
Refining the Process Rewrite Systems Hierarchy via
Ground Tree Rewrite Systems
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Abstract. In his seminal paper, R. Mayr introduced the well-known Process
Rewrite Systems (PRS) hierarchy, which contains many well-studied classes of
infinite systems including pushdown systems, Petri nets andPA-processes. A
seperate development in the term rewriting community introduced the notion of
Ground Tree Rewrite Systems (GTRS), which is a model that strictly extends
pushdown systems while still enjoying desirable decidableproperties. There have
been striking similarities between the verification problems that have been shown
decidable (and undecidable) over GTRS and over models in thePRS hierarchy
such as PA and PAD processes. It is open to what extent PRS and GTRS are
connected in terms of their expressive power. In this paper we pinpoint the exact
connection between GTRS and models in the PRS hierarchy in terms of their ex-
pressive power with respect to strong, weak, and branching bisimulation. Among
others, this connection allows us to give new insights into the decidability re-
sults for subclasses of PRS, e.g., simpler proofs of known decidability results of
verifications problems on PAD.

1 Introduction

The study of infinite-state verification has revealed thatunbounded recursionsandun-
bounded parallelismare two of the most important sources of infinity in the programs.
Infinite-state models with unbounded recursions such as Basic Process Algebra (BPA),
and Pushdown Systems (PDS) have been studied for a long time (e.g. [2, 21]). The same
can be said about infinite-state models with unbounded parallelism, which include Basic
Parallel Processes (BPP) and Petri nets (PN), e.g. [10, 14]. While these aforementioned
models are eitherpurely sequentialor purely parallel, there are also models that simul-
taneously inherit both of these features. A well-known example arePA-processes [3],
which are a common generalization ofBPA andBPP. It is known that all of these mod-
els are not Turing-powerful in the sense that decision problems such as reachability is
still decidable (e.g. see [9]), which makes them suitable for verification.

In his seminal paper [18], R. Mayr introduced the Process Rewrite Systems (PRS)
hierarchy (see leftmost diagram in Figure 1) containing several models of infinite-state
systems that generalize the aforementioned well-known models with unbounded recur-
sions and/or unbounded parallelism. The idea is to treat models in the hierarchy as a
form of term rewrite systems, and classify them according towhich terms are permit-
ted on the left/right hand sides of the rewrite rules. In addition to the aforementioned
models of infinite systems, thePRS hierarchy contains three new models: (1) Process



Rewrite Systems (PRS), which generalizePDS, PA-processes, and Petri nets, (2)PAD-
processes, which unifyPDS andPA-processes, and (3)PAN-processes, which unify
bothPA-processes and Petri nets. Mayr showed that the hierarchy isstrict with respect
to strong bisimulation. Despite of its expressive powerPRS is not Turing-powerful
since reachability is still decidable for this class. Before thePRS hierarchy was intro-
duced, another class of infinite-state systems called Ground Tree/Term Rewrite Systems
(GTRS) already emerged in the term rewriting community as a class with nice decid-
ability properties. While extending the expressive power of PDS, GTRS still enjoys
decidability of reachability (e.g. [8, 11]), recurrent reachability [15], model checking
first-order logic with reachability [12], and model checking the fragments LTLdet and
LTL(Fs, Gs) of LTL [24, 23]. Due to the tree structures thatGTRS use in their rewrite
rules,GTRS can be used to model concurrent systems with both unbounded parallelism
(a new thread may be spawned at any given time) and unbounded recursions (each
thread may behave as a pushdown system).

When comparing the definitions ofPRS (and subclasses thereof) andGTRS, one
cannot help but notice their similarity. Moreover, there isa striking similarity between
the problems that are decidable (and undecidable) over subclasses ofPRS like PA/PAD-
processes andGTRS. For example, reachability, EF model checking, and LTL(Fs, Gs)
and LTLdet model checking are decidable for bothPAD-processes andGTRS [7, 15,
18, 19, 23, 24]. Furthermore, model checking general LTL properties is undecidable for
bothPA-processes andGTRS [7, 24]. Despite these, the precise connection between the
PRS hierarchy andGTRS is currently still open.

