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Abstract. We consider the problem of verifying liveness for systems with a fi-
nite, but unbounded, number of processes, commonly known as parameterised
systems. Typical examples of such systems include distributed protocols (e.g. for
the dining philosopher problem). Unlike the case of verifying safety, proving live-
ness is still considered extremely challenging, especially in the presence of ran-
domness in the system. In this paper we consider liveness under arbitrary (includ-
ing unfair) schedulers, which is often considered a desirable property in the lit-
erature of self-stabilising systems. We introduce an automatic method of proving
liveness for randomised parameterised systems under arbitrary schedulers. View-
ing liveness as a two-player reachability game (between Scheduler and Process),
our method is a CEGAR approach that synthesises a progress relation for Process
that can be symbolically represented as a finite-state automaton. The method is
incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our
experiments show that our algorithm is able to prove liveness automatically for
well-known randomised distributed protocols, including Lehmann-Rabin Ran-
domised Dining Philosopher Protocol and randomised self-stabilising protocols
(such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first
fully-automatic method that can prove liveness for randomised protocols.

1 Introduction

Verification of parameterised systems is one of the most extensively studied problems in
computer-aided verification. Parameterised systems are infinite families of finite-state
systems that are described in some finite behavioral description language. Distributed
protocols (e.g. for the dining philosopher problem) are typical examples of parame-
terised systems since they can represent any finite (but unbounded) number of pro-
cesses. Verifying a parameterised system, then, amounts to verifying every instance of
the infinite family. In the case of a dining philosopher protocol, this amounts to veri-
fying the protocol with any number of philosophers. Although the problem was long
known to be undecidable [11], a lot of progress has been made to tackle the problem
resulting in such techniques as network invariants (including cutoff techniques), sym-
bolic model checking (including regular model checking), and finite-range abstractions,
to name a few. The reader is referred to the following excellent surveys [2, 7, 17, 77, 79]
covering these different approaches to solving the problem.

Nowadays there are highly effective automatic methods that can successfully verify
safety for many parameterised systems derived from real-world concurrent/distributed
algorithms (e.g. see [2–7, 10, 13, 20–23, 36, 43, 44, 49, 54, 56, 63, 75, 77, 78]). In con-
trast, there has been much less progress in automatic techniques for proving liveness



for parameterised systems. In fact, this difficulty has also been widely observed (e.g.
see [8, 48, 67, 77]). Proving liveness amounts to proving that, under a class of adversar-
ial schedulers (a.k.a. adversaries or just schedulers), something “good” will eventually
happen. The problem is known to be reducible to finding an infinite path satisfying a
Büchi condition (e.g. see [7, 24, 65, 67, 72–74, 77]). The latter problem (a.k.a. repeated
reachability) in general requires reasoning about the transitive closure relations, which
are generally observed to be rather difficult to compute automatically.

Randomised parameterised systems are infinite families of finite-state systems that
allow both nondeterministic and probabilistic transitions (a.k.a. Markov Decision Pro-
cesses [52]). This paper concerns the problem of verifying liveness for randomised
parameterised systems, with an eye towards a fully-automatic verification algorithm
for well-known randomised distributed protocols that commonly feature in finite-state
probabilistic model checkers (e.g. PRISM [51]), but have so far resisted fully-automatic
parameterised verification. Such protocols include Lehmann-Rabin’s Randomised Din-
ing Philosopher Protocol [55] and randomised self-stabilising protocols (e.g. Israeli-
Jalfon’s Protocol [47] and Herman’s Protocol [46]), to name a few. Randomised proto-
cols generalise deterministic protocols by allowing each process to make probabilistic
transitions, i.e., not just a transition with probability 1. Randomisation is well-known
to be useful in the design of distributed protocols, e.g., to break symmetry and simpli-
fies distributed algorithms (e.g. see [39, 58]). Despite the benefits of randomisation in
protocol design, the use of randomisation makes proving liveness substantially more
challenging (e.g. see [58, 59, 69]). Proving liveness for probabilistic distributed pro-
tocols amounts to proving that, under a class of adversaries, something “good” will
eventually happen with probability 1 (e.g. see [12, 29, 35, 52, 53, 58, 76]). Unlike the
case of deterministic protocols, proving liveness for probabilistic protocols requires
reasoning about games between an adversary and a stochastic process player (a.k.a.
1 1
2 -player game), which makes the problem computationally more difficult even in the

finite-state case (e.g. see [53]). To the best of our knowledge, there is presently no fully-
automatic technique which can prove liveness for such randomised distributed protocols
as Lehmann-Rabin’s Randomised Distributed Protocols [55], and self-stabilising ran-
domised protocols including Israeli-Jalfon’s Protocol [47] and Herman’s Protocol [46].

Contribution: The main contribution of the paper is a fully-automatic method for prov-
ing liveness over randomised parameterised systems over various network topologies
(e.g. lines, rings, stars, and cliques) under arbitrary (including unfair) schedulers. Live-
ness under arbitrary schedulers is a desirable property in the literature of self-stabilising
algorithms since an unfair scheduler (a.k.a. daemon) enables a worst-case analysis of
an algorithm and covers the situation when some process is “frozen” due to conditions
that are external to the process (e.g. see [14, 33, 41, 50]). There are numerous examples
of self-stabilising protocols that satisfy liveness even under unfair schedulers (e.g. see
[14, 31, 39, 47, 50]). Similar examples are also available in the literature of mutual ex-
clusion protocols (e.g. [34, 70]), and consensus/broadcast protocols (e.g. [25, 39]). Our
algorithm can successfully verify liveness under arbitrary schedulers for a fragment
of FireWire’s symmetry breaking protocol [35, 60], Israeli-Jalfon’s Protocol [47], Her-
man’s Protocol [46] considered over a linear array, and Lehmann-Rabin Dining Philoso-
pher Protocol [34, 55].



