Refining the Process Rewrite Systems Hierarchy via
Ground Tree Rewrite Systems

Stefan Gollet and Anthony Widjaja Lif

L Universitat Bremen, Institut fur Informatik, Germany
2 Oxford University Department of Computer Science, UK

Abstract. In his seminal paper, R. Mayr introduced the well-known BssC
Rewrite Systems (PRS) hierarchy, which contains many stalfied classes of
infinite systems including pushdown systems, Petri nets Rfgrocesses. A
seperate development in the term rewriting community thiced the notion of
Ground Tree Rewrite Systems (GTRS), which is a model thattlgtrextends
pushdown systems while still enjoying desirable decidpbbperties. There have
been striking similarities between the verification prolethat have been shown
decidable (and undecidable) over GTRS and over models iPRf® hierarchy
such as PA and PAD processes. It is open to what extent PRS &R& @re
connected in terms of their expressive power. In this pagepiwpoint the exact
connection between GTRS and models in the PRS hierarchymstef their ex-
pressive power with respect to strong, weak, and branchgigblation. Among
others, this connection allows us to give new insights ihi® decidability re-
sults for subclasses of PRS, e.g., simpler proofs of knoveiddeility results of
verifications problems on PAD.

1 Introduction

The study of infinite-state verification has revealed ti@tounded recursiorendun-
bounded parallelisnare two of the most important sources of infinity in the progsa
Infinite-state models with unbounded recursions such ag Bascess AlgebraBPA),
and Pushdown SystemBI)S) have been studied for a long time (e.g. [2, 21]). The same
can be said about infinite-state models with unboundedIiptsah, which include Basic
Parallel ProcesseBPP) and Petri netsRN), e.g. [10, 14]. While these aforementioned
models are eithguurely sequentiabr purely paralle| there are also models that simul-
taneously inherit both of these features. A well-known eglnarePA-processes [3],
which are a common generalization®PA andBPP. It is known that all of these mod-
els are not Turing-powerful in the sense that decision @moislsuch as reachability is
still decidable (e.g. see [9]), which makes them suitabtevéoification.

In his seminal paper [18], R. Mayr introduced the ProcessriRe\Bystems®RS)
hierarchy (see leftmost diagram in Figure 1) containingsgmodels of infinite-state
systems that generalize the aforementioned well-knownetsaglith unbounded recur-
sions and/or unbounded parallelism. The idea is to treatetsdd the hierarchy as a
form of term rewrite systems, and classify them accordingttich terms are permit-
ted on the left/right hand sides of the rewrite rules. In &ddito the aforementioned
models of infinite systems, tHeRS hierarchy contains three new models: (1) Process

Rewrite SystemsRRS), which generaliz&DS, PA-processes, and Petri nets, EAD-
processes, which unifDS and PA-processes, and (PAN-processes, which unify
both PA-processes and Petri nets. Mayr showed that the hierarctgdswith respect
to strong bisimulation. Despite of its expressive poWw&S is not Turing-powerful
since reachability is still decidable for this class. BeftinePRS hierarchy was intro-
duced, another class of infinite-state systems called Grdtae/Term Rewrite Systems
(GTRS) already emerged in the term rewriting community as a cla#s mice decid-
ability properties. While extending the expressive powePDS, GTRS still enjoys
decidability of reachability (e.g. [8, 11]), recurrent cbability [15], model checking
first-order logic with reachability [12], and model checdgithe fragments LTk, and
LTL (Fs, Gs) of LTL [24, 23]. Due to the tree structures th@T RS use in their rewrite
rules,GTRS can be used to model concurrent systems with both unbouraatatiglism
(a new thread may be spawned at any given time) and unbourdedsions (each
thread may behave as a pushdown system).

When comparing the definitions ®RS (and subclasses thereof) a6d RS, one
cannot help but notice their similarity. Moreover, theraistriking similarity between
the problems that are decidable (and undecidable) ovefesdas oPRS like PA/PAD-
processes an@TRS. For example, reachability, EF model checking, and (4, Gs)
and LTLg.; model checking are decidable for bd¥D-processes an@TRS [7, 15,
18,19, 23, 24]. Furthermore, model checking general LTlpprtes is undecidable for
bothPA-processes an@TRS [7, 24]. Despite these, the precise connection between the
PRS hierarchy andzTRS is currently still open.

Contributions: In this paper, we pinpoint the precise connection betweereipres-
sive powers ofGTRS and models inside thERS hierarchy with respect to strong,
branching, and weak bisimulation. Bisimulations are v@lbwn and important no-
tions of semantic equivalences on transition systems. Apaihers, most properties
of interests in verification (e.g. those expressible in déamd modal/temporal logics)
cannot distinguish two transition systems that are bisim$trong/weak bisimulations
are historically the most important notions of bisimulagoon transition systems in
verification [20]. Weak bisimulations extend strong bislations by distinguishing ob-
servable and non-observable (irgactions, and only requiring the observable behavior
of two systems to agree. In this sense, weak bisimulatioc@aaser notion than strong
bisimulation. Branching bisimulation [25] is a notion ofnsantic equivalence that is
strictly coarser than strong bisimulation but is strictlyefi than weak bisimulation. It
refines weak bisimulation equivalence by preserving thadirimg structure of two pro-
cesses even in the presence of unobservahblgions; it is required that all intermediate
states that are passed through durirtgansitions are related.