Contributions: In this paper, we pinpoint the precise connection between the expres-
sive powers ofGTRS and models inside thePRS hierarchy with respect to strong,
branching, and weak bisimulation. Bisimulations are well-known and important no-
tions of semantic equivalences on transition systems. Among others, most properties
of interests in verification (e.g. those expressible in standard modal/temporal logics)
cannot distinguish two transition systems that are bisimilar. Strong/weak bisimulations
are historically the most important notions of bisimulations on transition systems in
verification [20]. Weak bisimulations extend strong bisimulations by distinguishing ob-
servable and non-observable (i.e.τ ) actions, and only requiring the observable behavior
of two systems to agree. In this sense, weak bisimulation is acoarser notion than strong
bisimulation. Branching bisimulation [25] is a notion of semantic equivalence that is
strictly coarser than strong bisimulation but is strictly finer than weak bisimulation. It
refines weak bisimulation equivalence by preserving the branching structure of two pro-
cesses even in the presence of unobservableτ -actions; it is required that all intermediate
states that are passed through duringτ -transitions are related.

Our results are summarized in the middle and right diagrams in Figure 1. Our first
main result is that the expressive power ofGTRS with respect to branching and weak
bisimulation is strictly in betweenPAD andPRS but incomparable withPAN. This
result allows us to transfer many decidability/complexityresults of model checking
problems overGTRS to PA andPAD-processes. In particular, it gives a simple proof of
the decidability of model checking the logic EF overPAD [19], and decidability (with
good complexity upper bounds) of model checking the common fragments LTLdet and
LTL(Fs, Gs) of LTL over PAD (this decidability result was initially given in [7] with-
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out upper bounds). In fact, we also show that Regular Ground Tree Rewrite Systems
(RGTRS) [15] — the extension ofGTRS with possibly infinitely manyGTRS rules
compactly represented as tree automata — have the same expressive power asGTRS

up to branching/weak bisimulation. Our proof technique also implies thatPDS is equiv-
alent to prefix-recognizable systems (e.g. see [9]), abbreviated asPREF, up to branch-
ing/weak bisimulation. On the other hand, when we investigate the expressive power of
GTRS with respect to strong bisimulation, we found thatPAD (evenPA) is no longer
subsumed inGTRS. Despite this, we can show that up to strong bisimulationGTRS is
strictly more expressive thanBPP andPDS, and is strictly subsumed inPRS. Finally,
we mention that our results imply that Mayr’sPRS hierarchy is also strict with respect
to weak bisimulation equivalence.

Related work: Our work is inspired by the work of Lugiez and Schnoebelen [16] and
Bouajjani and Touili [6], which studyPRS (or subclasses thereof) by first distinguish-
ing process terms that are “equivalent” in Mayr’s sense [18]. This approach allows them
to make use of techniques from classical theory of tree automata for solving interest-
ing problems overPRS (or subclasses thereof). Our translation fromPAD to GTRS is
similar in spirit.

There are other models of multithreaded programs with unbounded recursions that
have been studied in the literature. Specifically, we mention Dynamic Pushdown Net-
works (DPN) and extensions thereof (e.g. see [5]) since an extension ofDPN given
in [5] also extendsPAD-processes. We leave it for future work to study the precise
connections between these models andGTRS.

Organization: Preliminaries are given in Section 2. We provide the models of infinite
systems (PRS, GTRS, etc.) in Section 3. Our containment results (e.g.PAD is sub-
sumed inGTRS up to branching bisimulation) can be found in Section 4. Section 5
gives the separation results for the refinedPRS hierarchies. Finally, we briefly discuss
applications of our results in Section 6.