It is well-known that for proving liveness for a finite-state Markov Decision Pro-
cess (MDP) only the topology of the system matters, not the actual probability values
(e.g. see [29, 30, 45, 76]). Hence, the same is true for randomised parameterised systems
since each instance is a finite MDP. In this paper, we follow this approach and view the
problem of proving liveness under arbitrary schedulers as a 2-player reachability game
between Scheduler (Player 1) and Process (Player 2) over non-stochastic parameterised
systems, obtained by simply ignoring the actual probability values of transitions with
non-zero probabilities (transitions with zero probability are removed). This simple re-
duction allows us to adopt any symbolic representation of non-stochastic parameterised
systems. In this paper, we represent parameterised systems as finite-state letter-to-letter
transducers, as is standard in regular model checking [2, 7, 23, 65, 77]. In this frame-
work, configurations of parameterised systems are represented as words over a finite
alphabet Σ (usually encoding a finite set of control states for each local process). Many
distributed protocols that arise in practice can be naturally modelled as transducers.

To automatically verify liveness of parameterised systems in this representation, we
develop a counterexample-guided method for synthesising Player 2 strategies. The core
step of the approach is the computation of well-founded relations guiding Player 2 to-
wards winning configurations (and the system towards “good” states). In the spirit of
regular model checking, such well-founded relations are represented as letter-to-letter
transducers; however, unlike most regular model checking algorithms, we use learn-
ing and SAT-based methods to compute the relations, in line with some of the recent
research on the application of learning for program analysis (e.g. [40, 62–64]). This
gives rise to a counterexample-guided algorithm for computing winning strategies for
Player 2. We then introduce a number of refinements of the base method, which turn
out to be essential for analysing challenging systems like the Lehmann-Rabin protocol:
strategies for Player 2 can be constructed incrementally, reducing the size of automata
that have to be considered in each inference step; symmetries of games (e.g., rotation
symmetry in case of protocols with ring topology) can be exploited for acceleration;
and inductive over-approximations of the set of reachable configurations can be pre-
computed with the help of learning. To the best of our knowledge, the last refinement
also represents the first successful application of Angluin’s L*-algorithm [9] for learn-
ing DFAs representing inductive invariants in the regular model checking context.

We have implemented our method as a proof of concept. Besides the four aforemen-
tioned probabilistic protocols that we have successfully verified against liveness (under
all schedulers), we also show that our tool is competitive with existing tools (e.g. [8, 65])
for proving liveness for deterministic parameterised systems (Szymanski’s mutual ex-
clusion protocol [70], Left-Right Dining Philosopher Protocol [58], Lamport’s Bakery
Algorithm [15, 39], and Resource-Allocator Protocol [32]). Finally, we report that our
tool can also automatically solve classic examples from combinatorial game theory on
infinite graphs (take-away game and Nim [38]). To the best of our knowledge, our tool
is the first verification tool that can automatically solve these games.

Related Work: There are currently only a handful of fully-automatic techniques
for proving liveness for randomised parameterised systems. We mention the works
[27, 35, 61] on proving almost-sure termination of sequential probabilistic programs.
Strictly speaking, these works are not directly comparable to our work since their



tools/techniques handle only programs with variables over integer/real domains, and
cannot naturally model the protocol examples over line/ring topology that we consider
in this paper. Based on the work of Arons et al. [12], the approach of Esparza et al. [35]
aims to guess a terminating pattern by constructing a nondeterministic program from
a given probabilistic program and a terminating pattern candidate. This allows them
to exploit model checkers and termination provers for nondeterministic programs. The
approach is sound and complete for “weakly-finite” programs, which include parame-
terised programs, i.e., programs with parameters that can be initialised to arbitrary large
values, but are finite-state for every valuation of the parameters. The approach of [27]
is a constraint-based method to synthesise ranking functions for probabilistic programs
based on martingales and may be able to prove almost sure termination for probabilis-
tic programs that are not weakly finite. Monniaux [61] proposed a method for proving
almost sure termination for probabilistic programs using abstract interpretation, though
without tool support.

As previously mentioned, there is a lot of work on liveness for non-probabilistic pa-
rameterised systems (e.g. see [8, 24, 37, 65, 67, 68, 72–74]). We assess our technique in
this context by using several typical benchmarking examples that satisfy liveness (more
precisely, deadlock-freedom) under arbitrary schedulers including Szymanski’s Proto-
col, Bakery Protocol, and Deterministic Dining Philosopher with Left-Right Strategy.

Two-player reachability games on automatic graphs (i.e. regular model checking
with non-length preserving transducers) have been considered by Neider [62], who
proposed an L*-based learning algorithm for constructing the set of winning regions
enriched with “distance” information, which is a number that can be represented in bi-
nary or unary. [Embedding distance information in a reachability set was first done in
regular model checking by Vardhan et al. [75]] Augmenting winning regions or reach-
ability sets with distance information, however, often makes regular sets no longer reg-
ular [63]. In this paper, we do not consider non-length preserving transducers and our
algorithm is based on constructing progress relations for Player 2. In particular, part
of our algorithm employs an L*-based algorithm for synthesising an inductive invari-
ant which, however, differs from [62, 75] since membership tests (i.e. reachability of a
single configuration) are decidable. Recently Neider and Topcu [64] proposed a learn-
ing algorithm for solving safety games over rational graphs (an extension of automatic
graphs), which are dual to reachability games.

2 Preliminaries

General notations: For any two given real numbers i ≤ j, we use a standard notation
(with an extra subscript) to denote real intervals, e.g., [i, j]R = {k ∈ R : i ≤ k ≤ j}
and (i, j]{k ∈ R : i < k ≤ j}. We will denote intervals over integers by removing the
subscript, e.g., [i, j] := [i, j]R ∩ Z. Given a set S, we use S∗ to denote the set of all
finite sequences of elements from S. The set S∗ always includes the empty sequence
which we denote by ε. Given two sets of words S1, S2, we use S1 · S2 to denote the
set {v · w : v ∈ S1, w ∈ S2} of words formed by concatenating words from S1 with
words from S2. Given two relations R1, R2 ⊆ S × S, we define their composition as
R1 ◦R2 = {(s1, s3) : (∃s2)((s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2)}.



