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1. INTRODUCTION12

The study of infinite-state verification has revealed that unbounded recursions and unbounded paral-13

lelism are two of the most important sources of infinity in computer programs. Infinite-state models14

with unbounded recursions such as Basic Process Algebra (BPA), and Pushdown Systems (PDS)15

have been studied for a long time (e.g. [Baeten et al. 1987; Muller and Schupp 1985]). The same can16

be said about infinite-state models with unbounded parallelism, which include Basic Parallel Pro-17

cesses (BPP) and Petri nets (PN), e.g. [Christensen 1993; Hack 1976; Esparza and Nielsen 1994].18

While these aforementioned models are either purely sequential or purely parallel, there are also19

models that simultaneously inherit both of these features. A well-known example are PA-processes20

[Bergstra and Klop 1985], which are a common generalization of BPA and BPP. It is known that21

all of these models are not Turing-powerful in the sense that decision problems such as reachability22

are still decidable (e.g. see [Burkart et al. 2001]), which makes them suitable for verification.23

In his seminal paper [Mayr 2000], Mayr introduced the Process Rewrite Systems (PRS) hierarchy24

(see leftmost diagram in Figure 1) containing several models of infinite-state systems that generalize25

1An extended abstract of this paper has appeared in the proceedings of CONCUR 2011 [Göller and Lin 2011a].
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A:2 S. Göller and A. W. Lin

the aforementioned well-known models with unbounded recursions and/or unbounded parallelism.1

The idea is to treat models in the hierarchy as a form of term-rewrite systems, and classify them2

according to which terms are permitted on the left and right hand side of the rewrite rules. In addi-3

tion to the aforementioned models of infinite-state systems, the PRS hierarchy contains three new4

models: (1) Process Rewrite Systems (PRS), which generalize PDS, PA-processes, and Petri nets,5

(2) PAD-processes, which unify PDS and PA-processes, and (3) PAN-processes, which unify both6

PA-processes and Petri nets. Mayr showed that the hierarchy is strict with respect to strong bisimu-7

lation. Despite its expressive power PRS is not Turing-powerful since reachability is still decidable8

for this class. Before the PRS hierarchy was introduced, another class of infinite-state systems called9

Ground Tree/Term Rewrite Systems (GTRS) already emerged in the term rewriting community as a10

class with good decidability properties. While extending the expressive power of PDS, GTRS still11

enjoys decidability of reachability (e.g. [Brainerd 1969; Coquidé et al. 1994]), recurrent reachability12

[Löding 2003], model checking first-order logic with reachability [Dauchet and Tison 1990], and13

model checking the fragments LTLdet and LTL(Fs,Gs) of LTL [To and Libkin 2010; To 2010]. Due14

to the tree structures that GTRS use in their rewrite rules, GTRS can be used to model concurrent15

systems with both unbounded parallelism (a new thread may be spawned at any given time) and16

unbounded recursions (each thread may behave as a pushdown system).17

When comparing the definitions of PRS (and subclasses thereof) and GTRS, one cannot help but18

notice their similarity. Moreover, there is a striking similarity between the problems that are decid-19

able (and undecidable) over subclasses of PRS like PA/PAD-processes and GTRS. For example,20

reachability, EF model checking, and LTL(Fs,Gs) and LTLdet model checking are decidable for21

both PAD-processes and GTRS [Bozzelli et al. 2009; Löding 2003; Mayr 2000; 2001; To 2010;22

To and Libkin 2010]. Furthermore, model checking general LTL properties is undecidable for both23

PA-processes and GTRS [Bozzelli et al. 2009; To and Libkin 2010]. Despite these, the precise con-24

nection between PRS hierarchy and GTRS is currently still open.25

Contributions: In this paper, we pinpoint the precise connection between the expressive powers of26

GTRS and models inside the PRS hierarchy with respect to strong, branching, and weak bisimu-27

lation. Bisimulations are well-known and important notions of semantic equivalences on transition28

systems. Among others, most properties of interests in verification (e.g. those expressible in standard29

modal/temporal logics) cannot distinguish two transition systems that are bisimilar. Strong/weak30

bisimulations are historically the most important notions of bisimulations on transition systems in31

verification [Milner 1989]. Weak bisimulations extend strong bisimulations by distinguishing ob-32

servable and non-observable (i.e. τ ) actions, and only requiring the observable behavior of two33

systems to agree. In this sense, weak bisimulation is a coarser notion than strong bisimulation.34

Branching bisimulation [van Glabbeek and Weijland 1996] is a notion of semantic equivalence that35

is strictly coarser than strong bisimulation but is strictly finer than weak bisimulation. It refines36

weak bisimulation equivalence by preserving the branching structure of two processes even in the37

presence of unobservable transitions (that are labeled by a silent action τ ); it is required that all38

intermediate states that are passed through during τ -transitions are related.39

Our results are summarized in the middle and right diagrams in Figure 1. Our first main result40

is that the expressive power of GTRS with respect to branching and weak bisimulation is strictly41

in between PAD and PRS but incomparable with PAN. This result allows us to transfer many de-42

cidability/complexity results of model checking problems over GTRS to PA and PAD processes. In43

particular, it gives a simple proof of the decidability of the problem of model checking the logic EF44

over PAD [Mayr 2001], and decidability (with good complexity upper bounds) of the problem of45

model checking the common fragments LTLdet and LTL(Fs,Gs) of LTL over PAD (this decidability46

result was initially given in [Bozzelli et al. 2009] without upper bounds). We also show that Regular47

Ground Tree Rewrite Systems (RGTRS) [Löding 2003] — the extension of GTRS with possibly48

infinitely many GTRS rules compactly represented as tree automata — have the same expressive49

power as GTRS up to branching/weak bisimulation. Our proof technique also implies that PDS is50

equivalent to prefix-recognizable systems (e.g. see [Burkart et al. 2001]), abbreviated as PREF, up51
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Mayr’s original PRS hierarchy

w.r.t. strong bisimulation ∼

PRS

PANPAD

PDS

PA

PN

BPA BPP

FIN

Our refinement with GTRS

w.r.t. strong bisimulation ∼

PRS

PANGTRS PAD

PDS

PA
PN

BPA BPP

FIN

Our refinement with GTRS

w.r.t. branching bisimulation ≃
and weak bisimulation ≈

PRS

PAN
GTRS = RGTRS

PAD

PDS = PREF PA PN

BPA BPP

FIN

Fig. 1. Depictions of Mayr’s PRS hierarchy and their refinements via GTRS as Hasse diagrams (the top being the most ex-
pressive). The leftmost diagram is the original (strict) PRS hierarchy where expressiveness is measured with respect to strong
bisimulation. The middle (resp. right) diagram is a strict refinement via GTRS with respect to strong (resp. weak/branching)
bisimulation.

to branching/weak bisimulation. On the other hand, when we investigate the expressive power of1

GTRS with respect to strong bisimulation, we found that PAD (even PA) is no longer subsumed in2

GTRS. Despite this, we can show that up to strong bisimulation GTRS is strictly more expressive3

than BPP and PDS, and is strictly subsumed in PRS. Finally, we mention that our results imply that4

Mayr’s PRS hierarchy is also strict with respect to weak bisimulation equivalence.5

Related work: Our work is inspired by the work of Lugiez and Schnoebelen [Lugiez and Schnoe-6

belen 2002] and Bouajjani and Touili [Bouajjani and Touili 2003], which study PRS (or subclasses7

thereof) by first distinguishing process terms that are “equivalent” in Mayr’s sense [Mayr 2000].8

This approach allows them to make use of techniques from classical theory of tree automata for9

solving interesting problems over PRS (or subclasses thereof). Our translation from PAD to GTRS10

is similar in spirit.11

There are other models of multithreaded programs with unbounded recursions that have been12

studied in the literature. Specifically, we mention Dynamic Pushdown Networks (DPN) and exten-13

sions thereof (e.g. see [Bouajjani et al. 2005]) since an extension of DPN given in [Bouajjani et al.14

2005] also extends PAD-processes. We leave it for future work to study the precise connections15

between these models and GTRS.16

Organization: Preliminaries are given in Section 2. We provide the models of infinite-state systems17

(PRS, GTRS, etc.) in Section 3. Our containment results (e.g. PAD is subsumed in GTRS up to18

branching bisimulation) can be found in Section 4. Section 5 gives the separation results for the19

refined PRS hierarchies. Finally, we briefly discuss applications of our results in Section 6.20

2. PRELIMINARIES21

By N = {0, 1, 2, . . .} we denote the non-negative integers. For each i, j ∈ N we define the interval22

[i, j] = {i, i+ 1, . . . , j}.23

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 S. Göller and A. W. Lin

Transition systems and notions of quivalence: Let us fix a countable set of action labels Act. A1

transition system is a tuple T = (S,A, {
a

−→| a ∈ A}), where S is a set of states, A ⊆ Act is2

a finite set of action labels, and where
a

−→⊆ S × S is a set of transitions for each a ∈ A. We3

write s
a

−→ t to abbreviate (s, t) ∈
a

−→. We apply similar abbreviations for other binary relations4

over S. For each s ∈ S and R ⊆ S × S, we write sR to denote that there is some t ∈ S with5

(s, t) ∈ R. For each Λ ⊆ A, we define
Λ

−→=
⋃

a∈Λ
a

−→ and we define −→=
A

−→. For reasons6

of better readability, for a binary relation R ⊆ S × S, we also write R∗, R+ and Rn to denote7

R∗ (the reflexive and transitive closure of R), R+ (the transitive closure of R), and Rn (the n-8

fold iteration of R), respectively. Whenever T is clear from the context and U ⊆ S, we define9

post∗Λ(U) = {t ∈ S | ∃s ∈ U : s
Λ

−→
∗

t}. In case U = {s} is a singleton, we also write post∗Λ(s)10

for post∗Λ(U).11

A pointed transition system is a pair (T , s), where T is a transition system and s is some state12

of T . Let T = (S,A, {
a

−→| a ∈ A}) be a transition system. A relation R ⊆ S × S is a strong13

bisimulation if R is symmetric and for each (s, t) ∈ R and for each a ∈ A we have that if s
a

−→ s′,14

then there is t
a

−→ t′ such that (s′, t′) ∈ R. We say that s is strongly bisimilar to t (abbreviated by15

s ∼ t) whenever there is a strong bisimulation R such that (s, t) ∈ R.16

Next, we define the notions of branching bisimulation and weak bisimulation. For this, let us fix a17

silent action τ 6∈ A and let Aτ = A∪ {τ}. Moreover let T = (S,Aτ , {
a

−→| a ∈ Aτ}) be a transition18

system. We define the binary relations
τ

=⇒= (
τ

−→)∗ and
a

=⇒= (
τ

−→)∗◦
a

−→ ◦(
τ

−→)∗ for each19

a ∈ A.20

A binary relation R ⊆ S × S is a branching bisimulation [van Glabbeek and Weijland 1996] if21

R is symmetric and if, for each (s, t) ∈ R and s
a

−→ s′, then either of the following two conditions22

hold: (i) a = τ and (s′, t) ∈ R or (ii) a ∈ Aτ and we have t
τ

=⇒ t′
a

−→ t′′
τ

=⇒ t′′′ satisfying23

(s, t′) ∈ R, (s′, t′′) ∈ R, and (s′, t′′′) ∈ R. We say that s is branching bisimilar to t (abbreviated24

by s ≃ t) whenever there is a branching bisimulation R such that (s, t) ∈ R.25

A binary relation R ⊆ S × S is a weak bisimulation if R is symmetric and for each (s, t) ∈ R26

and for each a ∈ Aτ we have that if s
a

−→ s′, then there is t
a

=⇒ t′ such that (s′, t′) ∈ R. We say27

that s is weakly bisimilar to t (abbreviated by s ≈ t) whenever there is a weak bisimulation R such28

that (s, t) ∈ R.29

Each of the three introduced bisimulation notions can be generalized between states s1 and s230

where s1 (resp. s2) is a state of some transition system T1 (resp. T2), by simply taking the disjoint31

union of T1 and T2.32

Example 2.1. In the following transition system we have x ≈ x′ but x 6≃ x′:33
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x3

x2 x4

x5

x1

x

τ

τ τ

a b

x′3

x′2 x′4

x′5

x′1

x′

τ

τ τ

a b

ττ

1

Let C1 and C2 be classes of transition systems and let ≡ ∈ {∼,≃,≈} be some notion of equiva-2

lence. We write C1 ≤≡ C2 if for every pointed transition system (T1, s1) with T1 ∈ C1 there exists3

some pointed transition system (T2, s2) with T2 ∈ C2 such that s1 ≡ s2. We write C1 ≡ C2 in case4