PRS

PANPAD

PDS

PA

PN

BPA BPP

FIN

PRS

PANGTRS PAD

PDS

PA

PN

BPA BPP

FIN

PRS

PAN

GTRS = RGTRS

PAD

PDS = PREF PA PN

BPA BPP

FIN

Fig. 1. Depictions of Mayr’sPRS hierarchy and their refinements viaGTRS as Hasse diagrams
(the top being the most expressive). The leftmost diagram isthe original (strict)PRS hierarchy
where expressiveness is measured with respect to strong bisimulation. The middle (resp. right) di-
agram is a strict refinement viaGTRS with respect to strong (resp. weak/branching) bisimulation.
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2 Preliminaries

By N = {0, 1, 2, . . .} we denote the non-negative integers. For eachi, j ∈ N we define
the interval[i, j] = {i, i + 1, . . . , j}.

Transition systems and weak/branching/strong bisimulation equivalence: Let us
fix a countable set of action labelsAct. A transition systemis tupleT = (S,A, {

a
−→|

a ∈ A}), whereS is a set ofstates, A ⊆ Act is a finite set of action labels, and where
a

−→⊆ S × S is a set oftransitions. We writes
a

−→ t to abbreviate(s, t) ∈
a

−→. We
apply similar abbreviations for other binary relations over S. For eachR ⊆ S × S, we
write sR to denote that there is somet ∈ S with (s, t) ∈ R. For eachΛ ⊆ A, we define

Λ
−→=

⋃

a∈Λ
a

−→ and we define−→=
A

−→. WheneverT is clear from the context and

U ⊆ S, we definepost∗Λ(U) = {t ∈ S | ∃s ∈ U : s
Λ

−→
∗

t}. In caseU = {s} is a
singleton, we also writepost∗Λ(s) for post∗Λ(U).

A pointed transition systemis a pair(T , s), whereT is a transition system ands
is some state ofT . Let T = (S,A, {

a
−→| a ∈ A}) be a transition system. A relation

R ⊆ S × S is astrong bisimulationif R is symmetric and for each(s, t) ∈ R and for
eacha ∈ A we have that ifs

a
−→ s′, then there ist

a
−→ t′ such that(s′, t′) ∈ R. We

say thats is strongly bisimilarto t (abbreviated bys ∼ t) whenever there is a strong
bisimulationR such that(s, t) ∈ R.

Next, we define the notions of branching bisimulation and weak bisimulation. For
this, let us fix asilent actionτ 6∈ A and letAτ = A ∪ {τ}. Moreover letT =

(S,Aτ , {
a

−→| a ∈ Aτ}) be a transition system. We define the binary relations
τ

=⇒=

(
τ

−→)∗ and
a

=⇒= (
τ

−→)∗◦
a

−→ ◦(
τ

−→)∗ for eacha ∈ A.
A binary relationR ⊆ S × S is abranching bisimulationif R is symmetric and if

for each(s, t) ∈ R the following two conditions hold: (i) ifs
τ

−→ s′, then(s′, t) ∈ R

and (ii) if s
a

−→ s′ for somea ∈ A, then there ist
τ

=⇒ t′
a

−→ t′′
τ

=⇒ t′′′ such that
(s, t′), (s′, t′′), (s′, t′′′) ∈ R. We say thats is branching bisimilarto t (abbreviated by
s ≃ t) whenever there is a branching bisimulationR such that(s, t) ∈ R.

A binary relationR ⊆ S × S is aweak bisimulationif R is symmetric and for each
(s, t) ∈ R and for eacha ∈ Aτ we have that ifs

a
−→ s′, then there ist

a
=⇒ t′ such

that(s′, t′) ∈ R. We say thats is weakly bisimilarto t (abbreviated bys ≈ t) whenever
there is a weak bisimulationR such that(s, t) ∈ R.

Each of the three introduced bisimulation notions can be generalized between states
s1 and s2 wheres1 (resp.s2) is a state of some transition systemT1 (resp.T2), by
simply taking the disjoint union ofT1 andT2.