Transition systems: Let ACT be a finite set of action symbols. A transition system over
ACT is a tuple S = 〈S; {→a}a∈ACT, {Ub}b∈AP〉, where S is a set of configurations,
→a ⊆ S × S is a binary relation over S, and Ub ⊆ S is a unary relation on S. In the
sequel, we will often consider transition systems where AP = ∅ and |ACT| = 1, in
which case 〈S; {→a}a∈ACT, {Ub}b∈AP〉 will be denoted as 〈S;→〉. If |ACT| > 1, we
use → to denote the relation

(⋃
a∈ACT →a

)
. The notation →+ (resp. →∗) is used to

denote the transitive (resp. transitive-reflexive) closure of →. We say that a sequence
s1 → · · · → sn is a path (or run) in S (or in→). Given two paths π1 : s1 →∗ s2 and
π2 : s2 →∗ s3 in→, we may concatenate them to obtain π1 � π2 (by gluing together
s2). We call π1 a prefix of π1 � π2. For each S′ ⊆ S, we use the notations pre→(S′)
and post→(S′) to denote the pre/post image of S′ under→. That is, pre→(S′) := {p ∈
S : ∃q ∈ S′(p→ q)} and post→(S′) := {q ∈ S : ∃p ∈ S′(p→ q)}.
Words and automata: We assume basic familiarity with word automata. Fix a finite
alphabetΣ. For each finite word w = w1 . . . wn ∈ Σ∗, we write w[i, j], where 1 ≤ i ≤
j ≤ n, to denote the segment wi . . . wj . Given an automaton A = (Σ,Q, δ, q0, F ), a
run ofA onw is a function ρ : {0, . . . , n} → Qwith ρ(0) = q0 that obeys the transition
relation δ. We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q.
The run ρ is said to be accepting if ρ(n) ∈ F , in which case we say that the word w is
accepted by A. The language L(A) of A is the set of words in Σ∗ accepted by A.
Reachability games: We recall some basic concepts on 2-player reachability games
(e.g. see [42, Chapter 2] on games with 1-accepting conditions). An arena is a transition
system S = 〈S;→1,→2〉, where S (i.e. the set of “game configurations”) is partitioned
into two disjoint sets V1 and V2 such that pre→i(S) ⊆ Vi for each i = 1, 2. The
transition relation→i denotes the actions of Player i. Similarly, for each i = 1, 2, the
configurations Vi are controlled by Player i. In the sequel, Player 1 will also be called
“Scheduler”, and Player 2 “Process”. Given a set I0 ⊆ S of initial states and a set
F ⊆ S of final (a.k.a. target) states, the goal of Player 2 is to reach F from I0, while
the goal of Player 1 is to avoid it. More formally, a strategy for Player i is a partial
function f : S∗Vi → S such that, for each v ∈ S∗ and p ∈ Vi, if vp is a path in S
and that p is not a dead end (i.e. p →i q for some q), then f(vp) is defined in such
a way that p →i f(vp). Given a strategy fi for Player i = 1, 2 and an initial state
s0 ∈ S, we can define a unique (finite or infinite) path in S π : s0 →j1 s1 →j2 · · ·
such that sjk+1

= fi(s0s1 . . . sjk) where i ∈ {1, 2} is the (unique) number such that
sjk ∈ Vi. Player 2 wins iff some state in F appears in π, or if the path is finite and
the last configuration belongs to Player 1. Player 1 wins iff Player 2 does not win (i.e.
loses). A strategy f for Player i is winning from I0, for each strategy g for Player i+ 1
(mod 2), the unique path in S from each s0 ∈ I0 witnesses a win for Player i. Such
games (a.k.a. reachability games) are determined (e.g. see [42, Proposition 2.21]), i.e.,
either Player 1 has a winning strategy or Player 2 has a winning strategy.

Convention 1 For simplicity’s sake, we make the following assumptions on our reacha-
bility games. They suffice for the purpose of proving liveness for parameterised systems.
The techniques can be easily adapted when these assumptions are lifted.

(A0) Arenas are strictly alternating, i.e., a move made by a player does not take the
game back to her configuration (i.e. post→i(S) ∩Ai = ∅, for each i ∈ {1, 2}).



(A1) Initial and final configurations belong to Player 1, i.e., I0, F ⊆ V1.
(A2) Non-final configurations are no dead ends, i.e., ∀x ∈ S\F,∃y : x→1 y∨x→2 y.

3 The formal framework

Parameterised systems are an infinite family F = {Si}i∈N of finite-state transition sys-
tems. Similarly, randomised parameterised systems are an infinite familyF = {Si}i∈N
of Markov Decision Processes [52], which are finite-state transition systems S =
〈S;→1,→2〉 that have both “nondeterministic” transitions→1 and “probabilistic” tran-
sitions→2.

We first informally illustrate the concept of randomised parameterised systems
by means of Israeli-Jalfon Randomised Self-Stabilising Protocol [47] (also see [66]).
The protocol has a ring topology and each process either holds a to-
ken (denoted by>) or does not hold a token (denoted by⊥). At any
given step, the Scheduler chooses a process P that holds a token.
The process P can then pass the token to its left or right neighbour
each with probability 0.5. In doing so, two tokens that are held by
a process are merged into one token (held by the same process). It can be proven that
under arbitrary schedulers, starting from any configuration with at least one token, the
protocol will converge to a configuration with exactly one token with probability 1. This
is an example of liveness under arbitrary schedulers.

It is well-known that the liveness problem for finite MDPs S depends on the topol-
ogy of the graph S, not on the actual probability values in S (e.g. [29, 30, 45, 76]). In
fact, this result easily transfers to randomised parameterised systems since every in-
stance in the infinite family is a finite MDP. Following this approach, we may view the
problem of proving (almost-sure) liveness for randomised parameterised systems under
arbitrary schedulers as a 2-player reachability game between Scheduler (Player 1 with
moves →1) and Process (Player 2 with moves →2) over the arena S = 〈S;→1,→2〉
obtained by simply ignoring the actual probability values of transitions in →2 (with
non-zero probabilities). This simple reduction allows us to view randomised parame-
terised systems as an infinite family of finite arenas and adopt standard symbolic rep-
resentations of non-stochastic parameterised systems (many of which are known). Our
formal framework uses the standard symbolic representation using letter-to-letter trans-
ducers. To simplify our presentation, we will directly define liveness for randomised
parameterised systems in terms of non-stochastic two player games and relegate this
standard reduction in the full version for interested readers.