C1 ≤≡ C2 and C2 ≤≡ C1.5

These above-mentioned equivalences can also be characterized by the standard Attacker-6

Defender game. Strong (resp. weak) bisimilarity can be described by simple pebble games between7

two players: Attacker and Defender. Attacker’s goal is to prove that two given processes are not8

strongly (resp. not weakly) bisimilar, while Defender tries to prove otherwise. We will refer to At-9

tacker as him and to Defender as her. In every round of the game, there is a pebble placed on a10

unique state in each transition system. Attacker then chooses one transition system and moves the11

pebble from the pebbled state to one of its successors by an action
a

−→, where a ∈ A (resp. a ∈ Aτ in12

the weak bisimulation game). Defender must imitate this by moving the pebbled state from the other13

system to one of its successors by the same action
a

−→ (resp.
a

=⇒). If one player cannot move, then14

the other player wins. Defender wins every infinite game. Two states s and t are strongly/weakly15

bisimilar (resp. not strongly/not weakly bisimilar) if and only if Defender (resp. Attacker) has a16

winning strategy on the game with initial pebble configuration (s, t).17

Ranked trees: Let � denote the prefix order on N∗, i.e. x � y for x, y ∈ N∗ if there is some18

z ∈ N∗ such that y = xz, and x ≺ y if x � y and x 6= y. A ranked alphabet is a collection of19

finite and pairwise disjoint alphabets A = (Ai)i∈[0,k] for some k ≥ 0. For simplicity we identify20

A with
⋃

i∈[0,k] Ai. A ranked tree (over the ranked alphabet A) is a mapping t : Dt → A, where21

Dt ⊆ [1, k]∗ satisfies the following: Dt is non-empty, finite and prefix-closed and for each x ∈ Dt22

with t(x) ∈ Ai we have x1, . . . , xi ∈ Dt and xj 6∈ Dt for each j > i. We say that Dt is the domain23

of t — we call these elements nodes. A leaf is a node x with t(x) ∈ A0. We also refer to ε ∈ Dt as24

the root of t. By TreesA we denote the set of all ranked trees over the ranked alphabet A. We also25

use the usual term representation of trees, e.g. if t is a tree with root a and left (resp. right) subtree26

t1 (resp. t2) we have t = a(t1, t2).27

Let t be a ranked tree and let x be a node of t. We define xDt = {xy ∈ [1, k]∗ | y ∈ Dt}28

and x−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote the subtree of t with root x, i.e. the29

tree with domain Dt↓x = x−1Dt defined as t↓x(y) = t(xy). Let s, t ∈ TreesA and let x be a30

node of t. We define t[x/s] to be the tree that is obtained by replacing t↓x in t by s; more formally31

Dt[x/s] = (Dt \ xDt↓x) ∪ xDs with t[x/s](y) = t(y) if y ∈ Dt \ xDt↓x and t[x/s](y) = s(z) if32

y = xz with z ∈ Ds. Define |t| = |Dt| as the number of nodes in a tree t.33
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A:6 S. Göller and A. W. Lin

Regular tree languages: A nondeterministic tree automaton (NTA) is a tuple A = (Q,F,A,∆),1

where Q is a finite set of states, F ⊆ Q is a set of final states, A = (Ai)i∈[0,k] is a ranked2

alphabet, and ∆ ⊆
⋃

i∈[0,k]Q
i × Ai × Q is the transition relation. A run of A on some tree3

t ∈ TreesA is a mapping ρ : Dt → Q such that for each x ∈ Dt with t(x) ∈ Ai we have4

(ρ(x1), . . . , ρ(xi), t(x), ρ(x)) ∈ ∆. We say ρ is accepting if ρ(ε) ∈ F . By L(A) = {t ∈ TreesA |5

there is an accepting run of A on t} we denote the language of A. A set of trees U ⊆ TreesA is6

regular if U = L(A) for some NTA A. The size of an NTA A is defined as |A| = |Q|+ |A|+ |∆|.7

3. THE MODELS8

3.1. Mayr’s PRS hierarchy9

In the following, let us fix a countable set of process constants (a.k.a. process variables) X =
{A,B,C,D, . . .}. The set of process terms is given by the following grammar, where X ranges
over X:

t, u ::= 0 | X | t.u | t||u

The operator . is said to be sequential composition, while the operator ‖ is referred to as parallel10

composition. In order to minimize clutters, we assume that both operators . and ‖ are left-associative,11

e.g., X1.X2.X3.X4 stands for ((X1.X2).X3).X4. The size |t| of a term is defined as usual. Mayr12

distinguishes the following classes of process terms:13

1 Terms consisting of a single constant X ∈ X.14

S Process terms without any occurrence of parallel composition.15

P Process terms without any occurrence of sequential composition.16

G Arbitrary process terms possibly with sequential or parallel compositions.17

By 1(Σ), S(Σ), P(Σ), respectively G(Σ) we denote the set 1, S, P, respectively G restricted to18

process constants from Σ, for each finite subset Σ ⊆ X.19

A process rewrite system (PRS) is a tuple P = (Σ,A,∆), where Σ ⊆ X is a finite set of process20

constants, A ⊆ Act is a finite set of action labels, and ∆ is a finite set of rewrite rules of the form21

t1 7→a t2, where t1 ∈ G(Σ) \ {0}, t2 ∈ G(Σ) and a ∈ A. Other models in the PRS hierarchy are22

Finite Systems (FIN), Basic Process Algebras (BPA), Basic Parallel Processes (BPP), Pushdown23

Systems (PDS), Petri Nets (PN), PA-processes (PA), PAD-processes (PAD), and PAN-processes24

(PAN). They can be defined by restricting the terms that are allowed on the left/right hand side of25

the PRS rewrite rules as specified in the following tables.26

27

Model L.H.S. R.H.S
FIN 1(Σ) 1(Σ)
BPA 1(Σ) S(Σ)
BPP 1(Σ) P(Σ)

Model L.H.S. R.H.S
PDS S(Σ) S(Σ)
PA 1(Σ) G(Σ)
PN P(Σ) P(Σ)

Model L.H.S. R.H.S
PAD S(Σ) G(Σ)
PAN P(Σ) G(Σ)

28

We follow the approach of [Lugiez and Schnoebelen 2002; Bouajjani and Touili 2003] to define29

the semantics of PRS. While Mayr [Mayr 2000] directly works on the equivalence classes of30

terms (induced by some equivalence relation ≡ defined by some axioms including associativity31

and commutativity of ‖) to define the dynamics of PRS, we shall initially work on term level.32

More precisely, given a PRS P = (Σ,A,∆), we write T0(P) to denote the transition system33

(G(Σ),A, {
a

−→| a ∈ A}) where
a

−→ is defined by the following rules:34

t1
a

−→ t
′
1

t1‖t2
a

−→ t
′
1‖t2

t2
a

−→ t
′
2

t1‖t2
a

−→ t1‖t
′
2

t1
a

−→ t
′
1

t1.t2
a

−→ t
′
1.t2 u

a
−→ t

(u 7→a t) ∈ ∆35
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We now define Mayr’s semantics of PRS in terms of T0(P). First of all, let us define the equiva-1

lence relation ≡ on terms using the following proof rules:2

t.0 ≡ t
R0.

t1.(t2.t3) ≡ (t1.t2).t3
A.

t1 ≡ u1 t2 ≡ u2

t1.t2 ≡ u1.u2

Con.

0.t ≡ t
L0.

t1‖(t2‖t3) ≡ (t1‖t2)‖t3
A‖

t1 ≡ u1 t2 ≡ u2

t1‖t2 ≡ u1‖u2

Con‖

t‖0 ≡ t
R0‖

t1‖t2 ≡ t2‖t1
C‖

u ≡ u
′

u
′ ≡ u

′′

u ≡ u
′′ Trans

0‖t ≡ t
L0‖

u ≡ u Ref
t ≡ u

u ≡ t
Sym

3

Here, u, t, ti, ui range over all terms in G. Intuitively, the axioms defining ≡ say that 0 is identity,4

while the operator . (resp. ‖) is associative (resp. associative and commutative). The rules (Con.) and5

(Con‖) are standard context rules in process algebra saying that term equivalence is preserved under6

substitutions of equivalent subterms. Finally, Trans, Sym, and Ref state that ≡ is an equivalence7

relation. In the sequel, we also use the symbol ≡1 to denote the equivalence relation on process8

terms that allows all the above axioms except for (A‖) and (C‖). Obviously, ≡1⊆≡. Given a term9

t ∈ G, we denote by [t]≡ (resp. [t]≡1
) the ≡-class (resp. ≡1-class) containing t.10

Mayr’s semantics on a PRS P = (Σ,A,∆) such that T0(P) = (G(Σ),A, {
a

−→| a ∈ A}) is11

a transition system T (P) = (S,A, {Ea | a ∈ A}), where S = {[t]≡ | t ∈ G(Σ)} and where12

(C,C′) ∈ Ea iff there exist t ∈ C and t′ ∈ C′ such that t
a

−→ t′. An important result by Mayr13

[Mayr 2000] is that the PRS hierarchy is strict with respect to strong bisimulation.14

3.2. (Regular) ground tree rewrite systems and prefix-recognizable systems15

A regular ground tree rewrite system (RGTRS) is a tuple R = (A,A, R), where A is a ranked16

alphabet, A ⊆ Act is a finite set of action labels and where R is finite set of rewrite rules L
a
→֒ L′,17

where L and L′ are regular tree languages given as NTA. The transition system defined by R is18

T (R) = (TreesA,A, {
a

−→| a ∈ A}), where for each a ∈ A, we have t
a

−→ t′ if and only if there is19

some x ∈ Dt and some rule L
a
→֒ L′ ∈ R such that t↓x ∈ L and t′ = t[x/s′] for some s′ ∈ L′ (we20

say that the rule was applied at node x).21

A ground tree rewrite system (GTRS) is an RGTRSR = (A,A, R), where for each L
a
→֒ L′ ∈ R22

we have that both L = {t} and L′ = {t′} is a singleton; we also write t
a
→֒ t′ ∈ R for this.23

A prefix-recognizable system (PREF) is an RGTRS R = (A,A, R), where only A0 and A1 may24

be non-empty. We note that analogously pushdown systems can be defined as GTRSR = (A,A, R),25

where only A0 and A1 may be non-empty.26

4. CONTAINMENT RESULTS27

In this section, we prove the following containment results: PAD ≤≃ GTRS (Section 4.1), BPP ≤∼28

GTRS and GTRS ≤∼ PRS, and finally RGTRS =≃ GTRS (Section 4.2).29

4.1. PAD ≤≃ GTRS30

THEOREM 4.1. Given a PAD P = (Σ,A,∆) and a term t0 ∈ G(Σ), there exists a GTRS R =31

(A,Aτ , R) and a tree t′0 ∈ TreesA such that (T (P), [t0]≡) is branching bisimilar to (T (R), t′0).32

Furthermore, R and t′0 may be computed in time polynomial in |P|+ |t0|.33
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Before proving this theorem, we shall first present the general proof strategy. The main difficulty of1

the proof is that the domain of T (P) consists of ≡-classes of process terms, while the domain of2

T (R) consists of ranked trees. On the other hand, observe that the other semantics T0(P) is closer3

to a GTRS since the domain of T0(P) consists of process terms (not equivalence classes thereof).4

