′ ∧
∧
x∈x̄

x ∈ LEN(
⋂

(x∈L)∈S

L) ∧ x′ ∈ LEN(
⋂

(x∈L)∈S′

L)

 .

The size of the NFA for
⋂

(x∈L)∈S L is exponential in the number of constraints of the
form (x ∈ L) in S (of which there are polynomially many). The constraint x ∈ LEN(L)
is well-known to be effectively semilinear [27]. In fact, using the algorithm of Chrobak-
Martinez [8, 25, 29], we can compute in polynomial time two finite setsA,A′ of integers
and an integer b such that, for each n ∈ N, n ∈ U := A ∪ (A′ + bN) is true iff
n ∈ LEN(L). Note that U is a finite union of arithmetic progressions (with period 0
and/or b). In fact, each number a ∈ A ∪ A′ (resp. the number b) is at most quadratic in
the size of the NFA, and so it is a polynomial 4 size even when they are written in unary.
Therefore, treating U as an existential Presburger formula ϕ(x) with one free variable
(an existential quantifier is needed to guess the coefficient n such that x = ai + bn for
some i), the resulting Φ′ is a polynomial-sized existential Presburger formula.

Theorem 3. The length abstraction of (E,S) coincides with

{v ∈ N|V | | ((E,S), v) ∈ pre∗C(E,S)({(ε = ε, ∅)} × N|V |)}

4 Note that we mean polynomial in the size of the NFA, which can be exponential in |S|.



As for the case without regular constraints, the proof of Theorem 2 immediately follows
from Proposition 3 that Nielsen transformation generates all solutions.

5 Decidability via Linear Arithmetic with Divisibility

5.1 Accelerating a 1-variable-reducing cycle

Consider a counter system C = (X,Q,∆) with Q = {q0, . . . , qn−1}, such that for
some y ∈ X the transition relation ∆ consists of precisely the following transition
(qi, Φi, qi+1 (mod n)), for each i ∈ [n − 1], and each Φi is either SUBy,z (with z a
variable distinct from y) or DECy . Such a counter system is said to be a 1-variable-
reducing cycle.

Lemma 3. There exists a polynomial-time algorithm which given a 1-variable-
reducing cycle C = (X,Q,∆) and two states p, q ∈ Q computes an formula ϕp,q(x̄, x̄′)
in existential Presburger arithmetic with divisibility such that (p, v) →∗C (q,w) iff
ϕp,q(v,w) is satisfiable.

This lemma can be seen as a special case of the acceleration lemma for flat parametric
counter automata [7] (where all variables other than y are treated as parameters). How-
ever, its proof is in fact quite simple. Without loss of generality, we assume that q = q0

and p = qi, for some i ∈ N. Any path (q0, v) →∗C (qi,w) can be decomposed into the
cycle (q0, v) →∗ (q0, v′) and the simple path (q0,w0) → · · · → (qi,wi) of length i.
Therefore, the reachability relation (q0, x)→∗C (qi, y) can be expressed as

∃z0, · · · , zi−1 : ϕq0,q0(x, z0) ∧ Φ0(z0, z1) ∧ · · · ∧ Φi−1(zi−1, y).

Thus, it suffices to show that ϕq0,q0(x, x′) is expressible in PAD. Consider a linear
expression M = a0 +

∑
x∈X\{y} axx, where a0 is the number of instructions i in

the cycle such that Φi = DECy and ax is the number of instructions i such that Φi =
SUBy,x. Each time around the cycle, y decreases byM . Thus, for some n ∈ N we have
y′ = y − nM , or equivalently

nM = y − y′

The formula ϕq0,q0 can be defined as follows:

ϕq0,q0 := M | (y − y′) ∧ y′ ≤ y ∧
∧

x∈X\{y}

x′ = x.

Handling unary Presburger guards: Recalling our reduction for the case with regular
constraints from Section 4 reveals that we also need unary Presburger guards on the
counters. We will show how to extend Lemma 3 to handle such guards. As we will see
shortly, we will need a bit of the theory of semilinear sets.

As before, our counter system C = (X,Q,∆) has Q = {q0, . . . , qn−1}, and the
control structure is a simple cycle of length n, i.e., the transitions in ∆ are precisely
(qi, Φi, qi+1 (mod n)) for some Presburger formula Φi(x̄, x̄′), for each i ∈ [n − 1]. We
say that C is 1-variable-reducing with unary Presburger guards if there exists a counter



y ∈ X such that each Φi is of the form θi ∧ ψi, where θi is either SUBy,z (with z
a variable distinct from y) or DECy , and ψi is a conjunction of formulas of the form
x ∈ Ai ∪ (A′i + bN), where both Ai and A′i are finite sets of natural numbers and
x ∈ X . For each counter x ∈ X , we use ψi,x to denote the set of conjuncts in ψi that
refers to the counter x.