Our results are summarized in the middle and right diagranfégure 1. Our first
main result is that the expressive power@FRS with respect to branching and weak
bisimulation is strictly in betweeAD and PRS but incomparable witiPAN. This
result allows us to transfer many decidability/complexigults of model checking
problems oveGTRS to PA andPAD-processes. In particular, it gives a simple proof of
the decidability of model checking the logic EF o\RkD [19], and decidability (with
good complexity upper bounds) of model checking the commagrients LTl and
LTL (Fs, Gs) of LTL over PAD (this decidability result was initially given in [7] with-

out upper bounds). In fact, we also show that Regular Groued Rewrite Systems
(RGTRS) [15] — the extension ofsTRS with possibly infinitely manyGTRS rules
compactly represented as tree automata — have the samesgixprpower a&TRS
up to branching/weak bisimulation. Our proof technique aisplies thaPDS is equiv-
alent to prefix-recognizable systems (e.g. see [9]), aliexy asPREF, up to branch-
ing/weak bisimulation. On the other hand, when we invegtitfae expressive power of
GTRS with respect to strong bisimulation, we found tl&D (evenPA) is no longer
subsumed i TRS. Despite this, we can show that up to strong bisimulaGarRs is
strictly more expressive tha®PP andPDS, and is strictly subsumed iPRS. Finally,
we mention that our results imply that MayPRS hierarchy is also strict with respect
to weak bisimulation equivalence.

Related work: Our work is inspired by the work of Lugiez and Schnoebeler §iti
Bouajjani and Touili [6], which studyRS (or subclasses thereof) by first distinguish-
ing process terms that are “equivalent” in Mayr’s sense.[IBis approach allows them
to make use of techniques from classical theory of tree aataror solving interest-
ing problems ovePRS (or subclasses thereof). Our translation frBAD to GTRS is
similar in spirit.

There are other models of multithreaded programs with unbed recursions that
have been studied in the literature. Specifically, we menfignamic Pushdown Net-
works OPN) and extensions thereof (e.g. see [5]) since an extensi@Pdf given
in [5] also extenddPAD-processes. We leave it for future work to study the precise
connections between these models &ndRS.

Organization: Preliminaries are given in Section 2. We provide the modkisfmite
systems IPRS, GTRS, etc.) in Section 3. Our containment results (24D is sub-
sumed inGTRS up to branching bisimulation) can be found in Section 4. iBach
gives the separation results for the refifRRE hierarchies. Finally, we briefly discuss
applications of our results in Section 6.

PRS
/
GTRS = RGTRS
/ \ GTR s PAD
PDS PDS = PREF PA
/ \ yX\/ /!
BPA PA BPP

NS N

FIN FIN FIN

Fig. 1. Depictions of Mayr'sPRS hierarchy and their refinements V&l RS as Hasse diagrams
(the top being the most expressive). The leftmost diagratie®riginal (strict)PRS hierarchy

where expressiveness is measured with respect to strangubasion. The middle (resp. right) di-
agram is a strict refinement V&l RS with respect to strong (resp. weak/branching) bisimutatio

2 Preliminaries

By N = {0,1,2,...} we denote the non-negative integers. For eaghe N we define
the intervalli, j] = {i,i+ 1,...,j}.

Transition systems and weak/branching/strong bisimulaion equivalence: Let us
fix a countable set of action labefgt. A transition systenis tuple7 = (S, A, {-%|
a € A}), whereS is a set ofstates A C Act is a finite set of action labels, and where
-4,C S x S'is a set oftransitions We write s — ¢ to abbreviatgs, t) €. We
apply similar abbreviations for other binary relationsiogeFor each? C S x S, we

write s R to denote that there is somes S with (s,t) € R. For eachd C A, we define

A= Usen — and we define—=-"-. WheneverT is clear from the context and

U C S, we definepost’y(U) = {t € S|3s €U :s 4, t}. IncaseU = {s}isa
singleton, we also writpost’; (s) for post’ (U).

A pointed transition systens a pair(7, s), where7 is a transition system angd
is some state of . Let 7 = (S, A, {-%+| a € A}) be a transition system. A relation
R C S x Sis astrong bisimulationf R is symmetric and for eacts,t) € R and for
eacha € A we have that ifs -~ s, then there is —~ ' such that(s’,t') € R. We
say thats is strongly bisimilarto ¢ (abbreviated by ~ t) whenever there is a strong
bisimulationR such tha{s, t) € R.

Next, we define the notions of branching bisimulation andkatdaimulation. For
this, let us fix asilent actiont ¢ A and letA; = A U {r}. Moreover letT =
(S, A, {-%] a € A,}) be a transition system. We define the binary relatiehs=
()" and=== (—=)*o - o(—)* for eacha € A.

A binary relationR C S x S is abranching bisimulationf R is symmetric and if
for each(s,t) € R the following two conditions hold: (i) it — s/, then(s’,t) € R
and (i) if s = s’ for somea € A, then there is == t' —*» " == " such that
(s,t),(s',t"),(s',t"") € R. We say thak is branching bisimilarto ¢ (abbreviated by
s ~ t) whenever there is a branching bisimulatiBrsuch tha(s, t) € R.

A binary relationkR C S x S is aweak bisimulatiorif R is symmetric and for each
(s,t) € R and for eachu € A, we have that ifs = s, then there is =% t' such
that(s’,t') € R. We say thas is weakly bisimilarto ¢ (abbreviated by ~ t) whenever
there is a weak bisimulatioR such thais, t) € R.