Therefore, the first hurdle in the proof is to establish a connection between T (P) and T0(P). To5

this end, we will require that t0 and all process terms in P have a minimum number of zeros and6

have no right-associative occurrence of the sequential composition operator. We will then pick7

a small subset of the axioms of ≡ as τ -transitions, which we will add to T0(P). These axioms8

include those that reduce the occurrences of 0 from terms, and the rule that turns a right-associative9

occurrence of the sequential composition operator into a left-associative occurrence. The resulting10

pointed transition system (T0(P), t0) will become branching bisimilar to (T (P), [t0]≡). In fact,11

fixing t0 as the initial configuration, we will see that further restrictions to the axioms for ≡ (e.g.12

associativity of .) may be made resulting in a pointed transition system that can be easily captured13

in the framework of GTRS.14

Adding the τ -transitions to T0(P): We define the relation
τ

−→ on arbitrary process terms given15

by the following proof rules:16

0.t
τ

−→ t t‖0
τ

−→ t

t1
τ

−→ t
′
1

t1.t2
τ

−→ t
′
1.t2

t.0
τ

−→ t t1.(t2.t3)
τ

−→ (t1.t2).t3

t2
τ

−→ t
′
2

t1.t2
τ

−→ t1.t
′
2

0‖t
τ

−→ t

t1
τ

−→ t
′
1

t1‖t2
τ

−→ t
′
1‖t2

t2
τ

−→ t
′
2

t1‖t2
τ

−→ t1‖t
′
2

17

Here, t, ti, t
′
i are allowed to be any process terms. Observe that these τ -transitions remove redun-18

dant occurrences of 0 and turn a right-associative occurrence of the sequential composition into a19

left-associative one. Observe that we do not allow associativity/commutativity axioms for ‖ in our20

definition of
τ

−→. It is easy to see that
τ

−→ ⊆ ≡1 ⊆ ≡. We now prove a few technical properties21

about
τ

−→ in the following lemmas.22

LEMMA 4.2. The following statements hold:23

— (Termination) For all terms t, there exists a unique term t↓ such that t
τ

−→∗ t↓ and t↓ 6
τ

−→.24

Furthermore, all paths from t to t↓ are of length at most O(|t|2), and moreover t↓ is computable25

from t in polynomial time.26

— (Confluence) For all terms t ≡1 t
′, there exists t′′ such that t

τ
−→∗ t

′′ and t′
τ

−→∗ t
′′.27

Lemma 4.2 is a basic property of a rewrite system commonly known as confluence and termination28

(e.g. see [Baader and Nipkow 1998]). In fact, it does not take long (i.e. polynomially many steps in29

the worst case) to terminate.30

PROOF. Confluence is easy to prove by induction on the height of the proof tree that t ≡ t′.31

It remains to prove termination. We first prove the existence of a term u such that t
τ

−→∗ u and32

u 6
τ

−→. In doing so, we will also prove that all paths from t to u are of length at most O(|t|2).33

We define a function Value : G → N that measures how many zeros a process term has and “how34

right-associative” it is. More formally, given a process term t = (D, τ), where D ⊆ {1, 2}∗ is a35

tree domain and τ : D → Σ is the labeling function, we let Value(t) be the sum of two values: (1)36

the number of occurrences of 0 in t and (2)
∑

w∈D,τ(w)=. |w|2, where |w|2 counts the number of37

occurrences of 2 (i.e. a right turn made when traversing from the root) in w. Note that the value of38
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item (2) counts the number of right turns made when traversing from the root in all node locations1

labeled by a sequential composition. It is easy to see that Value(t) ≤ O(|t|2). It is also easy to prove2

that, for all terms t1, t2, if t1
τ

−→ t2 then we have Value(t2) < Value(t1). This can be easily proven3

by induction on the height of the proof trees that witnesses t1
τ

−→ t2. Therefore, this proves the4

existence of u such that t
τ

−→∗ u and u 6
τ

−→. Now, by confluence, we also have uniqueness of such5

u.6

LEMMA 4.3. The following statements hold: (1) If t ≡1 t
′, then t↓ = t′↓, (2) If 0 ≡ v, then7

v
τ

−→∗ 0, and (3) If X1.X2 . . . Xn ≡ v, then v
τ

−→∗ X1.X2 . . . Xn.8

Lemma 4.3 gives the form of the unique “minimal” term with respect to
τ

−→ given various different9

initial starting points.10

PROOF. Statement (1) is an easy corollary of Lemma 4.2. Statement (2) can be proven by induc-11

tion on the size of v in the same way as in the proof of Lemma 4.2.12

We now prove (3). To this end, define Par to be a function mapping an arbitrary term t to a13

number n counting the number of subterms t1‖t2 in t such that t1 6≡ 0 and t2 6≡ 0 (i.e. each14

ti contains at least one occurrence of a process constant). It is easy to see that t ≡ t′ implies15

that Par(t) = Par(t′). This can be easily proven by induction on the height of the proof tree that16

witnesses t ≡ t′. Therefore, by (2), subterms that are ≡-equivalent to 0 will be replaced by 0 using17

τ -transitions. Therefore, each v ≡ X1.X2 . . . Xn satisfies v↓ = Y1.Y2 . . . Ym for some m ∈ N. It18

is easy to see that X1.X2 . . . Xn = Y1.Y2 . . . Ym. This can be done by showing that (i) for each19

v, v′ ∈ G such that v ≡ X1.X2 . . .Xn ≡ v′ it is the case that f(v) = f(v′) for the function20

f defined in the proof of Lemma 4.2, and (ii) use the fact (from Proof of Lemma 4.2) that each21

element of the image of f has a unique minimal representation with respect to
τ

−→. Statement (i)22

can easily be proved by induction on the proof trees that witness v ≡ v′ and by using the fact that23

(a) f(t) = 0 if t ≡ 0, and (b) Par(v) = Par(v′) = 0 (by the above discussions).24

For the rest of the proof of Theorem 4.1, we assume the following conventions:25

CONVENTION 4.4. The term t0 and all process terms that appear in the rewrite rules ∆ of P26

are minimal with respect to
τ

−→. That is, each of these terms t satisfies t = t↓.27

We now add these τ -transitions into T0(P). So, we will write T0(P) = (G(Σ),Aτ , {
a

−→: a ∈ Aτ}).28

Our first technical result is that the equivalence relation ≡ is indeed a branching bisimulation on29

T0(P).30

We recall that G(Σ) is state set of T0(P) and that G(Σ)/ ≡ is the state of T (P).31

LEMMA 4.5. ≡ is a branching bisimulation on T0(P).32

PROOF. Take arbitrary terms u, t ∈ G(Σ). We assume that u ≡ t. Obviously, for all u′ ∈ G(Σ),33

if u
τ

−→ u′, then u′ ≡ t since
τ

−→⊆≡. Therefore, it suffices to prove the following for each34

a ∈ A: (C1) if there exists u′ ∈ G(Σ) such that u
a

−→ u′, then there exists t1, t
′ ∈ G(Σ) such that35

t
τ

−→∗ t1
a

−→ t′, and that u ≡ t1, u′ ≡ t′; and (C2) if there exists t′ ∈ G(Σ) such that t
a

−→ t′,36

then there exists u1, u
′ ∈ G(Σ) such that u

τ
−→∗ u1

a
−→ u′, and that u1 ≡ t, u′ ≡ t′.37

We will prove this by induction on the height of the proof trees that witness u ≡ t. For the base38

cases, we consider proof trees of height 1. We will only look at several of these cases (the rest being39

similar):40

(1) Rule (R0.). In this case, u = v.0 and t = v. Condition (C2) is obvious since u
τ

−→ t. For41

condition (C1), observe that our PAD P do not admit occurrences of 0 in the term on the left42

side of a rule. Therefore, by the definition of
a

−→, it is the case that u
a

−→ u′ implies u′ = v′.043

for some v′ ∈ G(Σ) satisfying v
a

−→ v′. Therefore, we have t
a

−→ v′ and u′ ≡ v′.44
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A:10 S. Göller and A. W. Lin

(2) Rule (L0.). Condition (C1) is vacuous since 0.t 6
a

−→ by the definition of
a

−→. Condition (C2)1

is true since 0.t
τ

−→ t.2

(3) Rule (A.). Condition (C2) is obvious since v1.(v2.v3)
τ

−→ (v1.v2).v3. Condition (C1) can3

be seen from the fact that the left side of a term on the left side of a rule does not have a4

subterm of the form v1.(v2.v3). Therefore, if v1.(v2.v3)
a

−→ u′, then we have v1
a

−→ v′1. Hence,5

(v1.v2).v3
a

−→ (v′1.v2).v3 ≡ v′1.(v2.v3).6

Let us now look at the inductive cases:7

(1) Rule (Sym). This case is immediate from the inductive hypothesis due to the symmetry be-8

tween (C1) and (C2).9

(2) Rule (Trans). This case is also immediate from the induction hypothesis and the transitivity10

of branching bisimulation.11

(3) Rule (Con.). We will only prove (C1) since (C2) is symmetric in this case. We have12

u1.u2
a

−→ u′, u = u1.u2, t = t1.t2, and u ≡ t. There are two cases to consider. First, the13

formal proof of u1.u2
a

−→ u′ is of height 1, which implies that (u1.u2, a, u
′) ∈ ∆. Since the14

left side of a PAD rule is of the form X1.X2 . . .Xn, Lemma 4.3 implies that t
τ

−→∗ u. There-15

fore, (C1) is immediately satisfied. The second case is when the height of the formal proof of16

u1.u2
a

−→ u′ is of height > 1. In this case, we have u1
a

−→ u′1. We may then invoke the17

induction hypothesis on u1 ≡ t1 and immediately obtain (C1).18

(4) Rule (Con‖). This is the same as the second case of the previous item.19

As an immediate corollary, we obtain that (T0(P), t0) is equivalent to (T (P), [t0]≡) up to branch-20

ing bisimulation.21

COROLLARY 4.6. The relation R = {(C, t) ⊆ G(Σ)/ ≡ ×G(Σ) : t ∈ C} is a branching22

bisimulation between T (P) and T0(P).23

PROOF. We write T (P) = (G(Σ)/ ≡,A, {Ea : a ∈ A}). In the following, we will take arbitrary24

process terms t, t′ ∈ G(Σ) and ≡-classes C,C′ ∈ G(Σ)/ ≡. We assume in this proof that t ∈ C.25

If t
τ

−→ t′, then trivially t′ ∈ C. If t
a

−→ t′ and t ∈ C, then (C,C′) ∈ Ea with t′ ∈ C′ by26

definition of Ea.27

If C
a

−→ C′, then there exists u, u′ ∈ S such that u ∈ C, u′ ∈ C′ and that u
a

−→ u′. But then
u ≡ t and so by Lemma 4.5 there exists a sequence

t
τ

−→∗ t2
a

−→ t3
τ

−→∗ t
′

such that u ≡ t2, u′ ≡ t3, and u′ ≡ t′. Therefore, that t′ ∈ C′ and so the proof is complete.28

Removing complex τ -transitions: Corollary 4.6 implies that we may restrict ourselves to the29

transition system T0(P). At this stage, our τ -transitions still contain some rules that cannot easily30

be captured in the framework of GTRS, e.g., left-associativity rule of the sequential composition.31

We will now show that fixing an initial configuration t0 allows us to remove these τ -transitions from32

our systems.33

Recall that our initial configuration t0 satisfies t0 = (t0)↓. Denote by W the set of all subterms34

(either of t0 or of a left/right side of a rule in P) rooted at a node that is a right child of a .-labeled35

node. It is easy to see that Convention 4.4 implies that each t ∈ W satisfies t = t↓. Consequently,36

each t ∈ W cannot be of the form t1.t2 or 0 since t is a right child of the sequential composition.37