Lemma 4. There exists a polynomial-time algorithm which given a 1-variable-
reducing cycle with unary Presburger guards C = (X,Q,∆) and two states p, q ∈ Q
computes an formula λp,q(x̄, x̄′) in existential Presburger arithmetic with divisibility
such that (p, v)→∗C (q,w) iff λp,q(v,w) is satisfiable.

Unlike Lemma 3, this lemma does not immediately follow from the results of [7] on
flat parametric counter automata. To prove this, let us first take the formula ϕp,q(x̄, x̄′)
from Lemma 3 applied to C′, which is obtained from C by first removing the unary
Presburger guards. We can insert these unary Presburger guards to ϕp,q , but this is not
enough because we need to make sure that all “intermediate” values of y have to also
satisfy the Presburger guards corresponding to y on that control state. More precisely,
let the counter decrement in θi be αi (which can either be a variable x distinct from y
or 1). Write f(x̄) =

∑n−1
i=0 αi. Then, we can write

λq0,q0 := x̄′ = x̄ ∨

(
ϕq0,q0 ∧

n−1∧
i=0

ψi(x̄) ∧ ηq0,q0

)
ηq0,q0 := ∀k : y′ + (k + 1)f(x̄) ≤ y −→n−1∧

i=0

∧
(αi∈A∪A′+bN)∈ψi,y

y′ + kf(x̄) + αi ∈ A ∪ (A′ + bN)


Owing to the constraint ϕq0,q0 , the premise y′ + (k + 1)f(x̄) ≤ y in ηq0,q0 could have
been rewritten to y′ + (k + 1)f(x̄) = y. As we shall soon see, the former will be more
useful for completing our proof of Lemma 4. The formula λq0,q0 is a correct expression
that captures the reachability relation (q0,w)→∗C (q0,w′), but the problem is that it has
a universal quantifier and therefore is not a formula of existential Presburger arithmetic
with divisibility. To fix this problem, we will need to exploit the semilinear structure of
unary Presburger guards. To this end, we first notice that, by taking the big conjunction
over i and the big conjuncton over αi out, the formula ηq0,q0 is equivalent to:

ηq0,q0 ≡
n−1∧
i=0

∧
(αi∈A∪A′+bN)∈ψi,y

∀k : y′ + (k + 1)f(x̄) ≤ y −→

(y′ + kf(x̄) + αi ∈ A ∪ (A′ + bN))

Therefore, it suffices to rewrite each conjunct C(x̄) := ∀k : y′ + (k+ 1)f(x̄) ≤ y −→
(y′ + kf(x̄) + αi ∈ A∪ (A′ + bN) as an existential Presburger formula, for each i and
constraint (αi ∈ A ∪A′ + bN). To this end, let a := maxA and let N denote |A′|. We



claim that ϕq0,q0 entails

C(x̄)⇔
a∧
i=0

y′ + (i+ 1)f(x̄) ≤ y → y′ + if(x̄) + αi ∈ A ∪ (A′ + bN)

∧
a+N+1∧
i=a+1

y′ + (i+ 1)f(x̄) ≤ y → y′ + if(x̄) + αi ∈ A′ + bN.

Simply put, we distinguish the cases when y′ + if(x̄) + αi is “small” (i.e., less than
the maximum threshold that can keep this number in an arithmetic progression with 0
period), and when this number is “big” (i.e. must be in an arithmetic progression with a
nonzero period). To prove this equivalence, it suffices to show that if y′+kf(x̄) +αi /∈
A∪ (A′+ bN) with k > a+N + 1 and y′+ (k+ 1)f(x̄) ≤ y (i.e. y′+kf(x̄) +αi ≤ y
since y′ = y + hf(x̄) for some h because of ϕq0,q0 ), then we can find k′ ≤ a+N + 1
such that y′ + k′f(x̄) + αi /∈ A ∪ (A′ + bN). Suppose to the contrary that such k′

does not exist. Then, since there are N + 1 numbers in between a+ 1 and a+N + 1,
by pigeonhole principle there is an arithmetic progression a′ + bN and two different
numbers a + 1 ≤ j1 < j2 ≤ a + N + 1 such that y′ + jhf(x̄) + αi ∈ a′ + bN,
for h = 1, 2. Let d := (j2 − j1). Note that df(x̄) denotes the difference between
y′ + j1f(x̄) + αi and y′ + j2f(x̄) + αi, and this difference is of the form mb, for
some positive integer m. We now find a number j ∈ [a + 1, a + N ] with j + qd = k
for some positive integer q. Since y′ + jf(x̄) + αi ∈ a′′ + bN for some a′′ ∈ A′, it
must be the case that y′ + (j + qd)f(x̄) + αi ∈ a′′ + bN for q ∈ N, contradicting that
y′ + kf(x̄) + αi /∈ A ∪ (A′ + bN).