Each of the three introduced bisimulation notions can begdized between states
s1 and sy wheres; (resp.ss) is a state of some transition system (resp.7:), by
simply taking the disjoint union df; and7;.

LetC; andC. be classes of transition systems anddet { ~, ~, ~} be some notion
of equivalence. We writ€; <= C, if for every pointed transition syste(;, s;) with
71 € C, there exists some pointed transition syst€f, s») with 7 € C such that
s1 = so. We writeCy = Cy incaseC; <= Cp andCy <= C;.

These above-mentioned equivalences can also be chazadtdry the standard
Attacker-Defender game, see e.g. [13] and the refereneesith
Ranked trees: Let < denote the prefix order dg*, i.e.x < y for z, y € N* if there is
somez € N* such thaty = xz, andx < y if x < y andx # y. A ranked alphabeis a

collection of finite and pairwise disjoint alphabets= (A;);co,1) for somek > 0. For
simplicity we identify A with Uie[o_’k] A;. A ranked tregover the ranked alphabet)

is a mapping : D; — A, whereD; C [1, k]* satisfies the followingD; is non-empty,
finite and prefix-closed and for eache D; with ¢(x) € A; we haverl,...,zi € D;
andxj ¢ D, for eachj > i. We say thatD, is thedomainof ¢ — we call these elements
nodesA leafis a noder with t(z) € Ay. We also refer ta € D, as theroot of ¢. By
Trees, we denote the set of all ranked trees over the ranked alpkabék also use
the usual term representation of trees, e.gisfa tree with root: and left (resp. right)
subtreet; (resp.tz) we havet = a(t,t2).

Lett be aranked tree and letbe a node of. We definerD, = {zy € [1,k]* |y €
D,}andz~'D; = {y € [1,k]* | zy € D,}. By t'* we denote theubtree of with root
,i.e. the tree with domai, .. = =D, defined ag!®(y) = t(xy). Lets,t € Treesa
and letz be a node of. We definet[z/s] to be the tree that is obtained by replacing
t+* in t by s; more formallyD;, /) = (D¢ \ @Dy) U 2D, with ¢[z/s](y) = t(y) if
y € Dy \ zDy1. andt[z/s|(y) = s(z) if y = zz with z € D;.

Define|t| = |D;| as the number of nodes in a tree

Regular tree languages: A nondeterministic tree automaton (NT&)a tupleA =
(Q, F, A, A), whereQ@ is a finite set ofstates ¥ C @ is a set offinal states A =
(Ai)icio.x) is aranked alphabet, antl C Uie[o,k] Q' x A; x Q is thetransition relation
A runof A onsometree € Trees, isamapping : D; — @ such that foreach € D,
with t(z) € A; we have(p(xl),...,p(xi), t(z), p(z)) € A. We sayp is acceptingif
p(e) € F.By L(A) = {t € Trees,4 | there is an accepting run of ont} we denote
thelanguageof A. A set of treed/ C Treesy4 is regularif U = L(.A) for some NTA
A. Thesizeof an NTA A is defined agA| = |Q| + |A| + |A4|.

3 The models

3.1 Mayr’s PRS hierarchy

In the following, let us fix a countable set of process cortstéamk.a. process variables)
X = {A,B,C,D,...}. The set ofprocess termss given by the following grammar,
whereX ranges oveK:

t,u n= 0 | X | tu | tlu

The operatoris said to besequential compositigavhile the operato is referred to as
parallel compositionin order to minimize clutters, we assume that both opesatamd
|| are left-associative, e.gX1.X2.X5.X, stands for(X;.X5).X3).X,. Thesize|t| of
a term is defined as usual. Mayr distinguishes the followlagses of process terms:

1 Terms consisting of a single constafite X.

S Process terms without any occurrence of parallel compusiti

P Process terms without any occurrence of sequential cottiqosi

G Arbitrary process terms possibly with sequential or patalbmpositions.

By 1(X), S(X), P(X), respectivelyG(X) we denote the set, S, P, respectivelyG
restricted to process constants framfor each finite subsef’ C X.

A process rewrite systenPRS) is a tupleP = (X, A, A), whereX C Xis a
finite set of process constants, C Act is a finite set of action labels, and is a
finite set of rewrite rules of the formy +—, t2, wheret; € G(X) \ {0}, t2 € G(X)
anda € A. Other models irPRS hierarchy are Finite System§I{), Basic Process
Algebra BPA), Basic Parallel ProcesseéBRP), Pushdown System®DS), Petri Nets
(PN), PA-processedPp), PAD-processedPAD), and PAN-processe®AN). They can
be defined by restricting the terms that are allowed on th#itgit hand side of the
PRS rewrite rules as specified in the following tables.