Furthermore, |W | is linear in the size of P .38

LEMMA 4.7. Fix a term t ∈ post∗(t0) with respect to T0(P). Then, any subterm of t which is a39

right child of a .-labeled node is in W .40

This lemma can be easily proved by induction on the length of the witnessing path that t ∈ post∗(t0)41

and that this invariant is always satisfied. This lemma implies that some of the rules for defining42
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τ
−→ may be restricted when only considering post∗(t0) as the domain of our system, resulting in1

the following simplified definition:2

0.t
τ

−→ t
t ∈ W

t‖0
τ

−→ t

t1
τ

−→ t
′
1

t1.t2
τ

−→ t
′
1.t2

t2 ∈ W

0‖t
τ

−→ t

t2
τ

−→ t
′
2

t1‖t2
τ

−→ t1‖t
′
2

t1
τ

−→ t
′
1

t1‖t2
τ

−→ t
′
1‖t2

3

Observe that the rule t.0
τ

−→ t may be omitted since no subterm of t ∈ post∗(t0) of the form4

u.0 exists. Moreover, the rule t1.(t2.t3)
τ

−→ (t1.t2).t3 is never applicable since no subterm of5

t ∈ post∗(t0) of the form t1.(t2.t3) exists. Other rules are omitted because any subterm of t of the6

form t1.t2 must satisfy t2 ∈W , and that each u ∈ W satisfies u = u↓ (which implies u 6
τ

−→).7

Finally, in order to cast the system into the GTRS framework, we will further restrict rules of the8

form t‖0
τ

−→ t or 0‖t
τ

−→ t. Let l-prefix(P) be the set of all prefixes of words w appearing on the9

left hand side of the rules in P treated as left-associative terms. More formally, l-prefix(P) contains10

0 (a term representation of the empty word) and all subterms u of a term appearing on the left hand11

side of a rule in P rooted at a node location of the form 1∗. We define ❀τ to be the restriction of12

τ
−→, where rules of the form 0‖t

τ
−→ t and t‖0

τ
−→ t are restricted to t ∈ l-prefix(P). We let13

T ′
0 (P) to be T0(P) with

τ
−→ replaced by ❀τ .14

LEMMA 4.8. (T ′
0 (P), t) is branching bisimilar to (T0(P), t).15

PROOF. Define ≡2 to be the equivalence relation on process terms that are generated by Axioms16

(R0‖), (L0‖), (Ref), (Con.), (Con‖), (Trans), and (Sym). Obviously, we have ≡2 ⊆ ≡1 ⊆ ≡. It is17

not hard to prove that ≡2 is the desired branching bisimulation relation. This can be easily proven18

on the induction on the height of the proof trees that witness u ≡2 t.19

Constructions of the GTRS: It is now not difficult to cast T ′
0 (P) into GTRS framework. To con-20

struct the GTRS, we let A be the ranked alphabet containing: (i) a nullary symbol for each process21

variable occuring in P , (ii) a binary symbol for the binary operator ‖, and (iii) a unary symbol t̂ for22

each term t ∈ W . Since each subterm u of a term t ∈ post∗(t0) of the form t1.t2 satisfies t2 ∈ W ,23

we may simply substitute u with the term t̂2(t1) and perform this substitution recursively on t1.24

Denote by λ(t) the resulting term over the new alphabet A after this substitution is performed on a25

process term t. The desired GTRS is R = (A,Aτ , R), where R is defined as follows. For each rule26

t 7→a t
′ in P , where a ∈ A, we add the rule λ(t)

a
→֒ λ(t′) to R. For each t ∈ l-prefix(P), we add27

0‖t
τ
→֒ t and t‖0

τ
→֒ t to R. Finally, we add the transition rule t̂(0)

τ
−→ t for each t ∈W . It is now28

not difficult to show that (T ′
0 (P), t) ≃ (T (R), λ(t)), which immediately implies Theorem 4.1.29

4.2. Further containment results30

In this section we prove all remaining containment results for completing Figure 1.31

THEOREM 4.9. BPP ≤∼ GTRS.32

PROOF. Let P = (Σ,A,∆) be some BPP. Let A be the ranked alphabet with A0 = Σ⊎{$} and33

A2 = {•}. For each parallel term α = Y1|| · · · ||Yn ∈ P(Σ)/≡, with Yi ∈ Σ for each i ∈ {1, . . . , n},34

we define the ranked tree t(α) inductively on n: If n = 0 then t(α) = $, if n ≥ 1 then t(α) =35

•(Yn, t(Y1|| · · · ||Yn−1)).36
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We define the GTRS R = (A,A, R), where R = {X
a
→֒ t(α) | (X 7→a α) ∈ ∆}. For any1

(parallel) process term α ∈ P(Σ) with respect to T (P) one can easily check that α is strongly2

bisimilar to t(α) with respect to T (R).3

THEOREM 4.10. GTRS ≤∼ PRS.4

PROOF. Let R = (A,A, R) be a GTRS. We will construct a PRS P = (Σ,A,∆) and a5

mapping µ : TreesA → G(Σ) such that each t ∈ TreesA with respect to T (R) is strongly6

bisimilar to µ(t) with respect to T (P). Assume the maximal rank of A is k. Then we put7

Σ = A ⊎ {X1, . . . , Xk}. Inductively we define µ(t) as follows: µ(a) = a for each a ∈ A0 and8

µ(f(t1, . . . , tℓ)) =

(

µ(t1).X1 || · · · || µ(tℓ).Xℓ

)

.f for each f ∈ Aℓ with ℓ ≥ 1. We define the set9

of rewrite rules as ∆ = {µ(t) 7→a µ(t
′) | t

a
→֒ t′ ∈ R}.10

THEOREM 4.11. RGTRS ≃ GTRS.11

PROOF. Since for every GTRS there is an isomorphic RGTRS it remains to prove that12

RGTRS ≤≃ GTRS. Assume an RGTRS R = (A,A, R), assume k is the maximal rank of A,13

and assume L1
a1

→֒ L′
1, . . . , Ln

an

→֒ L′
n to be an enumeration of R. We assume that each Li is14

given by the NTA Ai = (Qi, Fi, A,∆i) and L′
i is given by the NTA A′

i = (Q′
i, F

′
i , A,∆

′
i) for15

each i ∈ {1, . . . , n}. We will construct a GTRS R′ = (A′,A, R′) with A ⊆ A′ such that every16

t ∈ TreesA with respect to T (R) is branching bisimilar to t with respect to T (R′).17

We put A′
i = Ai for each 1 ≤ i ≤ k and A′

0 = A0 ⊎
⊎

i∈[1,n]Qi ⊎ Q′
i. For each rule18

(q1, . . . , qj , a, q) ∈
⋃

i∈[1,n]∆i ⊎ ∆′
i we add the rules a(q1, . . . , qj)

τ
→֒ q and q

τ
→֒ a(q1, . . . , qj)19

to R′ plus the rules {q
ai

→֒ q′ | i ∈ {1, . . . , n}, q ∈ Fi, q
′ ∈ F ′

i}. The reader now easily verifies20

that by construction we have that in T (R′) the relation
τ

−→∗ is an equivalence relation. For every21

t ∈ TreesA′ , let [t] denote the equivalence class of t with respect to
τ

−→∗. Finally one easily verifies22

that the relationR = {(t, t′) | t ∈ TreesA, t
′ ∈ [t]} ⊆ TreesA×TreesA′ is a branching bisimulation23

between T (R) and T (R′) that relates each t with respect to T (R) with t with respect to T (R′).24

In analogy to Theorem 4.11 one can prove the following.25

COROLLARY 4.12. PDS ≃ PREF.26

5. SEPARATION RESULTS27

In this section, we provide the separation results in the two refined hierarchies. We first note two28

known separation results: (1) BPA 6≤≈ PN (e.g. see [Christensen 1993]), and (2) BPP 6≤≈ PDS29

since there is a BPP trace language that is not context-free (e.g. see references in [Bouajjani et al.30

1995]) and trace equivalence is coarser than weak bisimulation equivalence.31

5.1. PA 6≤∼ GTRS32

Some properties of GTRS: We introduce some notions that were also used in [Löding 2003]. Let33

R = (A,A, R) be an arbitrary GTRS. For each t ∈ TreesA, we define height(t) = max{|x| : x ∈34

Dt}. We define the number hR = max{height(t) | ∃t′ ∈ TreesA ∃σ ∈ A : t
σ
→֒ t′ ∈ R or t′

σ
→֒ t ∈35

R} and |R| = |R| · hR + |A|+ |A|. In other words, hR is the maximum height of trees on left/right36

hand sides of any rule in R. We start off by proving a pumping lemma for GTRS:37

LEMMA 5.1. Let Λ ⊆ A. For every t0 ∈ TreesA there is some N ≤ exp(|R|+height(t0)) such38

that t0
Λ
−→N implies t0

Λ
−→n for infinitely many n ∈ N.39

PROOF. First, it is easy to see that there is some NTA A with |A| ≤ O(|t0|) such that L(A) =
{t0}. It is well known that there is some NTA B with L(B) = post∗Λ(t0) and |B| ≤ poly(|t0|+ |R|),
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U

V

tB

y

x

Fig. 2. The tree T 1 = U [V [tB]].

see also [Löding 2003]. We define

N = |{t ∈ TreesA | height(t) ≤ |B|}|+ 1.

Proving that N ≤ exp(|R| + height(t0)) is standard. We make a case distinction if L(B) =1

post∗Λ(t0) contains a tree of height strictly greater than |B| or not. On the one hand, assume that2

L(B) does not contain a tree of height strictly greater than |B|. This implies |L(B)| < N . Since3

t0
Λ
−→N , by the pigeonhole principle, there is some t ∈ TreesA with t0

Λ
−→∗ t

Λ
−→+ t. This implies4

t0
Λ
−→n for infinitely n ∈ N. On the other hand assume that L(B) contains at least one tree t with5

height(t) > |B|. By reasoning in the same ways as for the Pumping Lemma for regular tree lan-6

guages, we can pump some context of t arbitrarily often and hereby obtain trees of arbitrarily large7

height. Since the pumped trees can become arbitrarily large and are all reachable from t0, the path8

lengths from t0 to these trees can become arbitrarily long too, thus implying t0
Λ
−→n for infinitely9

many n ∈ N.10

The separating PA: For the following proof we work on terms modulo the equivalence relation ≡.11

Consider the PA P = (Σ,A,∆) with Σ = {A,B,C,D}, A = {a, b, c, d} and where ∆ consists of12

the following rewrite rules:13

A 7→a 0 B 7→b 0 C 7→c 0 D 7→d 0 A 7→a A||B||C

For the rest of this section, we wish to prove that the process α = A.D is not strongly bisimilar14

to any pointed GTRS. Before we start with the proof, let us explain the behavior of the process15

α = A.D. From α we can reach via the sequence ai the process αi = (A||Bi||Ci).D by applying16

the fifth of the above rewrite rules exactly i times. The application of this rule can thus be seen17

to make the process bigger. However from the resulting process αi we can switch with via an a-18

transition to the process (Bi||Ci).D from which we can only reach the processD by executing some19

sequence of actions from {w ∈ {b, c}∗ : |w|b = |w|c = i} (and thus applying the third and fourth20

of the above-mentioned rules). Having reachedD, we can only executeD 7→d 0 and hence end in a21

dead-end. We remark that αi 6∼ αj in case i 6= j.22

So for the sake of contradiction, let us assume some GTRS R = (A,A, R) and some tα ∈23

TreesA with tα ∼ α. We remark that e.g. by [Löding 2003] it is known that the set of traces that24

are executable from α (the set of words w with α
w

−→) is recognizable by some GTRS with τ -25

transitions.26
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A:14 S. Göller and A. W. Lin

We call V [x] a context if V ∈ TreesA and x ∈ DV is a leaf of V . Given a tree t ∈ TreesA and1

a context V [x], we write V [t] for V [x/t]. We define V n[t] inductively as follows: V 0[t] = t and2

V n = V [V n−1[t]] for each n > 0.3

Let us consider post∗{a}(tα). First, let A be some NTA with L(A) = {tα}. A folklore result states4

that there is some NTA B with L(B) = post∗{a}(L(A)) = post∗{a}(tα), e.g. see [Brainerd 1969;5