We have proven correctness, and what remains is to analyse the size of the formula
λq0,q0 . To this end, it suffices to show that each formula C(x̄) is of polynomial size.
This is in fact the case since there are at most polynomially many numbers in A and A′

and that the size of all numbers in A ∪A′ ∪ {b} are of polynomial size even when they
are written in unary.

5.2 An extension to flat control structures and an acceleration scheme

The following generalisation to flat control structures is an easy corollary of Lemma 3
and 4.

Theorem 4. There exists a polynomial-time algorithm which, given a flat Presburger
counter system C = (X,Q,∆), each of whose simple cycle is 1-variable-reducing with
unary Presburger guards and two states p, q ∈ Q, computes an formula λp,q(x̄, x̄′)
in existential Presburger with divisibility such that (p, v) →∗C (q,w) iff λp,q(v,w) is
satisfiable.

Indeed, to prove this theorem, we can simply use Lemma 4 to accelerate all cycles and
the fact that transition relations expressed in existential Presburger with divisibility is
closed under composition.



5.3 Application to word equations with length constraints

Theorem 4 gives rise to a simple and sound (but not complete) technique for solv-
ing quadratic word equations with length constraints: given a quadratic word equation
(E,S) with regular constraints, if the counter system C(E,S) is flat, each of whose
simple cycle is 1-variable-reducing with unary Presburger guards, then apply the deci-
sion procedure from Theorem 4. In this section, we show completeness of this method
for the class of regular-oriented word equations recently defined in [10], which can be
extended with regular constraints given as 1-weak NFA [2]. A word equation is regular
if each variable x ∈ V occurs at most once on each side of the equation. Observe that
xy = yx is regular, but xxyy = zz is not. It is easy to see that a regular word equation
is quadratic. A word equation L = R is said to be oriented if there is a total ordering
< on V such that the occurrences of variables on each side of the equation preserve
<, i.e., if w = L or w = R and w = w1αw2βw3 for some w1, w2, w3 ∈ (A ∪ V )∗

and α, β ∈ V , then α < β. Observe that xy = yz (i.e. that x and z are conjugates)
is oriented, but xy = yx is not oriented. It was shown in [10] that the satisfiability for
regular-oriented word equations is NP-hard. We show satisfiability for this class with
length constraints is decidable.

Theorem 5. The satisfiability problem of regular-oriented word equations with length
constraints is decidable in nondeterministic exponential time.

This decidability (in fact, an NP upper bound) for the strictly regular-ordered subcase,
in which each variable occurs precisely once on each side, was proven in [9]. For this
subcase, it was shown that Presburger Arithmetic is sufficient, but the decidability for
the general class of regular-oriented word equations with length constraints remained
open. Theorem 5 shows the problem is decidable.

We start with a simple lemma that⇒ preserves regular-orientedness. Its proof can
be found in the full version.

Lemma 5. If E ⇒ E′ and E is regular-oriented, then E′ is also regular-oriented.

Next, we show a bound on the lengths of cycles and paths of the counter system
associated with a regular-oriented word equation.

Lemma 6. Given a regular-oriented word equation E, the counter system C(E) is flat.
Moreover, the length of each simple cycle (resp. path) in the control structure of C(E)
is of length O(|E|) (resp. O(|E|2)).