ModelL.H.S]R.H.S

ModelLHS/RAS [VModelLHS/RAY
o ﬁgg %((?) PDS [S(X) [5(X)| |PAD |5(2) 6(%)
opp 15 [pisy| PN P [PD)] [PaN [P(Z) o)

We follow the approach of [16, 6] to define the semanticBRS. While Mayr [18] di-
rectly works on the equivalence classes of terms (inducesblne equivalence relation
= defined by some axioms including associativity and comnitiabf ||) to define the
dynamics ofPRS, we shall initially work on term level. More precisely, giva PRS

P = (X,A, A), we write 7o(P) to denote the transition systef6(X), A, {-*| a €
A}) where—%- is defined by the following rules:

ta — th t1 — ¢t

t1ta = t1||th

t1i>t/1

(u—at)e A

a
u—t

trl[ta == t1]|t trto —%)t

We now define Mayr’s semantics BRS in terms of7,(P). First of all, let us define
the equivalence relaticss on terms using the following proof rules:

t1 = u1 to = u2
t0=t RO. tl.(tg.tg) = (tl.tg).tg t1.t2 = ui.u2 Con.
0 I t1 = u1 to = u2 Con|
0t=t t1]|(t2([ts) = (talt2)||ts tilt2 = ualluz
— / / — 1"
RO|| — (| =4 l,L, — Trans
t”OEt t1||t2 Etz”tl uU=u
) t=u
olle=t I u=ny Ref u=-t Sym

Here,u,t,t;, u; range over all terms if. Intuitively, the axioms defining: say that O is
identity, while the operator . (resp) is associative (resp. associative and commutative).
The rules (Con.) and (Cd are standardontext rulesn process algebra saying that
term equivalence is preserved under substitutions of atgrivsubterms. Finally, Trans,
Sym, and Ref state that is an equivalence relation. In the sequel, we also use the
symbol=; to denote the equivalence relation on process terms tloatslll the above
axioms except for (#) and (). Obviously,=, C=. Given a termt € G, we denote by
[t]= (resp.[t]=,) the=-class (resp=;-class) containing.

Mayr’s semantics onBRS P = (X, A, A) such thatly(P) = (G(X), A, {-%+| a €
A}) is a transition systerf (P) = (S, A, {E, | a € A}),whereS = {[t]= | t € G(X)}
and where(C,C") € E, iff there existt € C andt' € C’ such that — '. An
important result by Mayr [18] is that theRS hierarchy is strict with respect to strong
bisimulation.

3.2 (Regular) ground tree rewrite systems and prefix-recogmable systems

A regular ground tree rewrite systefRGTRS) is a tupleR = (4, A, R), whereA is
a ranked alphabe#y C Act is a finite set of action labels and whekeis finite set of
rewrite rulesL <% L', whereL and’ are regular tree languages ovegiven as NTA.
The transition system defined B is 7 (R) = (Treesa, A, {-*+| a € A}), where for
eacha € A, we havet - ¢ if and only if there is some: € D; and some rule
L < L' € Rsuchthat!” = s andt’ = t[z/s] for somes € L and some’ € L'.

A ground tree rewrite systef& TRS) is anRGTRS R = (A, A, R), where for each
L <% I/ € R we have that botl, = {t} andL’ = {¢'} is a singleton; we also write

t < ¢ e Rforthis.

A prefix-recognizable syste(RREF) is anRGTRS R = (A, A, R), where onlyA,
andA; may be non-empty. We note that analogously pushdown systamise defined
asGTRS R = (4, A, R), where onlyA, andA; may be non-empty.

4 Containment results

In this section, we prove the following containment resusD <. GTRS (Section
4.1),BPP <. GTRS andGTRS <. PRS, and finallyRGTRS =. GTRS (Section
4.2).

4.1 PAD <~ GTRS

Theorem 1 (PAD <. GTRS). Given aPAD P = (X, A, A) and a termty € G(X),
there exists >RS R = (4, A., R) and a treet(, € Trees4 such that(7 (P), [to]=)

is branching bisimilar to(7 (R), ¢;,). Furthermore,R andt{, may be computed in time
polynomial in|P| + [to]-

Before proving this theorem, we shall first present the gangoof strategy. The main
difficulty of the proof is that the domaif’ of 7 (P) consists of=-classes of process
terms, while the domain df (R) consists of ranked trees. On the other hand, observe
that the other semantic (P) is more close to &TRS since the domaiy of 7o (P)
consists of process terms (not equivalence classes thefd@fefore, the first hurdle
in the proof is to establish a connection betw&gP) and7,(P). To this end, we will
require that, and all process terms iR have a minimum number of zeros and have no
right-associative occurrence of the sequential compmosiperator. We will then pick

a small subset of the axioms sf as7-transitions, which we will add t@,(P). These
axioms include those that reduce the occurrences of O fromsteand the rule that
turns a right-associative occurrence of the sequentiaboaition operator into a left-
associative occurrence. The resulting pointed transstystem(7,(P), to) will become
branching bisimilar to7 (P), [to]=). In fact, fixingt, as the initial configuration, we
will see that further restrictions to the axioms fee.g. associativity of .) may be made
resulting in a pointed transition system that can be easipured in the framework of
GTRS.

Adding the T-transitions to 7o(P): We define the relation’~ on arbitrary process
terms given by the following proof rules:

t —t)
0.t —t tjo =t tity — th.to
to — th
t.0 "t t1.(ta.t3) — (t1.t2).ts ti||te — t1]|th
t1 —] to — th
ot =t ti||te —— t1||t2 tity — t1.th

Here,t is allowed to be any process term. Observe that theBansitions remove
redundant occurrences of 0 and turns a right-associatigarmmce of the sequen-
tial composition into a left-associative one. Observe thatdo not allow associativ-
ity/commutativity axioms fof| in our definition of—. Itis easy to see that +C=,C

=. We now note a few simple facts abodts in the following lemmas.

Lemma 2. For all termst, there exists a unique tertpn such that Sy t, andt; /.
Furthermore, all paths front to ¢, are of length at mosD(|¢|?), and moreovet, is
computable from in polynomial time.