Löding 2003]. Note that L(B) is infinite since α can reach the set {αi | i ≥ 0} of pairwise non-6

bisimilar states and we have tα ∼ α by assumption. By applying the Pumping Lemma for regular7

tree languages (cf. [Comon et al. 2007]), there is some tree tB ∈ TreesA and there are contexts8

U [x], V [y] ∈ TreesA such that9

(i) U [V [tB]] ∈ L(B),10

(ii) height(U [V [tB]]) ≤ 2 · |B|,11

(iii) height(V [tB]) ≤ |B|,12

(iv) y 6= ε (in particular V is not a singleton tree), and13

(v) U [V n[tB]] ∈ L(B) for each n ≥ 0.14

The tree U [V [tB]] is displayed in Figure 2. We define the tree T n = U [V n[tB]] for each n ≥ 0.15

The following two constants γ and ℓ that only depend on |R| and will play an important rule in16

proving that α cannot be bisimilar to tα. Recall that hR denotes the largest height of a tree that17

appears on the left-hand side or right-hand side of some rule in R.18

Definition 5.2. We define ℓ = 2|{t∈TreesA|height(t)≤hR}| to denote the number of different subsets19

of trees in TreesA of height at most hR and we define γ = (ℓ+ 1) · hR.20

We can think of ℓ and γ of as large pumping constants that only depend on |R|. But recall that21

R is a GTRS whose tree tα is bisimilir to the process α of the PA P : Hence, R implicitly depends22

on our PA P and its process α. The following lemma states from the subtree V γ [tB] one can only23

execute constantly many b’s only or c’s only. In fact it is a simple consequence of Lemma 5.1.24

LEMMA 5.3. There is some constant J = J(R, tα) such that for each σ ∈ {b, c} we have that25

if V γ [tB]
σ

−→n t, then n ≤ J .26

PROOF. Follows immediately from Lemma 5.1 by setting t0 = V γ [tB] and by observing that27

we cannot have V γ [tB]
σ

−→n t for infinitely many n ∈ N.28

The following lemma will be central for our separation result. It states that ifN ∈ N is sufficiently29

large one can never shrink the subtree V γ [tB] of TN to some tree of height at most hR by only30

executing b’s or only executing c’s. Although its proof is technical and therefore postponed to the31

next section, we give some intuition of its proof already here. Assume some extremely large value32

N such that the tree V γ [tB] is a subtree of the tree TN = U [V N [tB]]. Recall that tα can reach TN
33

by executing a’s only. For the sake of contradiction, let us assume that the tree V γ [tB] could reach a34

small tree t of height at most hR by executing only b’s, say. By applying some pumping arguments,35

one can show that in fact V γ [tB] can also reach a very special small tree tb of height at most hR36

by executing b’s only: V γ [tB] can reach tb by b’s only, but so can V i[tB] for all i ∈ I , where I37

is some ultimately periodic set. But this means that there exist two different M,N ∈ N such that38

tα
a
−→∗ T

M , tα
a
−→∗ T

N and TM 6∼ TN (for instance one requires many more a’s to reach TN from39

tα than the a’s required to reach TM from tα) but both TM and TN can reach U [tb] (and thus reach40

some identical bisimulation equivalence class!) by executing b’s only. This is clearly a contradiction41

to the behavior of α since the number of c’s that TM and TN can execute eventually must definitely42

differ.43

LEMMA 5.4. If σ ∈ {b, c} and V γ [tB]
σ
−→∗ t for some tree t ∈ TreesA, then height(t) > hR.44

PROOF. The proof is subject of Section 5.2.45
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...

...

V γ(tB)







yN

Fig. 3. The tree TN .

We cleary emphasize that Lemma 5.4 makes a statement about the concrete tree V γ [tB] (which1

is a subtree of every tree TN for everyN ≥ γ) and thus crucially rely on our initial assumption that2

tα is bisimilar to α.3

We can now prove the main result of this section by essentially combining Lemma 5.4 and Lemma4

5.3.5

THEOREM 5.5. PA 6≤∼ GTRS.6

PROOF. Before we give a simple winning strategy for Attacker that will contradict tα ∼ α we7

need a definition. We assume N to be sufficiently large for the following arguments to work and let8

yN denote the unique node of TN where the subtree tB is rooted at (see also Figure 3). We call a9

node z ∈ DTN of TN off-path if it is not an ancestor of yN , thus if z 6� yN .10

First Attacker plays tα
a
−→N ′ TN for some suitable N ′. We remark since N is chosen sufficiently

large, it follows that N ′ in turn is also sufficiently large for the following arguments to work. It has
to hold for some s ∈ {0, 1}:

TN ∼




A

1−s‖B‖B · · · ‖B
︸ ︷︷ ︸

N ′−s

‖C‖C · · · ‖C
︸ ︷︷ ︸

N ′−s




 .D (⋆)
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We only treat the case s = 1 (the case s = 0 can be proven analogously). Recall that γ is a1

constant that depends only on |R| + |tα|. On the one hand we cannot rewrite the subtree V γ [tB]2

of TN to any tree of height at most hR by executing b-labeled transitions only by Lemma 5.4. On3

the other hand we cannot execute more than J many b-labeled transitions in the subtree V γ [tB],4

where J is the constant of Lemma 5.3. Due to (⋆) and hence TN b
−→N ′−1, Attacker can play at5

least N ′ − 1− J many b-labeled transitions outside the subtree V γ [tB]. We recall that N ′ − J can6

be arbitrarily large since J is a constant that depends only on |R|+ |tα|. By definition of TN all of7

these N ′ − 1 − J many b-labeled transitions can be executed by rewriting subtrees initially rooted8

at off-path nodes of TN outside the subtree V γ [tB].9

Recall that the size of the pumping context V [x] and thus of any of its subtree is constantly10

bounded (i.e. depends only on |R| + |tα| but not on N ). Attacker now has the following winning11

strategy. First he continues from TN by executingN ′−1−J many b-labeled transitions by rewriting12

subtrees rooted at off-path nodes of TN outside V γ [tB]. Note that after playing these b-labeled13

transitions the sizes of the subtrees rooted at off-path nodes of TN outside V γ [tB] is still constantly14

bounded (depending only on |R| + |tα| but not on N ): this can be proven along the arguments as15

in the proof of Lemma 5.1 by showing that otherwise infinitely many b-labeled transitions can be16

executed, clearly contradicting (⋆).17

From the resulting tree Attacker has the possibility to playN ′− 1−J many c-labeled transitions18

by rewriting trees that are rooted outside the subtree V γ [tB] again due to the same reasoning as19

before. Let us call the resulting tree T ′. Again, we have that any subtree rooted at any off-path node20

outside V γ [tB] has constant size. We remark that along his path from TN to T ′ Attacker has so far21

not yet applied any rewrite rule at a node inside the subtree V γ [tB]. We note that T ′ bJ cJd
−−−−→, i.e.22

from T ′ the sequence bJcJ is executable thus reaching a tree where a d-labeled rule is executable.23

But this clearly implies that TN wd
−−→ for some w ∈ {b, c}∗ where |w| is constantly bounded, clearly24

contradicting (⋆).25

5.2. Proof of Lemma 5.426

Recall the context V [y], where y 6= ε and let tB be the tree from the the previous section. The27

following lemma states that if V i+1[tB] can reach a tree of height at most hR by executing only28

σ-labeled transitions (where σ ∈ A), then V i[tB] can also reach a tree of height at most hR by29

executing σ-labeled transitions. In fact the lemma holds even for any non-singleton contexts and30

arbitary trees to be plugged in, but we just need to state it for the context V [y] and the tree tB .31

LEMMA 5.6. Fix some symbol σ ∈ A and some i ≥ 0. If V i+1[tB]
σ

−→∗ t for some t ∈ TreesA32

with height(t) ≤ hR, then V i[tB]
σ

−→∗ t
′ for some t′ ∈ TreesA with height(t′) ≤ hR.33

PROOF. Assume V i+1[tB]
σ

−→∗ t for some t ∈ TreesA with height(t) ≤ hR. Let us fix a34

sequence of σ-labeled rewrite rules r1 · · · rℓ ∈ Rℓ that witnesses V i+1[tB]
σ

−→∗ t. To each rule35

ri we can assign a position where ri is applied. One easily verifies that the scattered subsequence36

of r1 · · · rℓ that one obtains by keeping only those ri that are applied at positions ui with y � ui37

witnesses that V i[tB]
σ

−→∗ t
′ for some tree t′ ∈ TreesA with height(t′) ≤ hR.38

The following lemma states that the there is an arithmetic progression on pumping exponents i39

for reaching small trees from V i[tB]. More precisely, it states that if the tree V γ [tB] can reach some40

tree of height at most hR by only executing σ-labeled transitions, then there is already some tree tσ41

of height at most hR such that V θσ+i·δσ [tB]
σ
−→∗ tσ for each i ≥ 0, where θσ ≥ 1 is some offset42

and δσ ≥ 1 is some period for each σ ∈ A.43

LEMMA 5.7. For each σ ∈ A there exist θσ, δσ ≥ 1 such that if V γ [tB]
σ
−→∗ t for some44

t ∈ TreesA with height(t) ≤ hR, then V θσ+i·δσ [tB]
σ
−→∗ tσ for all i ≥ 0 for some tσ ∈ TreesA with45

height(tσ) ≤ hR.46
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PROOF. Let us define the set

SMALLj = {t ∈ TreesA | height(t) ≤ hR and V j [tB]
σ
−→∗ t}

for each j ≥ 0. Note that if SMALLj+1 6= ∅, then SMALLj 6= ∅ for each j ≥ 0 by Lemma 5.6. Let1

us first prove the following claim.2

Claim. Assume d ≥ hR and SMALLj = SMALLj+d. Then SMALLj = SMALLj+i·d for all i ≥ 0.3

Proof of Claim. Let d ≥ hR. We prove SMALLj = SMALLj+d implies that SMALLj+(i−1)·d =4

SMALLj+i·d for all i ≥ 1 by induction on i. The induction base, i.e. when i = 1, holds by assump-5

tion.6

For the induction step, let i > 1. We have to prove SMALLj+(i−1)·d = SMALLj+i·d. For the
inclusion from left to right, assume t ∈ SMALLj+(i−1)·d. Thus, we have

V j+(i−1)·d[tB]
σ
−→∗ t.

Since y 6= ε and d ≥ hR there is some t′ ∈ TreesA with height(t′) ≤ hR such that

V j+(i−1)·d[tB]
σ
−→∗ V

d[t′]
σ
−→∗ t and V j+(i−2)·d[tB]

σ
−→∗ t

′.

By induction hypothesis, we have

V j+(i−1)·d[tB]
σ
−→∗ t

′.

Hence

V j+i·d[tB] = V d[V j+(i−1)·d[tB]]
σ
−→∗ V

d[t′]
σ
−→∗ t

and therefore t ∈ SMALLj+i·d.7

For the inclusion from right to left, assume t ∈ SMALLj+i·d. Thus

V j+i·d[tB]
σ
−→∗ t.

Since y 6= ε and d ≥ hR there is some t′ ∈ TreesA with height(t′) ≤ hR such that

V j+i·d[tB]
σ
−→∗ V

d[t′]
σ
−→∗ t and V j+(i−1)·d[tB]

σ
−→∗ t

′.

By induction hypothesis we have

V j+(i−2)·d[tB]
σ
−→∗ t

′.