3.1 Liveness as games

Given a randomised parameterised system F = {Si}i∈N, a set I0 ⊆ V1 of initial states,
and a set F ⊆ V1 of final states, we say that a randomised parameterised system satisfies
liveness under arbitrary schedulers with probability 1 (a.k.a. almost surely terminates)
if from each configuration s0 ∈ post→∗(I0), Player 2 has a winning strategy reaching
F in F (viewed as an arena). The justification of this definition is in the full version.



3.2 Representing infinite arenas

Our formal framework uses the standard symbolic representation of parameterised sys-
tems from regular model checking [7, 23, 65, 77], i.e., transducers. Many distributed
protocols that arise in practice can be naturally modelled as transducers. Transducers
are letter-to-letter automata that accept k-ary relations over words (cf. [19]). In this
paper, we are only interested in binary length-preserving relations [7], i.e., a relation
R ⊆ Σ∗ × Σ∗ such that each (v, w) ∈ R implies that |v| = |w|. For this reason,
we will only define length-preserving transducers and only for the binary case. Given
two words w = w1 . . . wn and w′ = w′1 . . . w

′
n over the alphabet Σ, we define a word

w⊗w′ over the alphabet Σ×Σ as (w1, w
′
1) · · · (wn, w′n). A letter-to-letter transducer

is simply an automaton over Σ × Σ, and a binary relation R over Σ∗ is regular if the
set {w ⊗ w′ : (w,w′) ∈ R} is accepted by a letter-to-letter automaton R. Notice that
the resulting relation R only relate words that are of the same length. In the sequel, to
avoid notational clutter, we will useR to mean both a transducer and the binary relation
that it recognises.

Definition 1 (Automatic systems). A system S = 〈S; {→a}a∈ACT, {Ub}b∈AP〉 is said
to be automatic if S and Ub (for each b ∈ AP) are regular sets over some non-empty
finite alphabet Σ, and each relation→a (for each a ∈ ACT) is given by a transducer
over Σ.

We warn the reader that the most general notion of automatic transition systems [19],
which allow non-length preserving transducers, are not needed in this paper. When the
meaning is understood, we shall confuse the notation→a for the transition relation of
S and the transducer that recognises it.

Example 1. We shall now model Israeli-Jalfon Protocol as an automatic transition sys-
tem S = 〈S;→1,→2〉, where Scheduler’s actions are labeled by 1 and Process’s ac-
tions are labeled by 2. In general, configurations of Israeli-Jalfon protocol are circu-
lar structures, but they can easily be turned into a word over a certain finite alpha-
bet by linearising them. More precisely, the domain S of S is the set of words over
Σ = {⊥,>, >̂} of the form (⊥+>)∗>(⊥+>)∗, or (⊥+>)∗>̂(⊥+>)∗.

For example, the configuration >⊥>⊥ denotes the configuration where the 1st and
the 3rd (resp. 2nd and 4th) processes are (resp. are not) holding a token. The letter
>̂ is used to denote that Scheduler chooses a specific process that holds a token. Note
that the intersection of languages generated by these two regular expressions is empty.
The transition relation→1 is given by the regular expression I∗(>, >̂)I∗ where I :=
{(>,>), (⊥,⊥)}. The transition relation>2 is given by a union of the following regular
expressions:

– I∗(>̂,⊥) ((⊥,>) + (>,>)) I∗
– I∗ ((⊥,>) + (>,>)) (>̂,⊥)I∗

– ((⊥,>) + (>,>)) I∗(>̂,⊥)
– (>̂,⊥)I∗ ((⊥,>) + (>,>))

Note that the right column represents transitions that handle the circular case. Also,
note that if I0 = (⊥+>)∗>(⊥+>)∗ and F = ⊥∗>⊥∗, Player 2 can always win the
game from any reachable configuration (note: post→∗(I0) = I0) by simply minimising
the distance between the leftmost token and the rightmost token in the configuration.

ut



3.3 Algorithm for liveness (an overview)

Our discussion thus far has led to a reformulation of liveness for probabilistic pa-
rameterised systems as the following decision problem: given an automatic arena
S = 〈S;→1,→2〉, a regular set I0 ⊆ S of initial configurations, and a regular set
F of final configurations, decide if Player 2 can force the game to reach F in S starting
from each configuration in post→∗(I0). In the sequel, we will call 〈S, I0, F 〉 a game in-
stance. Note that the aformentioned problem is undecidable even when→2 is restricted
to identity relations, which amounts to the undecidable problem of safety [7]. We will
show now that decidability can be retained if “advice bits” are provided in the input.

Advice bits are a pair 〈A,≺〉, where A ⊆ S is a set of game configurations and
≺ ⊆ S ×S is a binary relation over the game configurations. Intuitively, A is an induc-
tive invariant, whereas ≺ is a well-founded relation that guides Player 2 to win. More
precisely, the advice bits 〈A,≺〉 are said to conform to the game instance 〈S, I0, F 〉 if:

(L1) I0 ⊆ A,
(L2) A is→-inductive, i.e., ∀x, y : x ∈ A ∧ (x→ y)⇒ y ∈ A,
(L3) ≺ is a strict preorder3 on S,
(L4) Player 2 can progress from A by following ≺:

∀x ∈ A \ F, y ∈ S \ F :
(
(x→1 y) ⇒ (∃z ∈ A : (y →2 z) ∧ x � z)

)
.

Conditions (L1) and (L2) ensure that post→∗(I0) ⊆ A, while conditions (L3)–(L4)
ensure that Player 2 has a winning strategy from each configuration in post→∗(I0).
Note that (L3) implies well-foundedness of ≺, provided that ≺ only relates words of
the same length (which is always sufficient for advice bits, and will later follow from
the use of length-preserving transducers to represent ≺).