Lemma 3. The following statements hold: (1)df=; ¢/, thent; = ¢}, (2) If 0 = v,
thenv =" 0, and (3) IfX1.X> ... X, = v, thenv - X1.Xs... X,

Lemma 2 is a basic property of a rewrite system commonly knaseonfluencend
termination(e.g. see [1]). In fact, it does not take long to terminatenhea 3 gives the
form of the unique “minimal” term with respect te— given various different initial
starting points. The proofs of these lemmas are standardhEaest of the proof of
Theorem 1, we assume the following conventions:

Convention 4 The termt, and all process terms i® are minimal with respect te™.
That is, each of such termisatisfies = ¢;.

We now add these-transitions intdZy (P). So, we will writeZo (P) = (G(X), A,, {-:
a € A;}). Ourfirst technical result is that the equivalence relatids indeed a branch-
ing bisimulation orZy (P).

Lemma 5. = is a branching bisimulation offy(P).

The proof of this lemma is not difficult but tedious. As an indise corollary, we
obtain that(7,(P), to) is equivalent ta7 (P), [to]=) up to branching bisimulation.

Corollary 6. The relationR = {(C,t) C S’ x S : t € C'} is a branching bisimulation
betweer? (P) and 7, (P).

Removing complexr-transitions: Corollary 6 implies that we may restrict ourselves
to the transition systerfi,(P). At this stage, our-transitions still contain some rules
that cannot easily be captured in the frameworlGaiRS, e.g., left-associativity rule
of the sequential composition. We will now show that fixingimitial configurationt
allows us to remove thesetransitions from our systems.

Recall that our initial configuratioty satisfiesy = (¢¢);. Denote byi¥ the set of
all subtrees (either afy or of a left/right side of a rule irP) rooted at a node that is
a right child of a.-labeled node. It is easy to see that Convention 4 impliesetaeh
t € W satisfiest = ¢;. Consequently, eache W cannot be of the form.t, or O
sincet is a right child of the sequential composition. Furtherm¢@ié| is linear in the
size of P.

Lemma 7. Fixatermt € post*(tq) with respect t&/y(P). Then, any subtree ofvhich
is a right child of a.-labeled node is ifV'.

This lemma can be easily proved by induction on the lengtheftitnessing path that
t € post*(to) and that this invariant is always satisfied. This lemma iegpthat some

of the rules for defining—— may be restricted when only consideringst*(t,) as the
domain of our system, resulting in the following simplifiegffichition:

t — t
— t€ E— ———— t2eW
0.t —t to ¢t t1bo >t .t
ta — th t1 —t)
ot ==t t1||ta — t1||th t1|[te = th||t2

Observe that the rule0 —— ¢ may be omitted since no subtreetof post*(t,) of the
form .0 exists. Moreover, the rulg . (t».t3) — (t1.t2).t3 is never applicable since no
subtree of € post*(to) of the formt,.(t2.t3) exists. Other rules are omitted because
any subtree of of the formt,.to must satisfyt, € W, and that each, € W satisfies

u = u| (which impliesu /=).

Finally, in order to cast the system in@®I'RS framework, we will further restrict
rules of the formt||0 —— ¢ or 0||t —— t. Let I-prefixP) be the set of all prefixes
of wordsw appearing on the left hand side of the rulegfintreated as left-associative
terms. More formally, I-prefi§P) contains O (a term representation of the empty word)
and all subterms, of a term appearing on the left hand side of a rulinooted at a
node location of the form*. We definew-, to be the restriction o, where rules of
the formo||t — ¢ andt||0 — ¢ are restricted to ¢ I-prefix(P). We letZ; (P) to be
To(P) with — replaced by

Lemma 8. (7 (P),t) is branching bisimilar to(7o(P), t).

Constructions of the GTRS: It is now not difficult to castZ; (P) into GTRS frame-
work. To construct th&TRS, we let A be the ranked alphabet containing: (i) a nullary
symbol for each process variable occuringAn(ii) a binary symbol for the binary op-
erator||, and (iii) a unary symbal for each termt € . Since each subtreeof a tree

t € post*(to) of the formt, .t, satisfiests € W, we may simply substitute with the
treets(t,) and perform this substitution recursively tin Denote by\(t) the resulting
tree over the new alphabagtafter this substitution is performed on a process terfihe
desiredGTRS isR = (4, A, R), whereR is defined as follows. For each rule—, t’

in P, wherea € A, we add the rule\(t) <> A(¢) to R. For eacht € I|-prefix(P),

we add0||t <> ¢ andt[|0 <> ¢ to R. Finally, we add the transition rug0) —— ¢ for
eacht € W. It is now not difficult to show thatZ;(P),¢) ~ (7(R),\(t)), which
immediately implies Theorem 1.

4.2 Further containment results
Theorem 9. BPP <., GTRS.

Proof (sketch)The idea is to construct from sonB®P a GTRS, where each leaf cor-
responds to a process constant. A leaf is either marked oatkea. An unmarked
leaf X can become marked with the fresh symBalia the actiona in case the rule

X —, 0is present in th&PP. Rules of the kindX —, Yi||...||Y,, are realized via
X &4 o(Y1,...,Y,) in the GTRS. Moreover theGTRS does not contain any rules,
where a marked leaf is on the left-hand side of a rule. O

Theorem 10. GTRS <. PRS.

Proof (sketch)Let k& be the maximal rank of the alphabet of soGERS. Although
parallel composition is interpreted commutatively we canuate order by using:
additional symbols in #RS. a

Theorem 11. RGTRS ~ GTRS.