Hence

V j+(i−1)·d[tB] = V d[V j+(i−2)·d[tB]]
σ
−→∗ V

d[t′]
σ
−→∗ t

and hence t ∈ SMALLj+(i−1)·d.8

This concludes the proof of the claim.9

It remains to find, in case V γ [tB]
σ
−→∗ t for some t ∈ TreesA with height(t) ≤ hR, some tree10

tσ ∈ TreesA with height(tσ) ≤ hR, some θσ ≥ 1 and some δσ ≥ 1 with V θσ+i·δσ [tB]
σ
−→∗ tσ for11

all i ≥ 0.12

Recall that γ = (ℓ + 1) · hR, where ℓ denotes the number of all possible sets of trees

in TreesA of height at most hR. Let us assume V γ [tB]
σ
−→∗ t for some t ∈ TreesA with

height(t) ≤ hR. Since this implies SMALLγ 6= ∅, it follows SMALLj 6= ∅ for each j ∈ {0, . . . , γ}
by Lemma 5.6. Note that |{SMALLk | 0 ≤ k ≤ γ}| ≤ ℓ. Hence, among the non-empty sets
SMALL0, SMALLhR

, SMALL2·hR
, . . . , SMALLγ there are, by the pigeonhole principle, two sets

SMALLθσ and SMALLθσ+δσ such that SMALLθσ = SMALLθσ+δσ , where δσ ≥ hR. The above
claim implies that SMALLθσ = SMALLθσ+i·δσ for each i ≥ 0. In particular, there exists some
tσ ∈ TreesA with height(tσ) ≤ hR with

V θσ+i·δσ [tB]
σ
−→∗ tσ for each i ≥ 0.

13
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We note that due to tα ∼ α and the definition of PA P we have that for every t ∈ post∗{a}(tα)1

there is some unique k ∈ N with tα
a
−→k t. Thus, for each tree t ∈ post∗{a}(tα) we define k(t) to be2

the unique k ∈ N with tα
a
−→k t. The following lemma is essentially a consequence of the definition3

of our PA P .4

LEMMA 5.8. Assume σ ∈ {b, c} and assume some tree t ∈ TreesA such that T n σ
−→∗ t and5

Tm σ
−→∗ t. Then k(T n) = k(Tm).6

PROOF. Let σ either be the action label b or c. For each i ≥ 1 let us introduce the following two7

terms αi = (A||Bi||Ci).D and βi = (Bi−1||Ci−1).D of P . Since T n, Tm ∈ post∗{a}(tα), we must8

have by definition of the two rewrite rules A 7→a A||B||C and A 7→a 0 in ∆9

— T n ∼ αk(Tn) or T n ∼ βk(Tn) and10

— Tm ∼ αk(Tm) or Tm ∼ βk(Tm).11

Let us assume that k(Tm) 6= k(T n). We will be done once we have shown that there does not exist12

any tree t ∈ TreesA such that Tm σ
−→∗ t and T n σ

−→∗ t. By the assumption k(T n) 6= k(Tm), by13

inspecting the only b-labeled or c-labeled rules B 7→b 0 and C 7→c 0 and a simple case distinction14

of the four cases15

— T n ∼ αk(Tn) and Tm ∼ αk(Tm), or16

— T n ∼ αk(Tn) and Tm ∼ βk(Tm), or17

— T n ∼ βk(Tn) and Tm ∼ αk(Tm), or18

— T n ∼ βk(Tn) and Tm ∼ βk(Tm)19

one can easily conclude that there do not exist any trees tn, tm ∈ TreesA such that Tm σ
−→∗ tm20

and T n σ
−→∗ tn with tn ∼ tm, simply because both cannot execute the same number of a’s, b’s21

and c’s: either arbitarily many a’s and no a’s on the one hand, or a different number of b’s/c’s on22

the other hand. In particular, there does not exist any tree t ∈ TreesA such that T n σ
−→∗ t and23

Tm σ
−→∗ t.24

The following straightforwardly follows from the fact that R is a GTRS and that post∗{a}(tα) is25

infinite.26

LEMMA 5.9. {k(T n) | n ∈ N} is an infinite set.27

PROOF. It is easy to see that for every m ∈ N there is an n ∈ N such that k(T n) > m.28

Let us finally prove Lemma 5.4.29

PROOF OF LEMMA 5.4. Let us fix some σ ∈ {b, c} and assume by contradiction that30

V γ [tB]
σ
−→∗ t holds for some t ∈ TreesA with height(t) ≤ hR. Then there is some tree tσ with31

height(tσ) ≤ hR and V θσ+i·δσ [tB]
σ
−→∗ tσ for each i ≥ 0 by Lemma 5.7. Let us choose a suffi-32

ciently large N ∈ N for the following arguments to work. Since N is sufficiently large there exists33

a sufficiently large M ∈ N such that M < N , k(TM) < k(TN) and M ≡ N mod δσ .34

Since we have TM = U [VM [tB]]
σ
−→∗ t

′, where t′ = U [VM−θσ [tσ]]. Due to M ≡ N mod δσ35

andM < N we also have TN = U [V N [tB]]
σ
−→∗ t

′. But then k(TM ) < k(TN) contradicts Lemma36

5.8.37

5.3. GTRS 6≤≈ PAD38

By Theorem 4.11 it suffices to prove that there is some RGTRS that is not weakly bisimilar to any39

PAD.40

Consider the RGTRS R = (A,A, R) with A0 = {X0, Y0, Z0}, A1 = {X1, Y1}, A2 = {•}, and41

A = {a, b, c, d, e, f}. First, we add to R the following rewrite rules:42
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Z0

t(0, 0)

t(0, 1)

t(0, 2)

t(1, 0)

t(1, 1)

t(2, 0)

a a

b b

a

b

c
d

c
d

cd

e

f

f

f

f

f

...

...
· · ·

...

Fig. 4. The transition system T (R).

—X0
a
→֒ X1(X0),1

—X1(X0)
b
→֒ X0,2

— Y0
c
→֒ Y1(Y0),3

— Y1(Y0)
d
→֒ Y0, and4

— •(X0, Y0)
e
→֒ Z0.5

We note that so far all rewrite rules are standard ground tree rewrite rules. Also note that the6

singleton tree Z0 is a dead-end. First, it is easy to see that for every tree in t ∈ TreesA that is7

reachable from •(X0, Y0) we have t = Z0 or t is of the form t = •(tX , tY ), where tX = Xm
1 [X0]8

and tY = Y n
1 [Y0] for some m,n ≥ 0. In the latter case we denote t by t(m,n). Finally, we add to9

R the regular ground tree rewrite rule {t(m,n) | n ≥ 1 or m ≥ 1}
f
→֒ Z0. The transition system10

T (R) is depicted in Figure 4.11

It is easy to see that the set of sequences executable from t(0, 0) is not a context-free language.12

We call a term α ∈ G(Σ) of some PAD inactive if α 6
σ

=⇒ for all σ ∈ A. We note that α
τ

=⇒ might13

be possible even though α is inactive.14

LEMMA 5.10. Assume some PAD process α with α ≈ t(m,n) for some m,n ∈ N and α15

contains an enabled subterm β1‖β2. Then β1 or β2 is inactive.16

PROOF. Assume that α contains an enabled subterm β1‖β2. Thus α can be written as

α = (β1‖β2‖ · · ·βk).γ

for some β3, . . . , βk ∈ G(Σ), where k ≥ 2. Moreover assume by contradiction that neither β1 nor17

β2 is inactive, hence β1
σ1=⇒ and β2

σ2=⇒ for some σ1, σ2 ∈ A.18
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A:20 S. Göller and A. W. Lin

First, note that neither β1
g

=⇒ nor β2
g

=⇒ holds (in particular σ1 6= g and σ2 6= g) for any1

g ∈ {e, f} since this would imply α
gσ1

=⇒ or α
gσ2

=⇒, clearly contradicting α ≈ t(m,n). Thus2

σ1, σ2 ∈ {a, b, c, d}. But since α
g

=⇒ for some g ∈ {e, f} there has to be some j ∈ {1, 2} with3

βj
τ

=⇒ 0. We fix this j ∈ {1, 2} for the rest of the proof.4

Note that whenever βj
σ

=⇒ β′
j , where σ ∈ A, then it must follow β′

j 6
τ

=⇒ 0 since otherwise

α
τ

=⇒ α′ and α
σ

=⇒ α′ for some α′, clearly contradicting α ≈ t(m,n). Wrapping up, we have

βj
τ

=⇒ 0 and βj
σj

=⇒ β′
j 6

τ
=⇒ 0

for some β′
j . Consider the move α

σj

=⇒ α′ by Attacker where

α′ = (β′
j ||β3−j ||β3 · · · ||βk).γ.

Since σj ∈ {a, b, c, d} and α ≈ t(m,n) we must have α′ g′

=⇒ for some g′ ∈ {e, f}. We have5

β3−j 6
g′

=⇒ since otherwise α
g′σj

=⇒. Similarly we must have βi 6
g′

=⇒ for all i ∈ {3, . . . , k}. Also, we6

must have β′
j 6

g′

=⇒ since otherwise α
σjg

′σ3−j

=⇒ , clearly a contradiction. Due to β′
j 6

τ
=⇒ 0 we can thus7

not have α′ g′

=⇒ for any g′ ∈ {e, f}, which is a contradiction.8

The definition of the GTRS R and Lemma 5.10 allows us to prove that the tree t(0, 0) in the9

transition system T (R) is not weakly bisimilar to any PAD.10

THEOREM 5.11. GTRS 6≤≈ PAD.11

PROOF. We claim that there is no PAD that is weakly bisimilar to t(0, 0) = •(X0, Y0). Let us
assume by contradiction that for some PAD P = (Σ,Aτ ,∆) and for some term α0 ∈ G(Σ) we have
α0 ≈ t(0, 0). We can assume without loss of generality that α0 ∈ 1(Σ) is a process constant. We
will use Lemma 5.10 to show that there is some pushdown system P ′ = (Σ′,Aτ ,∆

′) such that α0

in T (P) is weakly bisimilar to α0 in T (P ′), clearly contradicting that the set of traces executable
from tα is not context-free. Define

Γ = {t | ∃u
σ
→֒ u′ ∈ ∆ and t is a subterm of u′}

and put Σ′ = Σ ⊎ {Xt | t ∈ Γ and t is inactive}. For each inactive term t that appears on the
right-hand side of any rule in ∆ we define

χ(t) =

{

0 if t
τ

=⇒ 0

Xt otherwise.

Let us define the mapping ϕ : Γ → (Σ′)∗ inductively as follows:

ϕ(t) =







0 if t = 0

U if t = U ∈ 1(Σ)

ϕ(t1).ϕ(t2) if t = t1.t2
χ(t1).χ(t2) if t = t1‖t2 and both t1 and t2 are inactive

ϕ(t1).χ(t2) if t = t1‖t2 and t1 is active and t2 is inactive

ϕ(t2).χ(t1) if t = t1‖t2 and t1 is inactive and t2 is active

We define the set of rewrite rules as follows:

∆′ = {w
ℓ
→֒ ϕ(t) | w

ℓ
→֒ t ∈ ∆} ∪ {Xt

τ
→֒ ϕ(t) | t ∈ Γ}

By Lemma 5.10 we have that α0 in T (P) is weakly bisimilar to α0 in T (P ′).12
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5.4. PDS 6≤≈ PAN and PN 6≤≈ GTRS1

THEOREM 5.12. PDS 6≤≈ PAN.2

The proof idea is an adaption of an idea from [Mayr 2000] separating PAN from PDS with respect3

to strong bisimulation, but is technically more involved. Before we can prove Theorem 5.12, we4

first need some preparations.5

Consider a pushdown process that behaves as follows: First, it executes a sequence of actions6

w = {a, b}∗ and then executes either of the following: (1) The action c, then the reverse of w and7

finally the action e. (2) The action d, then the reverse of w and finally the action f .8

Definition 5.13. The separating PDS is Psep = (Σsep,A,∆sep), where

Σsep = {A,B,U, V,W,X}, A = {a, b, c, d, e, f}

and where ∆sep is given as follows:

U.X 7→a U.A.X U.A 7→a U.A.A U.A 7→b U.B.A
U.X 7→b U.B.X U.B 7→b U.B.B U.B 7→a U.A.B
U.X 7→c V.X U.A 7→c V.A U.B 7→c V.B
U.X 7→d W.X U.A 7→d W.A U.B 7→d W.B
V.A 7→a V V.B 7→b V V.X 7→e V
W.A 7→a W W.B 7→b W W.X 7→f W