Theorem 1. Let S = 〈S;→1,→2〉 be a →∗-image-finite arena, i.e., post→∗(s) is
finite, for each s ∈ S. Given a set I0 ⊆ V1 of initial configurations, and a set F ⊆ V1
of final configurations, the following are equivalent:

1. Player 2 has a winning strategy reaching F in S starting from each configuration
in post→∗(I0) ∩ V1.

2. There exist advice bits 〈A,≺〉 conforming to the input 〈S, I0, F 〉.

Advice bits 〈A,≺〉 are said to be regular if A (resp. ≺) is given as a regular set
(resp. relation). With the help of regular advice bits, the problem of deciding a winning
strategy for Player 2 becomes decidable:

Lemma 1. Given an automatic arena S = 〈S;→1,→2〉, a regular set I0 ⊆ S of initial
configurations, a regular set F of final configurations, and regular advice bits T =
〈A,≺〉, we can effectively decide whether T conforms to the game instance 〈S, I0, F 〉.

3 A binary relation ≺ on a set A is said to be a strict preorder if it is irreflexive (i.e. for each
s ∈ A, s 6≺ s) and transitive (for each s, s′, s′′ ∈ A, s ≺ s′ and s′ ≺ s′′ implies that s ≺ s′′).



Lemma 1 follows from the fact that each of the conditions (L1)–(L4) is expressible
in first-order logic interpreted over the given game instance extended with the advice
bits, i.e., the transition systems 〈S; {→1,→2,≺}, {I0, F,A}〉. Decidability then fol-
lows since model checking first-order logic formulas over automatic transition systems
is decidable (e.g. see [18, 19] and see [71] for a detailed complexity analysis), the proof
of which is done by standard automata methods.

To decide whether Player 2 has a winning strategy for the reachability game,
Lemma 1 tells us that one can systematically enumerate all possible regular advice
bits and check whether they conform to the input game instance 〈S, I0, F 〉. A naive
enumeration would simply go through each k = 1, 2, . . . and all advice bits 〈A,≺〉
where each of the two automata have at most k states. This would be extremely slow.

4 Automatic liveness proofs

We now describe how regular advice bits 〈A,≺〉 for (regular) game instances 〈S, I0, F 〉
can be computed automatically, thus proving that Player 2 can win from every reach-
able configuration, which (as we saw in the previous section) establishes liveness for
randomised parameterised systems. We define a constraint-based method that derives
〈A,≺〉 as the solution of a set of Boolean formulas representing the conditions (L1)–
(L4) from Section 3.3. Since a full Boolean encoding of (L1)–(L4) would be expo-
nential in the size of the automata representing the advice bits, our algorithm starts
with a relaxed version of (L1)–(L4) and gradually refines the encoding with the help
of counterexamples; in this sense, our approach is an instance of CEGAR [28], and has
similarities with recent learning-based methods for computing inductive invariants [63].

Throughout the section we assume that an alphabetΣ and game instance 〈S, I0, F 〉
has been fixed. We will represent the well-founded relation ≺ using a transducer T≺ =
(Σ × Σ,Q≺, δ≺, q

0
≺, F≺), and the set A as automaton AA = (Σ,QA, δA, q

0
A, FA).

Our overall approach for computing the automata makes use of two main components,
which are invoked iteratively within a refinement loop:

SYNTHESISE Candidate automata (AA, T≺) with nA and n≺ states, respectively, are
computed simultaneously with the help of a SAT-solver, enforcing a relaxed set
of conditions encoded as a Boolean constraint ψ. The transducer T≺ is length-
preserving and irreflexive by construction; this implies that the relation≺ is a well-
founded preorder iff it is transitive.

VERIFY It is checked whether the automata (AA, T≺) satisfy conditions (L1)–(L4)
from Section 3.3. If this is not the case, ψ is strengthened to eliminate counterexam-
ples, and SYNTHESISE is again invoked; otherwise, (AA, T≺) represent a winning
strategy for Player 2 by Theorem 1.

This refinement loop is enclosed by an outer loop that increments the parame-
ters nA, and n≺ (initially set to some small number) when SYNTHESISE determines
that no automata satisfying ψ exist anymore. Initially, the formula ψ approximates
(L1)–(L4), by capturing aspects that can be enforced by a Boolean formula of poly-
nomial size. The next sections described SYNTHESISE and VERIFY in detail.



4.1 VERIFY: checking (L1)–(L4) precisely

Suppose that automata (AA, T≺) have been computed. In the VERIFY stage, it is deter-
mined whether the automata indeed satisfy the conditions (L1)–(L4), which can effec-
tively be done due to Lemma 1. The check will have one of the following outcomes:

1. (AA, T≺) represent correct advice bits.
2. (L1) is violated: some word x ∈ I0 is not accepted by AA.
3. (L2) is violated: there are words x ∈ A and y with x→ y, but y 6∈ A.
4. (L3) is violated: T≺ does not represent a transitive relation (recall that T≺ is length-

preserving and irreflexive by construction).
5. (L4) is violated: there are words x ∈ A \ F and y ∈ S \ F such that x →1 y, but

no word z ∈ A exists with y →2 z and x � z.

In cases 2–5, the computed words are counterexamples that are fed back to the SYN-
THESISE stage; details for this are given in Sect. 4.3.

The required checks on (AA, T≺) can be encoded as validity of first-order formulas,
and finally carried out using automata methods (e.g. see [71]). In (L3) and (L4), it is in
addition necessary to eliminate the quantifier ∃z by means of projection. Note that all
free variables in the formulas are implicitly universally quantified.

(L1) I0(x)⇒ A(x)

(L2) A(x) ∧ (x→1 y ∨ x→2 y)⇒ A(y)

(L3) x ≺ y ∧ y ≺ z ⇒ x ≺ z
(L4) A(x) ∧ ¬F (x) ∧ ¬F (y) ∧ (x→1 y)⇒ ∃z.