Proof (sketch)A GTRS can simulate viar-transitions the bottom-up computation of
an NTA. In addition, one providestransitions that allow to undo these transitionsl

In analogy to Theorem 11 one can prove the following.

Corollary 12. PDS ~ PREF.

5 Separation results

In this section, we provide the separation results in therefimed hierarchies. We first
note two known separation results: BPA £~ PN (e.g. see [10]), and (BPP £,
PDS since there is 8PP trace language that is not context-free (e.g. see refesence
[4]) and trace equivalence is coarser than weak bisimulatguivalence.

51 PA %£. GTRS

Some properties of GTRS: We introduce some notions that were also used in [15].
Let R = (A4, A, R) be an arbitranGTRS. For eacht € Trees 4, we define heiglft) =
max{|z| : © € D;}. We define the numbérrz = max{heightt) | 3¢’ € Trees, Jo €

A:tSt e Rort! &t e Ryand[R| = [A| + A+ X, It + [].
Lemma13.Let A C A. For everyt, € Treesy there is someN = exp(|R| +
heightt,)) such that, i>N impliest, A for infinitely manyn € N.

The separating PA: Consider thePA P = (X, A, A) with ¥ = {A,B,C,D}, A =
{a, b, ¢, d} and whereA consists of the following rewrite rules:

A—,0 B 0 Cr.0 D—40 A—, A|B|C

10

For the rest of this section, we wish to prove
that the statex = A.D in 7(P) is not strongly
bisimilar to any pointedGTRS. So for the sake
of contradiction, let us assume soi@éRS R =
(A, A, R) and somé,, € Treess(R) with ¢, ~ T
«a. We note that e.g. by [15] it is known that the U
set of maximal sequences executable frorfthe
language oty when?P is interpreted as a language
acceptor) are recognizable by soGERS [15]. 174

We callU[x] acontextf U € Trees4 andz € A
Dy is a leaf ofU. Given a tred¢ € Trees4 and a
contextU[x], we writeUt] for U[x/t]. We define
U™[t] inductively as followsT/°[t] = t andU"™ =
U[U™~1t]] for eachn > 0. Fig.2.The treel* = U[Vtg]].

Let us considemosty,, (t.). First, there is
some NTAA with L(A) = {t.}. A folklore result states that there is some NBA
with L(B) = postj,; (L(A)) = postj,;(ta), see e.g. [15]. Note that(B) is infinite
sincea can reach infinitely many pairwise non-bisimilar states @ané « by assump-
tion. By applying the Pumping Lemma for regular tree langasgaghere is some tree
tp € Treesy and there are contextgx], V[y| € Trees4 suchthat (iU [V [tg]] € L(B),
(i) height(U[V[ts]]) < 2-|B|, (iii) height(V'[tg]) < |8, (iv) |y| > 0,i.e.V is not a
singleton tree, and (W [V"[tg]] € L(B) for eachn > 0.

The treeU[V[tz]] is displayed in Figure 2. We define the tréé = U[V"[¢g]]
for eachn > 0. Moreover we define the consamt = ¢ - (hg + 1) with £ =
gl{teTreesa|heightt)<hr=}| j e, ¢ denotes the number of different subsets of the set of all
trees inTrees 4 of height at mosh.x.

The following lemma states that¥” [¢;] can reach some tree of height at mbst
by only executing the actios, then there is already some trgeof height at most.,,
such that for ali > 0 we havel/ /"9 tz] %* to.

Lemma 14. There exis¥),§ > 1 such that ifV7[¢z] 2" ¢ for somet € Trees 4 with
heightt) < hg, thenV+9[tz] %* t, forall i > 0 for somet, € Treesy.

For the rest of this section, we fixandé from Lemma 14. Note that due tg ~ o we
. . . a k
have that for every € post?a}(ta) there is some unique € N with t, — t. Thus,

for each tree € posty,, (t.) we definek(t) to be theuniquek with ¢,, ok
Lemma 15. {k(T") | n € N} is an infinite set.

Let us immediately apply Lemma 15. Let us fix some residueselasodulod such
that there are infinitely many with n = r mod¢ all having pairwise distinck(7")
values. Among these infinitely mamywe will choose a sufficiently larg& > 6 for
the following arguments to work. The trd8y is depicted in Figure 3. Recall that by
definition T € posty,,, (ta)-

The following lemma states that one can never shrink thersabt” [t5] of TV to
some tree of height at mokk by only executing’s or only executing:'s.

11

*

Lemma 16. If V7[tz] < t, then we have heigft) > hr for eacht € Trees, and
eacho € {b,c}.

Let y denote the unique node @Y where the subtregs is rooted at. We call a
nodez € Dy~ of TN off-pathif z £ yn. For each tre¢ € Treess and eachr € A,
we definesup,, () = sup {j eN|tZ’

Intuitively speaking, the following lemma states that
from the subtred/7[tz] of TV and subtrees of M that
are rooted at off-path nodes one only execute a constantly
long sequences fromtc* or fromc*b* (unlesst, ~ «ais
violated). Let us definé = ¢ and¢ = b. We note thaty
andB only depend orR and ont,, but not onN.

Lemma 17. Leto € {b, c}. Then there is some constant
J = J(R,ts) such thatsup,(t) < J whenever either

t =V7tg] or TN I ¢ for some off-path.
We can now prove the main result of this section.