LetC1 andC2 be classes of transition systems and let≡∈ {∼,≃,≈} be some notion
of equivalence. We writeC1 ≤≡ C2 if for every pointed transition system(T1, s1) with
T1 ∈ C1 there exists some pointed transition system(T2, s2) with T2 ∈ C2 such that
s1 ≡ s2. We writeC1 ≡ C2 in caseC1 ≤≡ C2 andC2 ≤≡ C1.

These above-mentioned equivalences can also be characterized by the standard
Attacker-Defender game, see e.g. [13] and the references therein.
Ranked trees: Let� denote the prefix order onN∗, i.e.x � y for x, y ∈ N∗ if there is
somez ∈ N∗ such thaty = xz, andx ≺ y if x � y andx 6= y. A ranked alphabetis a
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collection of finite and pairwise disjoint alphabetsA = (Ai)i∈[0,k] for somek ≥ 0. For
simplicity we identifyA with

⋃

i∈[0,k] Ai. A ranked tree(over the ranked alphabetA)
is a mappingt : Dt → A, whereDt ⊆ [1, k]∗ satisfies the following:Dt is non-empty,
finite and prefix-closed and for eachx ∈ Dt with t(x) ∈ Ai we havex1, . . . , xi ∈ Dt

andxj 6∈ Dt for eachj > i. We say thatDt is thedomainof t – we call these elements
nodes. A leaf is a nodex with t(x) ∈ A0. We also refer toε ∈ Dt as theroot of t. By
TreesA we denote the set of all ranked trees over the ranked alphabetA. We also use
the usual term representation of trees, e.g. ift is a tree with roota and left (resp. right)
subtreet1 (resp.t2) we havet = a(t1, t2).

Let t be a ranked tree and letx be a node oft. We definexDt = {xy ∈ [1, k]∗ | y ∈
Dt} andx−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote thesubtree oft with root
x, i.e. the tree with domainDt↓x = x−1Dt defined ast↓x(y) = t(xy). Lets, t ∈ TreesA

and letx be a node oft. We definet[x/s] to be the tree that is obtained by replacing
t↓x in t by s; more formallyDt[x/s] = (Dt \ xDt↓x) ∪ xDs with t[x/s](y) = t(y) if
y ∈ Dt \ xDt↓x andt[x/s](y) = s(z) if y = xz with z ∈ Ds.
Define|t| = |Dt| as the number of nodes in a treet.
Regular tree languages: A nondeterministic tree automaton (NTA)is a tupleA =
(Q, F, A, ∆), whereQ is a finite set ofstates, F ⊆ Q is a set offinal states, A =
(Ai)i∈[0,k] is a ranked alphabet, and∆ ⊆

⋃

i∈[0,k] Q
i×Ai×Q is thetransition relation.

A run ofA on some treet ∈ TreesA is a mappingρ : Dt → Q such that for eachx ∈ Dt

with t(x) ∈ Ai we have(ρ(x1), . . . , ρ(xi), t(x), ρ(x)) ∈ ∆. We sayρ is acceptingif
ρ(ε) ∈ F . By L(A) = {t ∈ TreesA | there is an accepting run ofA on t} we denote
the languageof A. A set of treesU ⊆ TreesA is regular if U = L(A) for some NTA
A. Thesizeof an NTAA is defined as|A| = |Q| + |A| + |∆|.

3 The models

3.1 Mayr’s PRS hierarchy

In the following, let us fix a countable set of process constants (a.k.a. process variables)X = {A, B, C, D, . . .}. The set ofprocess termsis given by the following grammar,
whereX ranges overX:

t, u ::= 0 | X | t.u | t||u

The operator. is said to besequential composition, while the operator‖ is referred to as
parallel composition. In order to minimize clutters, we assume that both operators. and
‖ are left-associative, e.g.,X1.X2.X3.X4 stands for((X1.X2).X3).X4. Thesize|t| of
a term is defined as usual. Mayr distinguishes the following classes of process terms:1 Terms consisting of a single constantX ∈ X.S Process terms without any occurrence of parallel composition.P Process terms without any occurrence of sequential composition.G Arbitrary process terms possibly with sequential or parallel compositions.