(
A(z) ∧ (y →2 z) ∧ x � z

)
4.2 SYNTHESISE: computation of candidate automata

We now present the Boolean encoding used to search for (deterministic) au-
tomata (AA, T≺), and to this end make the simplifying assumption that the states of
the transducer T≺ are Q≺ = {1, . . . , n≺}, states of the automaton AA are QA =
{1, . . . , nA}, and that q0≺ = q0A = 1 are the initial states. The following Boolean vari-
ables are used to represent automata: a variable x≺t for each tuple t = (q, a, b, q′) ∈
Q≺×Σ×Σ×Q≺; a variable xAt for each tuple t = (q, a, q′) ∈ QA×Σ×QA; and a
variable zMq for each q ∈ QM andM ∈ {≺, A}. The assignment xMt = 1 is interpreted
as the existence of the transition t in the automaton for M ; likewise, we use zMq = 1 to
represent that q is an accepting state (in DFAs it is in general necessary to have more
than one accepting state).

The set of considered automata in step SYNTHESISE is restricted by imposing a
number of conditions. Most importantly, only deterministic automata are considered,
which is important for refinement: to eliminate counterexamples, it will be necessary to
construct Boolean formulas that state non-acceptance of certain words, which can only
be done succinctly in the case of languages represented by DFAs:

(C1) The automata AA and T≺ are deterministic.

The second condition encodes irreflexivity of the relation ≺:



(C2) Every accepting path in T≺ contains a label (a, b) with a 6= b.

The third group of conditions captures minimality properties: automata that can (obvi-
ously) be represented with a smaller number of states are excluded:

(C3) Every state of the automata AA and T≺ is reachable from the initial state.
(C4) From every state in the automata AA and T≺ an accepting state can be reached.

Finally, we can observe that the states of the constructed automata can be reordered
almost arbitrarily, which increases the search space that a SAT solver has to cover.
The performance of SYNTHESISE can be improved by adding symmetry breaking con-
straints. Symmetries can be removed by asserting that automata states are sorted ac-
cording to some structural properties extracted from the automaton; suitable properties
include whether a state is accepting, or which self-transitions a state has:

(C5) The states {2, . . . , nM} (for M ∈ {≺, A}) are sorted according to the integer
value of the bit-vector 〈zMq , xM(q,l1,q), . . . , x

M
(q,lk,q)

〉 where q ∈ {2, . . . , nM} and
l1, . . . , lk is some fixed order of the transition labels in M .

Encoding as formulas The encoding of (C1) and (C5) as a Boolean constraint is
straightforward. For (C2), we assume additional Boolean variables rq (for each
q ∈ Q≺) to identify states that can be reached via paths with only (a, a) labels. (C2) is
ensured by the following constraints, which are instantiated for each q ∈ Q≺:

(q 6= q≺0 ) ∨ rq, ¬z≺q ∨ ¬rq, ¬rq ∨
∧

a∈Σ,q′∈Q≺

(¬x≺(q,a,a,q′) ∨ rq′).

The first constraint ensures that rq holds for the initial state, the second constraint ex-
cludes rq for all final states. The third constraint expresses preservation of the rq flags
under (a, a) transitions.

We outline further how (C3) can be encoded for AA (the other parts of (C3) and
(C4) are similar). We assume additional variables yq (for each q ∈ QA) ranging over
the interval [0, nA − 1], to encode the distance of a state from the initial state; these
integer variables can further be encoded in binary as a vector of Boolean variables. The
following formulas, instantiated for each q ∈ QA, define the value of the variables, and
imply that every state is only finitely many transitions away from the initial state:

y1 = 0, (q = 1) ∨
∨

a∈Σ,q′∈QA

(
xA(q′,a,q) ∧ yq = yq′ + 1

)
.

4.3 Counterexample elimination

If the VERIFY step discovers that (AA, T≺) violate some of the required condi-
tions (L1)–(L4), one of four possible kinds of counterexample will be derived, corre-
sponding to outcomes #2–#5 described in Sect. 4.1. The counterexamples are mapped
to constraints CE i (for i = 1, . . . , 4) to be added to ψ in SYNTHESISE as a conjunct:

– A configuration x from I0 has to be included in A: CE 1 = A(x)



– A configuration y has to be included in A, under the assumption that x is included:
CE 2 = ¬A(x) ∨A(y)

– Configurations x, z have to be related by≺, under the assumption that x, y and y, z
are related: CE 3 = x 6≺ y ∨ y 6≺ z ∨ x ≺ z

– Player 2 has to be able to make a ≺-decreasing step from y, assuming x→1 y and
x is included in A: CE 4 = ¬A(x) ∨ ∃z.

(
A(z) ∧ (y →2 z) ∧ x � z

)
Each of the formulas can be directly translated to a Boolean constraint over the vocab-
ulary introduced in Sect. 4.2, augmented with additional auxiliary variables; the most
intricate case is CE 4, due to the quantifier ∃z. More details are given in the full version.

5 Optimisations and incremental liveness proofs

The monolithic approach introduced so far is quite fast when compact advice bits exist
(as shown in Sect. 6), but tends to be limited in scalability for more complex systems,
because the search space grows rapidly when increasing the size of the considered au-
tomata. To address this issue, we introduce a range of optimisations of the basic method,
in particular an incremental algorithm for synthesising advice bits, computing the set A
and the relation ≺ by repeatedly constructing small automata.

5.1 Incremental liveness proofs

We first introduce a disjunctive version of the advice bits used to witness liveness:

Definition 2. Let (J,<) be a non-empty well-ordered index set.4 A disjunctive advice
bit is a tuple 〈A, (Bj ,≺j)j∈J〉, where A,Bj ⊆ S are sets of game configurations, and
each ≺j ⊆ S × S is a binary relation over the game configurations, such that:

(D1) I0 ⊆ A;
(D2) A is→-inductive, i.e., ∀x, y : x ∈ A \ F ∧ (x→ y)⇒ y ∈ A;
(D3) A is covered by the Bj sets and F , i.e., A ⊆ F ∪

⋃
j∈J Bj;

(D4) for each j ∈ J , the relation ≺j is a strict preorder on S;
(D5) for each j ∈ J , player 2 can progress from Bj by following ≺j:

∀x ∈ A ∩Bj \ (F ∪
⋃
i<j

Bi), y ∈ S \ F :

(
(x→1 y) ⇒
∃z ∈ Bj : (y →2 z) ∧ z ≺j x

)
.