Analogously as in the previous section we work on terms modulo the equivalence relation ≡. Let9

P = (Σ,Aτ ,∆) be some PAN that allows τ -transitions. Let t be a term of T (P). A run from t is10

either an infinite sequence t1
a1=⇒ t2

a2=⇒ t3 · · · with t1 = t and ai ∈ A for each i ≥ 1 or a finite11

sequence t1
a1=⇒ t2

a2=⇒ · · ·
an=⇒ tn with t1 = t and ai ∈ A such that there is no t′ and no a ∈ A12

with tn
a

=⇒ t′.13

For each sequence w ∈ A∗ and each process t, we define the predicate only(t, w) if and only if14

both of the following conditions are satisfied:15

— all runs from t are finite and16

— all these runs execute the sequence w.17

Let us recall Dickson’s Lemma.18

LEMMA 5.14 (DICKSON’S LEMMA). For every infinite sequence of vectors M1,M2, . . . in Nk
19

there are i < j such that Mi ≤Mj , where ≤ on vectors is defined componentwise.20

In the following, we assume that Σ = {X1, . . . , X|Σ|}. For each parallel process t ∈ P(Σ), we21

define Parikh(t) ∈ N
|Σ| to be the Parikh image of t, i.e. the ith entry of Parikh(t) equals the number22

of times Xi occurs in t.23

LEMMA 5.15. Assume some PAN = (Σ,Aτ , {
a

−→| a ∈ Aτ}) and two parallel terms t1, t2 ∈24

P(Σ), where Parikh(t1) ≤ Parikh(t2). Then (t1||t)
w

=⇒ implies (t2||t)
w

=⇒ for all w ∈ A∗ and for25

all t ∈ G(Σ).26

PROOF SKETCH. The lemma can easily be proven by induction on |w|.27

The following lemma will be an application of Dickson’s Lemma and Lemma 5.15.28

LEMMA 5.16. For every PAN P = (Σ,Aτ ,∆) there is a w ∈ {a, b}+ such that all parallel29

processes α ∈ P(Σ) do not satisfy any of the following two conditions:30

— Condition (P1): ∃αc : α
c

−→ αc ∧ only(αc, we)31

— Condition (P2): ∃αd : α
d

−→ αd ∧ only(αd, wf)32
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PROOF. Assume by contradiction that there is some PAN P = (Σ,Aτ ,∆) such that for every1

wi = aib (where i ≥ 1) there is some αi ∈ P(Σ) such that αi satisfies condition (P1) or (P2).2

Recall that Aτ = {τ} ∪ {a, b, c, d, e, f}.3

Then there must be an infinite subsequence of α1, α2, · · · , where (P1) is always satisfied or an4

infinite subsequence of α1, α2, · · · , where (P2) is always satisfied. We assume without loss of gen-5

erality that there is an infinite subsequence where (P1) is always satisfied. In the following we will6

further inspect this infinite subsequence. Since ∆ is finite, there are only finitely many different rules7

in ∆ that are labeled with the action c. Let (t1 7→c t
′
1), . . . , (tn 7→c t

′
n) be an enumeration of these8

rules. Recall that ti ∈ P(Σ) for each i ∈ {1, . . . , n} since P is a PAN. Among these rules there has9

to be some rule tℓ 7→c t
′
ℓ that can be applied to infinitely many αi by which we reach the term αi

c,10

respectively. Hence we obtain an infinite subsequence where only this rule is applied. We consider11

only this subsequence in the following. By Dickson’s Lemma, there are indices j < j′ such that12

Parikh(αj) ≤ Parkih(αj′ ). We can write αj = β||tℓ for some β, tℓ ∈ P(Σ) and hence αj′ = β||γ||tℓ13

for some γ ∈ P(Σ). Moreover we have αj
c = β||t′ℓ and αj′

c = β||γ||t′ℓ for some t′ℓ ∈ G(Σ). By14

assumption, we have only(αj′

c , wj′e) and only(αj
c, wje). But since β||γ ∈ P(Σ) it follows αj′

c

wje
=⇒15

by Lemma 5.15 , hence contradicting only(αj′

c , wj′e) since j < j′.16

For each Ω ∈ {A,B}∗, we define w(Ω) ∈ {a, b}∗ to be the sequence we obtain from Ω by17

changing upper case letters to lower case letters.18

LEMMA 5.17. For every PAN P = (Σ,Aτ ,∆) there is a sequence Ω ∈ {A,B}+ such that no19

process term t with respect to P is weakly bisimilar to U.Ω.X of Psep.20

PROOF. Assume by contradiction that there is some PAN P = (Σ,Aτ ,∆) such that for every21

sequence Ω ∈ {A,B}+ there is a term t(Ω) such that t(Ω) ≈ U.Ω.X .22

Note that for every Ω ∈ {A,B}∗ and every term t(Ω) the following two properties have to hold:23

— (1) There is a term tc(Ω) such that t(Ω)
c

=⇒ tc(Ω) and tc(Ω) ≈ V.Ω.X and thus24

only(tc(Ω), w(Ω)e).25

— (2) There is a term td(Ω) such that t(Ω)
d

=⇒ td(Ω) and td(Ω) ≈ W.Ω.X and thus26

only(td(Ω), w(Ω)f).27

Let Ω0 ∈ {A,B}+ be some sequence such that w(Ω0) satisfies Lemma 5.16, i.e. for all parallel28

processes α ∈ P(Σ) with respect to P we have29

— (P1) 6 ∃αc : α
c

−→ αc ∧ only(αc, w(Ω0)e) and30

— (P2) 6 ∃αd : α
d

−→ αd ∧ only(αd, w(Ω0)f).31

We put Ω = Ω0, hence we will prove t(Ω0) 6≈ U.Ω0.X . So assume by contradiction that t(Ω0) ≈32

U.Ω0.X holds. In the following, if α is (an occurence of) a subterm of some term t and α′ is another33

term, we denote by t[α/α′] the term that one obtains from t by replacing (this occurence) of α by34

α′. We have the following claim.35

Claim: There is some term t′(Ω0) such that the following conditions hold:36

(i) t(Ω0)
τ

=⇒ t′(Ω0).37

(ii) There is some maximal (with respect to the subterm order) enabled parallel subterm α ∈ P(Σ) of38

t′(Ω0) with α
c

−→ αc for some αc ∈ G(Σ).39

(iii) α
d

=⇒ αd for some αd ∈ G(Σ).40

Proof of the claim. Clearly (i) and (ii) have to hold for some term t′(Ω0) by condition (1) from41

above and since P is a PAN.42

Among all possible choices for t′(Ω0) and α we choose t′(Ω0) in such a way that for some43

maximal (with respect to subterm order) parallel subterm α ∈ P(Σ) of t′(Ω0) we have α
c

−→ αc.44

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Refining the Process Rewrite Systems Hierarchy via Ground Tree Rewrite Systems A:23

Observe that t′(Ω0)
d

=⇒ and t′(Ω0)[α/αc] 6
d

=⇒ holds because t(Ω0) ≈ t′(Ω0) ≈ U.Ω0.X by1

assumption. Furthermore, note that no non-empty action is executable from any subterm of t′(Ω0)2

outside α (and thus also not from t′(Ω0)[α/αc] outside αc) since this would clearly contradict3

t′(Ω0) ≈ U.Ω0.X due to α
c

−→ αc. Let us assume α 6
d

=⇒ for the sake of contradiction. Due to4

t′(Ω0)
d

=⇒ and the fact that from t′(Ω0) no non-empty action can be executed outside α we must5

have α
τ

=⇒ 0. We surely cannot have αc
w

=⇒ 0 for any w ∈ A∗
τ since t′(Ω0)[α/αc] should not be6

able to reach any process that is weakly bisimilar to t(Ω)[α/0] ≈ U.Ω0.X (for instance c may not7

be executable from t′(Ω0)[α/αc] but from U.Ω0.X). Also recall that t′(Ω0)[α/αc] cannot execute8

any non-empty action outside αc. Hence, due to only(t′(Ω0)[α → αc], w(Ω0)e) we must have9

only(αc, w(Ω0)e), which along with α
c

−→ αc contradicts (P1). End of Proof of Claim.10

Let us finish the proof of the lemma and show that t(Ω0) 6≈ U.Ω0.X . Recall our assumption that11

t(Ω0) ≈ U.Ω0.X for the sake of contradiction. We apply the previous claim and fix some term12

t′(Ω0) such that13

(i) t(Ω0)
τ

=⇒ t′(Ω0),14

(ii) there is some maximal (with respect to subterm order) enabled parallel subterm α ∈ P(Σ) of15

t′(Ω0) with α
c

−→ αc for some αc ∈ G(Σ), and16

(iii) α
d

=⇒ αd for some αd ∈ G(Σ).17

Note that t′(Ω0) ≈ U.Ω0.X has to hold too. Moreover, we cannot have only(αc, w(Ω0)e) nor18

only(αd, w(Ω0)f) by (P1) and (P2). We define tc(Ω0) = t′(Ω0)[α/αc] and td(Ω0) = t′(Ω)[α/αd].19

Recall that we have Ω0 ∈ {A,B}+ by assumption. Without loss of generality we assume that Ω020

begins with the letter A. The other case is symmetric. Note that we must have tc(Ω0)
a

=⇒ and21

td(Ω0)
a

=⇒ but also tc(Ω0) 6
b

=⇒ and td(Ω0) 6
b

=⇒.22

We claim that the action a has to be executable by a subterm of tc(Ω0) that is outside αc or by23

a subterm of td(Ω0) that is outside αd. Assume by contradiction that both the part of tc(Ω0) out-24

side αc and the part of td(Ω0) outside αd cannot execute a. Since α was chosen to be maximal,25

it follows that both the rest of tc(Ω0) outside αc and the rest of td(Ω0) outside αd cannot execute26

the action a nor b before αc (resp. αd) terminates, i.e. before αc
w

=⇒ 0 (resp. αd
w

=⇒ 0) hap-27

pens for some w ∈ A∗
τ . Surely, both αc and αd have to terminate, for otherwise this would imply28

only(αc, w(Ω0)e) or only(αd, w(Ω0)f), thus contradicting (P1) or (P2). Hence there have to exist29

(not necessarily different) suffixes v and v′ of w(Ω0) for which we have only(t′(Ω0)[α → 0], ve)30

and only(t′(Ω0)[α → 0], v′f), clearly a contradiction.31

Let us finally assume without loss of generality that a is executable in a subterm of tc(Ω0) that32

is outside of αc. But in particular, this implies that the action a is executable in a subterm of t′(Ω0)33

that is outside of α, let ta be the term that results from this execution, i.e. t′(Ω0)
a

=⇒ ta. Also, we34

must have ta
c

=⇒ ta[α/αc], thus t′(Ω0)
a

=⇒ ta
c

=⇒ ta[α/αc] in total. But clearly we must also35

have t′(Ω0)
c

=⇒ t′(Ω0)[α/αc]
a

=⇒ ta[α/αc]. The latter confluence clearly contradicts t′(Ω0) ≈36

U.Ω0.X .37

Finally, we can give the proof of Theorem 5.12.38

PROOF. Assume by contradiction that there is some PAN P = (Σ,Aτ ,∆) and some term t039

with respect to P such that t0 is weakly bisimilar to the process U.X of the PDS from Definition40

5.13. Let Ω be the sequence of Lemma 5.17 for P . The process U.X can reach via the sequence41

w(ΩR), where ΩR denotes the reverse of Ω, the state U.Ω.X . Hence t0
w(ΩR)
=⇒ t for some process t42

satisfying t ≈ U.Ω.X . However the latter contradicts Lemma 5.17.43

THEOREM 5.18. PN 6≤≈ GTRS44
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The proof can be done by observing that {anbncn | n ∈ N} is a PN language (e.g. see [Thomas1

2005]), while this language is not a trace language of GTRS (e.g. see [Löding 2003]).2

6. APPLICATIONS3

In this section, we provide applications of the connections that we establish between GTRS and the4