Theorem 18. PA £ GTRS.

D(ts)
Proof. We give a simple winning strategy for Atgslcker that
contradicts, ~ «. First Attacker plays,, i>k(T) N,
We remark sincéV is chosen sufficiently large, it follows
thatk(T) is sufficiently large for the following arguments

to work. It has to hold for some € {0, 1}

Fig. 3. The treeT™".
™ ~ | A7 B|B--|B|ClC---|C|.D ()

k(TN)—s K(TN)—s

We only treat the case= 1 (the case = 0 can be proven analogously). Recall that
~ is a constant that only depends Bnandt¢,. On the one hand we cannot modify the
subtreé/7[tg] of TV to any tree of height at mo#t; by executing)’s only by Lemma
16. On the other hand we cannot execute more tharanyb’s from the subtre® 7 [¢5],

My-1
where J is the constant of Lemma 17. Thus, sire %) holds, Attacker can
play k(T")—1— J manyb’s outside the subtreB” [tz]. We recall thak(TV) — J can
be arbitrarily large sincd is a constant that only depends ®nandt,,. By definition
of TV all of thesek(TV) — 1 — J manyb’s can be played on subtrees initially rooted at
off-path nodes of 'V outsidethe subtreé’ " [t;]. However from each of these subtrees
that are initially rooted at off-path nodes outside the sedlt’” [¢5], we can execute at
most.J manyb’s.

Analogously Attacker can execut¢T'™) — 1 —.J manyc’s from 7 all on subtrees
initially rooted at off-path nodes dfy outsidethe subtred 7[tz].

Attacker now has the following winning strategy. First hayslk(7)—1—.J many
b's on subtrees rooted at off-path nodes7df outsideV " [tz]. After playing theseé'’s

12

the height each of these subtrees is bounded by a constaontigalepends ok and
to by Lemma 17. Next, Attacker playg7T?") — 1 — J manyc's at positions outside
the subtred 7 [tz] and still, by Lemma 17, the height of all subtrees rooted fpath
nodes outsid&” [tg] have a height bounded by a constant that only depen@s and

J J
to. Let us call the resulting tré€’. We note thafl” u, i.e. fromT’ the sequence

b’c’ is executable thus reaching a tree wherélabeled rule is executable. But this

implies thatT™v 4, for somew € {b, c}* where|w| is bounded by a constant that
only depends ok andt,, clearly contradicting+). a

5.2 GTRS £~ PAD

By Theorem 11 it suffices to prove that there is sd& RS that is not weakly bisim-
ilar to anyPAD.

Consider the(RGTRS R = (A,A, R), with A() = {)(()7 Yo, Z()}, A = {Xl, Yl},
As = {e},andA = {a,b,c,d, e, f}. First, we add tak the following singleton rewrite
rules: (i) Xo <% X1(Xo), (i) X1(Xo) <> Xo, (i) Y1 <5 Yi(¥p), (V) Yi(Yo) <> Yo,
and (V)O()(()7 Y()) ‘i 2.

We note that so far all rewrite rules
are standard ground tree rewrite rules. £(0,2)
Also note that the singleton treg, is a
dead-end. It is easy to see that for ev-
ery tree int € Treesy that is reach-
able frome (X, Yy) we havet = Z; or
t is of the formt = e(tx,ty), where
tx = X{"[Xo] andty = Y"[Yp] for f
somem, n > 0. In the latter case we de-
notet by ¢(m,n). Finally, we add toR f
the regular tree rewrite rulg¢t(m,n) |

n>1lorm > 1} 4, Zy. The transi-
tion system7 (R) is depicted in Figure
4.

It is easy to see that the set of max-
imal sequences executable frarfo, 0)
is not a context-free language. We claim Fig. 4. The transition syster#f (R).
that there is n@AD that is weakly bisim-
ilarto ¢(0,0) = ¢(Xy, Yo).

Let us assume by contradiction that
for somePAD P = (X, A, A) and for some termyy € G(X') we haveng =~ ¢(0,0).
We call a termy € G(X) inactiveif o 7= for all o € A. We note thaty == might be
possible even though is inactive.

Lemma 19. Assume some termawith o = t(m, n) for somem, n € N and« contains
an enabled subterrfl; || 52. Theng; or (s is inactive.

Theorem 20. GTRS £, PAD.

13

Proof (sketch)The proof idea is to show that afBAD that satisfies the property of
Lemma 19 is already weakly bisimilar to a pushdown process.

5.3 PDS £~ PAN and PN £~ GTRS
Theorem 21. PDS £, PAN.

Proof (sketch).The proof idea is an adaption of an idea from [18] separafiAdl
from PDS with respect to strong bisimulation, but is technically md@nvolved. The
separating pushdown process behaves as follows: Firsgdtges a sequence of actions
w = {a,b}* and then executes either of the following: (1) The actigthen the reverse
of w and finally are. (2) The actiond, then the reverse ab and finally anf. a

Theorem 22. PN £~ GTRS

The proof can be done by observing thaf'b™c¢" | n € N} is aPN language (e.g. see
[22]), while this language is not a trace languag&dRS (e.g. see [15]).

6 Applications

In this section, we provide applications of the connectitivag we establish between
GTRS and thePRS hierarchy. Instead of attempting to exhaust all possibjgiegtions,
we shall only highlight a few of the key applications. In pewtar, Theorem 1 allows
us to transfer decidability/complexity upper bounds on elathecking oveGTRS to
model checking ovelPA/PAD-processes.