Let E := L = R. We first show that the length of a simple cycle in the control
structure of C(E) is of length at most N = max{|L|, |R|} − 1. Given a simple cycle
E0 ⇒ E1 ⇒ · · · ⇒ En with n > 0 (i.e.E0 = En andEi 6= Ej for all 0 ≤ i < j < n),
it has to be the case that each rewriting in this cycle applies one of the (P2)–(P4) rules
since the other rules reduce the size of the equation. We have |E0| = |E1| = · · · = |En|.
Let Ei := Li = Ri with Li = αiwi and Ri = βiw

′
i. Let us assume that E1 be

w0[α0β0/β0] = β0w
′
0[α0β0/β0]; the case withE1 be α0w0[β0α0/α0] = w′0[β0α0/α0]

will be easily seen to be symmetric. This assumption implies that β0 is a variable y,
and that L0 = uyv for some words u, v ∈ (A ∪ V )∗ (for, otherwise, |E1| < |E0|



because of regularity of E). Furthermore, it follows that, for each i ∈ [n − 1], Ei+1 is
wi[αiy/] = yw′i and βi = y, i.e., the counter system C(E) applies either SUBy,x (in the
case when x = αi) or DECy (in the case when αi ∈ A). For, otherwise, taking a minimal
i ∈ [1, n − 1] with Ei+1 being αiwi[yαi/αi] = w′i[yαi/αi] for some variable x = αi
shows that Ei is of the form x...y... = y...x... (since |Ei+1| = |Ei|) contradicting that
Ei is oriented. Consequently, we have

– Ri = Rj for all i, j, and
– Li = cyci(u)yv for all i ∈ [n]

implying that the length of the cycle is at most |L0| − 1 ≤ |L| − 1.
Consider the control structure C(E) as a dag of SCCs. In this dag, each edge from

one SCC to the next is size-reducing. Therefore, the maximal length of a path in this dag
is |E|. Therefore, since the maximal path of each SCC is N (from the above analysis),
the maximal length of a simple path in the control structure is at most N2.

Handling regular constraints: First, we note that the length abstraction of regular-
oriented word equations with regular constraints is already not Presburger-definable in
general (see full version for proof):

Proposition 4. The regular-oriented word equation xy = yz over the alphabet
{a, b,#}, together with regular constraints x, y ∈ #(a + b)∗ has non-Presburger-
definable length abstraction.

It is difficult to extend Theorem 5 to the case with regular constraints because
they may introduce nestings of cycles (which breaks the flat control structure) even
for regular-oriented word equation. However, we can show that restricting to regular
constraints given by 1-weak NFA [2] (i.e. a dag of SCCs, each with at most one state)
preserves the flat control structure. A 1-weak regular constraint is of the form x ∈ L
where L is accepted by a 1-weak NFA. The class of 1-weak automata is in fact quite
powerful, e.g., when considered as recognisers of languages of ω-words, they capture
the subclass of LTL with operators F and G [2]. They have also been used to obtain a
decidable extension of infinite-state concurrent systems in term rewriting systems, e.g.,
see [17, 30]. Note that the regular constraint in Proposition 4 is accepted by a 1-weak

NFA: the NFA has two states q0 and q1, and transitions q0
#−→ q1 and q1

a,b−→ q1, where
q0 is an initial state and q1 a final state.

Theorem 6. The satisfiability problem of regular-oriented word equations with 1-weak
regular constraints and length constraints is solvable in nondeterministic double expo-
nential time (2NEXP).

Let us prove this theorem. SupposeE is a regular-oriented word equation with the set S
of 1-weak regular constraints. Let C(E,S) = (X,Q,∆) be the corresponding counter
system. Let M(S) denote the maximum number of states ranging over all NFA in S.

Lemma 7. The counter system C(E,S) is flat. Moreover, the length of each simple
cycle in the control structure of C(E,S) is of length O(|E|), while the length of each
simple path is of length O(|E|2|V ||S|M(S)3).



By virtue of Theorem 4, this lemma implies decidability of Theorem 6, but it does NOT
imply the nondeterministic exponential time upper bound since each unary Presburger
guard in C(E) will be of the form x ∈ LEN(

⋂
(x∈L)∈S L). Even though we know that

|S| is always of a polynomial size, their intersection requires performing a product au-
tomata construction, which will result in an NFA of an exponential size. Therefore, we
obtain a nondeterministic double exponential time complexity upper bound (2NEXP),
instead of NEXP as for the case without regular constraints. The proof of Lemma 7 can
be found in the full version.

Remark 1. Our proof of Theorem 6 does not extend to the case when we allow gener-
alised flat NFA (i.e. after mapping all the letters in A to a new symbol ’?’, the control
structure of the NFA is flat) in the regular constraints. This is because a simple cycle
involving two or more states will result in a counter system that is no longer flat.

6 Future Work

One research direction is to study extensions of our techniques to deal with the class
of regular (but not necessarily oriented) word equations with length constraints. We be-
lieve that this is a key subproblem of the general class of quadratic word equations with
length constraints. We also conjecture that the length abstractions of general quadratic
word equations can be effectively captured by existential Presburger with divisibility.
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