PRS hierarchy. Instead of attempting to exhaust all possible applications, we shall only highlight a5

few of the key applications. In particular, Theorem 4.1 allows us to transfer decidability/complexity6

upper bounds on model checking over GTRS to model checking over PA/PAD-processes.7

The first application is the decidability of EF-logic over PAD. The logic EF is the extension of
Hennessy-Milner logic with reachability operators, possibly parameterized over subsets of all pos-
sible actions (e.g. see [Göller and Lin 2011b; Stirling 1998; To 2010]). We briefly recall the syntax
of EF-logic (see [Göller and Lin 2011b; Stirling 1998; To 2010] for a more thorough definition).
EF-formulas over A is defined by the following grammar:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈Γ〉ϕ | 〈Γ∗〉ϕ

where Γ is ranges over any subset of A. The semantics is standard: 〈Γ〉 means that an action a ∈ Γ8

can be executed after which ϕ is satisfied, while 〈Γ∗〉 means that a sequence of actions with labels9

from Γ can be executed after which ϕ is satisfied.10

The decidability of EF model checking overGTRS has been known for a long time, e.g., it follows11

from the results of [Brainerd 1969; Dauchet and Tison 1990]. Together with Theorem 4.1, this easily12

gives another proof of the following result of Mayr.13

THEOREM 6.1 ([MAYR 2001]). Model checking EF-logic over PAD is decidable.14

PROOF. In order to model check an EF formula ϕ with respect to a PAD P = (Σ,A,∆) and15

initial configuration [t0]≡, we compute in polynomial-time a GTRS R and a tree t′0 such that16

(T (P), [t0]≡) ≃ (T (R), t′0). Since R allows τ -transitions, we need to modify ϕ a little bit. This17

can be done by replacing each occurrence of 〈Γ〉ϕ in ϕ by 〈{τ}∗〉〈Γ〉〈{τ}∗〉ϕ, and replacing each18

occurrence of 〈Γ∗〉ϕ in ϕ by 〈Γ∗
τ 〉ϕ. Let ϕ′ be the modified EF formula. It is easy to check that19

(T (P), [t0]≡) |= ϕ iff (T (R), t′0) |= ϕ′. For completeness, we provide a proof for this by induction20

on ϕ.21

The base case whenϕ = true is vacuous. Boolean combinations are also obvious. So we proceed22

to the other inductive cases. We shall only provide the proof for the case when ϕ = 〈Γ〉ψ; the23

case when ϕ = 〈Γ∗〉ψ is similar. In this case, we have ϕ′ = 〈{τ}∗〉〈Γ〉〈{τ}∗〉ψ′. Suppose that24

(T (P), [t0]≡) |= ϕ. Then, [t0]≡
a

−→ [t1]≡ such that (T (P), [t1]≡) |= ψ. By branching bisimilarity,25

we have t′0
τ

=⇒ s0
a

−→ s1
τ

=⇒ s2 (for some trees s0, s1, and s2) such that [t0]≡ ≃ s0, [t1]≡ ≃ s1,26

and [t1]≡ ≃ s2. By induction, we have (T (R), s2) |= ψ′ and so (T (R), t′0) |= ϕ′. Conversely,27

suppose that (T (R), t′0) |= ϕ′. Then, we have t′0
τ

=⇒ s0
a

−→ s1
τ

=⇒ s2 (for some trees s0, s1,28

and s2) such that (T (R), s2) |= ψ′. By branching bisimilarity and that there is no τ -transition in29

T (P), there exists [t1]≡ such that [t0]≡
a

−→ [t1]≡ and [t0]≡ ≃ s0, [t1]≡ ≃ s1, and [t1]≡ ≃ s2. By30

induction, we have (T (P), [t1]≡) |= ψ and so (T (P), [t0]≡) |= ϕ. This completes our proof.31

The second application is the decidability/complexity of model checking the common fragments32

LTLdet (called deterministic LTL) and LTL(Fs,Gs) [Bozzelli et al. 2009; Maidl 2000] of LTL over33

PAD. These fragments are suffciently powerful for expressing interesting properties like safety,34

fairness, liveness, and also some simple stuttering-invariant LTL properties. The following two the-35

orems follow from the results for GTRS [To 2010; To and Libkin 2010]; decidability with no upper36

bounds was initially proven in [Bozzelli et al. 2009].37

THEOREM 6.2. Model checking LTLdet over PAD is coNP-complete and is decidable in time38

exponential in the size of the formula and polynomial in the size of the system. Model checking39

LTL(Fs,Gs) over PAD is decidable in time double exponential in the size of the formula and poly-40

nomial in the size of the system.41
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We briefly recall the syntax of LTL over a finite set Γ ⊆ A:

ϕ, ϕ′ := a (a ∈ A) | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | Xϕ | ϕUϕ′.

We shall use the standard abbreviations: Fϕ for trueUϕ, Gϕ for ¬F¬ϕ, and Fs and Gs for their strict1

versions: Fsϕ = XFϕ and Gsϕ = ¬Fs¬ϕ. The semantics [[ϕ]] of an LTL formula ϕ is standard (e.g.2

see [To 2010] and references therein): it is the set of ω-words overΓ that satisfy the formulaϕ. Note:3

the results in this paper hold even if we include finite (as well as infinite) words for the semantics of4

LTL.5

We now recall the definitions of the fragments LTLdet and LTL(Fs,Gs) of LTL. The fragment6

LTL(Fs,Gs) contains precisely all LTL formulas that use only two temporal operators Fs and Gs.7

Observe that these operators can express future/global operators: [[Fϕ]] = [[ϕ ∨ Fsϕ]] and [[Gϕ]] =8

[[ϕ ∧ Gsϕ]].9

The logic LTLdet, called deterministic LTL, was introduced by Maidl [Maidl 2000]. Its syntax is10

given as follows:11

φ, φ′ := p | Xφ | φ ∧ φ′ | (p ∧ φ) ∨ (¬p ∧ φ′) |

(p ∧ φ)U(¬p ∧ φ′) | (p ∧ φ)W(¬p ∧ φ′).

Here p is a boolean combination of actions in Γ. The semantics can be defined in the same way as12

for LTL. For example, φWφ′ is interpreted as the formula Gφ∨(φUφ′), i.e., the weak until operator.13

We now recall the translations from LTLdet and LTL(Fs,Gs) formulas into a special subclass14

of Nondeterministic Büchi Word Automata (NBWA) called almost linear NBWA as introduced in15

[Babiak et al. 2012] To define almost linear NBWAs, we shall first define the notion of linear NB-16

WAs. An NBWA A = (Γ, Q, δ, q0, F ) is called linear (a.k.a. 1-weak) if there exists a partial order17

� ⊆ Q ×Q such that q′ ∈ δ(q, a) implies q � q′. Intuitively, the partial order ensures that once A18

leaves a state q, it will never be able to come back to q. In other words, graph-theoretically A looks19

like a dag possibly with self-loops, i.e., each strongly connected component (SCC) in A contains20

only a single state. Observe that every accepting run of A must eventually self-loop in one final state21

q ∈ F , i.e., sink at q. The depth of A refers to the length of the longest simple path in A.22

Definition 6.3. An almost linear NBWA A over the alphabet Γ is a pair of a linear NBWA B =
(Γ, Q, δ, q0, F ) and a function χ mapping each final state q ∈ F to an LTL formula over Γ of the
form

∧

i∈I

GFpi

where each pi is a disjunction of positive atomic formulas. The language L(A) of A contains all23

words w ∈ Γω for which there is an accepting run of B on w sinking at some q ∈ F which satisfies24

w |= χ(q). The size ‖A‖ of A is simply the sum of ‖B‖ and
∑

q∈F ‖χ(q)‖.25

Almost linear NBWAs are not more powerful than NBWAs in terms of expressive power: there is26

a simple polynomial-time translation from almost linear NBWAs to NBWAs by a technique that is27

similar to the reduction from generalized Büchi automata to standard Büchi automata. The following28

propositions are results from [Maidl 2000] (for LTLdet) and [Babiak et al. 2012] (for LTL(Fs,Gs)).29

PROPOSITION 6.4. Given an LTLdet formula ϕ, we may compute in polynomial-time a 1-weak30

NBWA A¬ϕ such that L(A¬ϕ) = [[¬ϕ]]. Given an LTL(Fs,Gs) formula ϕ, we may compute in31

double exponential time2 an almost linear NBWA A¬ϕ with at most exponentially large depth such32

that L(A¬ϕ) = [[¬ϕ]].33

2In the previous version of [Babiak et al. 2012], they had a triple-exponential time algorithm, which they improved to
double-exponential time.
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Using Theorem 4.1, we may compute a GTRS R = (A,A, R) and a tree t′0 ∈ TreesA that is1

branching bisimilar to the given system (T (P), [t0]≡) generated by an input PAD P . We may now2

make use of the following two results for GTRS:3

PROPOSITION 6.5 ([LIN 2012]). Given a 1-weak NBWA A over Γ, a GTRS R = (A,Γ, R)4

with Γ ⊆ A, and a tree t0 ∈ TreesA, the problem of deciding whether there exists an infinite trace5

w ∈ [[A]] from t0 in the system T (R) is NP-complete.6

PROPOSITION 6.6 ([TO 2010]). Given an almost linear NBWA A over Γ, a GTRS R =7

(A,Γ, R) with Γ ⊆ A, and a tree t0 ∈ TreesA, we may effectively decide whether there exists8

an infinite trace w ∈ [[A]] from t0 in the system T (R). Furthermore, this can be done in time9

exponential in the depth of A and polynomial in the size of R.10

Therefore, we compute an almost linear NBWA A¬ϕ from the negation ¬ϕ of the input LTLdet11

or LTL(Fs,Gs) formula. Since R now has τ -transitions, we explicitly introduce the label τ for12

the automaton A¬ϕ and allow each state in the automaton to loop with a τ -transition. Call the13

resulting automaton A′
¬ϕ. It is easy to see that (T (P), [t0]≡) 6|= ϕ iff there exists an infinite trace14

w ∈ [[A′
¬ϕ]] from t′0 in the system T (R). The complexity upper bound now immediately follows15

from the propositions above.16

We now prove NP-hardness, which turns out to hold already for BPP. The reduction is from
satisfiability of boolean formulas in conjunctive normal form with each clause having at most three
literals. Given a formula

ϕ = C1 ∧ · · · ∧ Cm

over the boolean variables {x1, . . . , xk}, where Ci = li1 ∨ li2 ∨ li3, our process constants are17

X1, . . . , Xk, C1, . . . , Cm. For each i = 1, . . . , k, we let Si (resp. S̄i) denote the set of indices18

j ∈ {1, . . . ,m} where the variable xi (resp. ¬xi) occurs in the clause Cj ; in other words, assigning19

1 (resp. 0) to the variable xi makes Cj true. Now, we add the following rewrite rules:20

—Xi
xi−→ ||j∈Si

Cj , for each i = 1, . . . , k.21

—Xi
xi−→ ||j∈S̄i

Cj , for each i = 1, . . . , k.22

—Ci
ci−→ 0, for each i = 1, . . . ,m.23

We now define the output LTLdet formula. Firstly, define ψ′
i (i = 1, . . . ,m) inductively as follows:24

ψ′
1 = c1 andψ′

i = ci∧Xψ′
i−1 for each i ∈ {2, . . . ,m}. Now, define another sequence of formulasψi25

(i = 1, . . . , k) inductively as follows:ψ1 = x1∧Xψ′
m andψi = xi∧Xψi−1 for each i ∈ {2, . . . , k}.26

The output formula is ψ = ψk. It is easy to see that ϕ is satisfiable iff X1|| · · · ||Xk 6|= ¬ψ, which27

completes our reduction.28
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GÖLLER, S. AND LIN, A. W. 2011a. Refining the Process Rewrite Systems Hierarchy via Ground Tree Rewrite Systems.21

In CONCUR. Lecture Notes in Computer Science Series, vol. 6901. Springer, 543–558.22
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