The difference to monolithic advice bits (as defined in Sect. 3.3) is that the global
preorder ≺ is replaced by a set of preorders ≺j . Player 2 progresses to sets Bi with
smaller index i < j by following ≺j , and this way eventually reaches F . A monolithic
order ≺ can be reconstructed by defining

x ≺ y ⇔

{
idx (x) < idx (y) if idx (x) 6= idx (y)

x ≺j y if idx (x) = idx (y) = j

4 This means, < is a strict total well-founded order on J .



Algorithm 1: Incremental liveness checker
1 A← S ; // Over-approximation of reachable configurations
2 W ← F ; //Under-approximation of winning configurations

3 while A 6⊆W do
4 choose a word u ∈ A \W ;
5 if u is reachable then
6 W ←W ∪ win(u,A,W ) ; // Widen set of winning configurations
7 else
8 A← A ∩ invariant(u,A) ; // Tighten set of reachable configurations

9 return “Player 2 can win from every reachable configuration!”

where idx (x) = min{j ∈ J | x ∈ Bj}, and idx (x) = min J in case these is no j ∈ J
with x ∈ Bj . From this, it immediately follows that Theorem 1 also holds for disjunc-
tive advice bits. We can further note that if J is finite and all sets in (A, (Bj , <j)j∈J)
are regular, then the disjunctive advice bits correspond to regular monolithic advice bits;
in general this is not the case for infinite J .

Alg. 1 outlines the incremental liveness checker, defined with the help of disjunctive
advice bits. The algorithm repeatedly refines a set A over-approximating the reachable
configurations, and a set F under-approximating the configurations from which player 2
can win, and terminates as soon as all reachable configurations are known to be winning.
The algorithm makes use of two sub-routines: in line 8, invariant(u,A) denotes a
relatively inductive invariant I [26] excluding u, i.e., a set I ⊆ S such that

(RI1) u 6∈ I;
(RI2) I0 ⊆ I;
(RI3) A is→-inductive relative toA, i.e., ∀x, y : x ∈ (I∩A\F )∧(x→ y)⇒ y ∈ I .

If A satisfies conditions (D1) and (D2), and I is inductive relative to A, then also A∩ I
is an inductive set in the sense of (D1) and (D2). We can practically compute automata
representing sets I using a SAT-based refinement loop similar to the one in Sect. 4.

The second function win(u,A,W ) (line 6) computes a further progress pair (B,≺)
witnessing the ability of Player 2 to win from u, and returns the set B, subject to:

(PP1) u ∈ B;
(PP2) the relation ≺ is a strict preorder on S;
(PP3) Player 2 can progress from B by following ≺:

∀x ∈ A ∩B \W, y ∈ S \ F :
(
(x→1 y) ⇒ ∃z ∈ B : (y →2 z) ∧ z ≺ x

)
.

Again, a SAT-based refinement loop similar to the one in Sect. 4 can be used to find
regular progress pairs (B,≺) satisfying the conditions. Comparing (RI1)–(RI3) and
(PP1)–(PP3) with (D1)–(D5), it is also clear that disjunctive advice bits can be ex-
tracted from every successful run of Alg. 1, which implies soundness. Alg. 1 is in addi-
tion complete in the following sense: if there exist (monolithic) regular advice bits con-
forming to a game 〈S, I0, F 〉, if the words u chosen in line 4 are always of minimum



length, and if the functions invariant and win always compute minimum-size automata
(representing sets I and (B,≺)) solving the conditions (RI1)–(RI3) and (PP1)–(PP3),
then Alg. 1 terminates. This minimality condition is satisfied for the learning-based
algorithms derived in Sect. 4.

5.2 Pre-Computation of inductive invariants

Alg. 1 can be optimised in different regards. First of all, the assignment A← S (line 1)
initialising the approximation A of reachable states can be replaced with more precise
pre-computation of the reachable states, for instance with the help of abstract regular
model checking [22]. In fact, any set A satisfying (D1) and (D2) can be chosen.

We propose an efficient method for initialisingA by utilising Angluin’s L∗-learning
algorithm [9], which is applicable due to the property of length-preserving arenas that
reachability of a given configuration w (a word) from the initial configurations I0 is
decidable. Decidability follows from the fact that there are only finitely many config-
urations up to a certain length, and the words occurring on a derivation w0 → w1 →
· · · → wn all have the same length, so that known (explicit-state or symbolic) model
checking methods can be used to decide reachability.

Reachability of configurations enables us to construct an L∗ teacher (a.k.a. oracle).
Membership queries for individual wordsw are answered by checking reachability ofw
in the game. Once the learner produces an hypothesis automatonH, the teacher verifies
that:

1. H includes the language I0, i.e., (D1) is satisfied. If this is not the case, the teacher
informs the learner about some further word in I0 that has to be accepted byH.

2. H is inductive, i.e., satisfies condition (D2), which can be checked by means of
automata methods (as in Sect. 4). If (D2) is violated, the counterexample pair (x, y)
is examined, and it is checked whether the configuration x is reachable. If x is not
reachable, the teacher gives a negative answer and demands that x be removed from
the language; otherwise, the teacher demands that y is added to the language.

3. H describes the precise set of reachable configurations, for configuration length up
to some fixed n. In other words, whenever H accepts some word w with |w| ≤ n,
the configuration w has to be reachable; otherwise, the teacher demands that w is
eliminated from the language.