The first application is the decidability of EF-logic o\®kD. The logic EF (e.g. see
[13,23]) is the extension of Hennessy-Milner logic with ¢kability operators (possi-
bly parameterized over subsets of all possible actionsd. ddcidability of EF model
checking oveGTRS has been known for a long time, e.g., it follows from the resof
[8,12]. Together with Theorem 1, this easily gives anotheopof the following result
of Mayr.

Theorem 23 ([19]).Model checking EF-logic ove?AD is decidable.

The second application is the decidability/complexity afdal checking the com-
mon fragments LT, (called deterministic LTL) and LT{Fs, Gs) [7,17] of LTL over
PAD. These fragments are suffciently powerful for expressirtgresting properties
like safety, fairness, liveness, and also some simplessingf-invariant LTL properties.
The following two theorems follow from the results fGTRS [23, 24]; decidability
with no upper bounds was initially proven in [7].

Theorem 24. Model checking LTL.; overPAD is decidable in exponential time in the
size of the formula and polynomial in the size of the systemddithecking LT(Fs, Gs)
over PAD is decidable in time double exponential in the size of thenfda and poly-
nomial in the size of the system.

Acknowledgment: We thank Taolue Chen, Matthew Hague, Jean Christoph Jung,
Richard Mayr, Colin Stirling, and anonymous reviewers fwgit comments. Anthony
W. Lin is supported by EPSRC (EP/H026878/1).

14

References

1
2

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.
23.

24.

25.

. F. Baader and T. Nipkowlerm Rewriting and All ThatCambridge University Press, 1998.

. J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidabdit bisimulation equivalence
for processes generating context-free languages. In Je\Baklker, A. J. Nijman, and P. C.
Treleaven, editordPARLE (2) volume 259 ofLecture Notes in Computer Sciengeges
94-111. Springer, 1987.

. J. A. Bergstra and J. W. Klop. Algebra of communicatingcpsses with abstractiofheor.
Comput. Scj.37:77-121, 1985.

. A. Bouajjani, R. Echahed, and P. Habermehl. On the vetificgproblem of nonregular
properties for nonregular processesLIGS pages 123-133. IEEE Computer Society, 1995.

. A. Bouajjani, M. Muller-Olm, and T. Touili. Regular syralic analysis of dynamic networks
of pushdown systems. In M. Abadi and L. de Alfaro, edit@ NCUR volume 3653 of
Lecture Notes in Computer Scienpages 473—-487. Springer, 2005.

. A. Bouajjani and T. Touili. Reachability analysis of pess rewrite systems. In P. K. Pandya
and J. Radhakrishnan, editoRFSTTCSvolume 2914 ot ecture Notes in Computer Science
pages 74-87. Springer, 2003.

. L. Bozzelli, M. Kretinsky, V. Rehak, and J. Strejceka @ecidability of LTL model checking
for process rewrite systemActa Inf, 46(1):1-28, 2009.

. W. S. Brainerd. Tree generating regular systemformation and Contrql14(2):217-231,
1969.

. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verifioaton infinite structures. In

Handbook of process algehrpages 545-623. Elsevier, North-Holland, 2001. Chapter 9.

S. ChristensenDecidability and Decomposition in Process Algebr&hD thesis, Depart-

ment of Computer Science, The University of Edinburgh, 1993

J.-L. Coquidé, M. Dauchet, R. Gilleron, and S. Vagy@l Bottom-up tree pushdown au-

tomata: Classification and connection with rewrite systehhgor. Comput. S¢i127(1):69—

98, 1994.

M. Dauchet and S. Tison. The theory of ground rewriteesystis decidable. 1hICS, pages

242-248. |IEEE Computer Society, 1990.

S. Goller and A. W. Lin. The Complexity of Verifying Grod Tree Rewrite Systems. In

LICS IEEE Computer Society, 2011. to appear.

M. H. T. Hack.Decidability Questions for Petri Net$hD thesis, MIT, 1976.

C. Loding.Infinite Graphs Generated by Tree RewritirighD thesis, RWTH Aachen, 2003.

D. Lugiez and P. Schnoebelen. The regular viewpoint gprpeessesTheor. Comput. Sgi.

274(1-2):89-115, 2002.

M. Maidl. The common fragment of CTL and LTL. FOCS pages 643652, 2000.

R. Mayr. Process rewrite systenhst. Comput, 156(1-2):264—-286, 2000.

R. Mayr. Decidability of model checking with the tempdic ef. Theor. Comput. Sci.

256(1-2):31-62, 2001.

R. Milner. Communication and Concurrencirentice Hall, 1989.

D. E. Muller and P. E. Schupp. The theory of ends, pushdmwomata, and second-order

logic. Theor. Comput. Sgi37:51-75, 1985.

W. Thomas. Applied automata theory. Course Notes (RWakh&n), 2005.

A. W. To. Model Checking Infinite-State Systems: Generic and Spégifitcoaches PhD

thesis, LFCS, School of Informatics, University of Edingiuy2010.

A. W. To and L. Libkin. Algorithmic metatheorems for ddable LTL model checking

over infinite systems. In C.-H. L. Ong, editéfDSSACSvolume 6014 ot ecture Notes in

Computer Sciencgages 221-236. Springer, 2010.

R. J. van Glabbeek and W. P. Weijland. Branching time dsraction in bisimulation

semanticsJ. ACM 43(3):555-600, 1996.

15