If all three tests succeed, the teacher accepts the produced automaton H, which indeed
represents a set A satisfying (D1) and (D2). Tests 1 and 2 ensure thatH is an inductive
invariant, while test 3 is necessary to prevent trivial solutions: without the test, the
algorithm could always return an automatonH recognising the universal language Σ∗.
The parameter n determines the precision of synthesised invariants: larger n lead to
automata H that are tighter over-approximations of the precise language of reachable
configurations.5

This algorithm is guaranteed to terminate if the set of reachable configurations in
an arena is regular; but it might only produce some inductive over-approximation of the
reachable configurations. In our experiments, the computed languages usually capture
reachable configurations very precisely, and the learning process converges quickly.

5 In our implementation we currently hard-code n to be 5.



5.3 Exploitation of game symmetries

As a second optimisation, the incremental procedure can be improved to take symme-
tries of game instances into account, thus reducing the number of iterations needed
in the incremental procedure; algorithms to automatically find symmetries in parame-
terised systems have recently proposed in [57]. This corresponds to replacing line 6 of
Alg. 1 with the assignment W ← W ∪ σ∗(win(u,A,W )); where σ is an automor-
phism of the game instance 〈S, I0, F 〉, and σ∗(L) = L∪σ(L)∪σ2(L)∪· · · represents
unbounded application of σ to a language L ⊆ Σ∗. An automorphism (or symmetry
pattern [57]) is a length-preserving bijection σ : Σ∗ → Σ∗ such that 1. initial and
winning configurations are σ-invariant, i.e., σ(I0) = I0 and σ(F ) = F ; and 2. σ is a
homomorphism of the moves, i.e., u→i v if and only if σ(u)→i σ(v) for i ∈ {1, 2}.

A symmetry commonly present in systems with ring topology is rotation, defined by
σrot(u1u2 . . . un) = u2 . . . unu1; the Israeli-Jalfon protocol (Example 1) exhibits this
symmetry, as do many other examples. In addition, the fixed-point σ∗rot(L) can effec-
tively be constructed for any regular language L ⊆ Σ∗ using simple automata methods,
which is of course important for implementing the optimised incremental algorithm.

In terms of disjunctive advice bits 〈A, (Bj ,≺j)j∈J〉, application of a symmetry σ
corresponds to including a sequence (B,≺), (σ(B),≺σ), (σ2(B),≺σ2

), . . . of progress
pairs, defining (u ≺ρ v) ⇔ (ρ−1(u) ≺ ρ−1(v)) for any bijection ρ : Σ∗ → Σ∗. The
resulting monolithic progress relation will in general not be regular; in terms of ordinals,
this means that a well-order (J,<) greater than ω is chosen.

6 Experiments and Conclusion

All techniques introduced in this paper have been implemented in the liveness checker
SLRP [1] for parameterised systems, using the SAT4J [16] solver for Boolean con-
straints. For evaluation, we consider a range of (randomised and deterministic) param-
eterised systems, as well as Take-away and Nim games, shown in Table 1. Two of
the randomised protocols, Lehmann-Rabin and Israeli-Jalfon are symmetric under rota-
tion. Since Herman’s original protocol in a ring [46] only satisfies liveness under “fair”
schedulers, we used the version of the protocol in a line topology, which does satisfy
liveness under all schedulers. Firewire is an example taken from [35, 60] representing a
fragment of Firewire symmetry breaking protocol. For handling combinatorial games,
the monolithic method in Sect. 4 was adapted by removing condition (L2); adaptation
of the incremental algorithm from Sect. 5.1 to this setting has not been considered yet.

All models could be solved using at least one of the considered CEGAR modes.
In most cases, the monolithic approach from Sect. 4 displays good performance, and
in case of the deterministic systems is competitive with existing tools (e.g. [8, 65]).
Monolithic reasoning outperforms the incremental methods (Sect. 5) in particular for
Szymanski, which is because Alg. 1 spends a lot of time computing a good approxima-
tion A of reachable states, although liveness can even be shown using A = Σ∗.

In contrast, the most complex model, the Lehmann-Rabin protocol for Dining
Philosophers, can only be solved using the incremental algorithm, and only when ac-
celerating the procedure by exploiting the rotation symmetry of the game (Sect. 5.3). In
configuration Incr+Inv+Symm, Alg. 1 computes an initial set A represented by a DFA



Table 1. Verification results for parameterised systems and games. Mono is the monolithic
method from Sect. 4, Incr the incremental algorithm from Sect. 5.1, and Inv and Symm the
optimisations introduced in Sect. 5.2 and 5.3, respectively. A dash — indicates that a model
is not symmetric under rotation, or that the incremental algorithm is not applicable (in case of
Take-away and Nim). The numbers in the table give runtime (wall-clock time) for the individual
benchmarks and configurations; all experiments were done on an AMD Opteron 6282 32-core
machine, Java heap memory limited to 20GB, timeout 2 hours.

Mono Incr Incr+Inv Incr+Symm Incr+Inv+Symm
Randomised parameterised systems

Lehmann-Rabin (DP) [34] T/O T/O T/O 48min 10min
Israeli-Jalfon [47] 4.6s 22.7s 21.4s 9.9s 9.7s
Herman [46] 1.5s 1.6s 2.4s — —
Firewire [35, 60] 1.3s 1.3s 2.0s — —

Deterministic parameterised systems
Szymanski [4, 65] 5.7s 27min 10min — —
DP, left-right strategy 1.9s 6.4s 3.4s — —
Bakery [4, 65] 1.6s 2.7s 1.9s — —
Resource allocator [32] 2.2s 2.2s 2.0s — —

Games on infinite graphs
Take-away [38] 2.8s — — — —
Nim [38] 5.3s — — — —

with 23 states (Sect. 5.2), calls the function win 25 times to obtain further progress
relations (Sect. 5.1), and overall needs 4324 iterations of the refinement procedure of
Sect. 4. To the best of our knowledge, this is the first time that liveness under arbitrary
schedulers for randomised parameterised systems like Lehmann-Rabin could be shown
fully automatically.

Future Work We conclude with two concrete research questions among many others.
The most immediate question is how to embed fairness in our framework of randomised
parameterised systems. Another research direction concerns how to extend transducers
to deal with data so as to model protocols where tokens may store arbitrary process IDs
(examples of which include Dijkstra’s Self-Stabilizing Protocol [31]).
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