By 1(Σ), S(Σ), P(Σ), respectivelyG(Σ) we denote the set1, S, P, respectivelyG
restricted to process constants fromΣ, for each finite subsetΣ ⊆ X.
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A process rewrite system (PRS) is a tupleP = (Σ,A, ∆), whereΣ ⊆ X is a
finite set of process constants,A ⊆ Act is a finite set of action labels, and∆ is a
finite set of rewrite rules of the formt1 7→a t2, wheret1 ∈ G(Σ) \ {0}, t2 ∈ G(Σ)
anda ∈ A. Other models inPRS hierarchy are Finite Systems (FIN), Basic Process
Algebra (BPA), Basic Parallel Processes (BPP), Pushdown Systems (PDS), Petri Nets
(PN), PA-processes (PA), PAD-processes (PAD), and PAN-processes (PAN). They can
be defined by restricting the terms that are allowed on the left/right hand side of the
PRS rewrite rules as specified in the following tables.

Model L.H.S. R.H.S
FIN 1(Σ) 1(Σ)
BPA 1(Σ) S(Σ)
BPP 1(Σ) P(Σ)

Model L.H.S. R.H.S
PDS S(Σ) S(Σ)
PN P(Σ) P(Σ)

Model L.H.S. R.H.S
PAD S(Σ) G(Σ)
PAN P(Σ) G(Σ)

We follow the approach of [16, 6] to define the semantics ofPRS. While Mayr [18] di-
rectly works on the equivalence classes of terms (induced bysome equivalence relation
≡ defined by some axioms including associativity and commutativity of ‖) to define the
dynamics ofPRS, we shall initially work on term level. More precisely, given aPRS

P = (Σ,A, ∆), we writeT0(P) to denote the transition system(G(Σ),A, {
a

−→| a ∈A}) where
a

−→ is defined by the following rules:

t1
a

−→ t′1

t1‖t2
a

−→ t′1‖t2

t2
a

−→ t′2

t1‖t2
a

−→ t1‖t
′

2

t1
a

−→ t′1

t1.t2
a

−→ t′1.t2 u
a

−→ t
(u 7→a t) ∈ ∆

We now define Mayr’s semantics ofPRS in terms ofT0(P). First of all, let us define
the equivalence relation≡ on terms using the following proof rules:

t.0 ≡ t
R0.

t1.(t2.t3) ≡ (t1.t2).t3
A.

t1 ≡ u1 t2 ≡ u2

t1.t2 ≡ u1.u2

Con.

0.t ≡ t
L0.

t1‖(t2‖t3) ≡ (t1‖t2)‖t3
A‖

t1 ≡ u1 t2 ≡ u2

t1‖t2 ≡ u1‖u2

Con‖

t‖0 ≡ t
R0‖

t1‖t2 ≡ t2‖t1
C‖

u ≡ u′ u′ ≡ u′′

u ≡ u′′
Trans

0‖t ≡ t
L0‖

u ≡ u Ref
t ≡ u
u ≡ t

Sym

Here,u, t, ti, ui range over all terms inG. Intuitively, the axioms defining≡ say that 0 is
identity, while the operator . (resp.‖) is associative (resp. associative and commutative).
The rules (Con.) and (Con‖) are standardcontext rulesin process algebra saying that
term equivalence is preserved under substitutions of equivalent subterms. Finally, Trans,
Sym, and Ref state that≡ is an equivalence relation. In the sequel, we also use the
symbol≡1 to denote the equivalence relation on process terms that allows all the above
axioms except for (A‖) and (C‖). Obviously,≡1⊆≡. Given a termt ∈ G, we denote by
[t]≡ (resp.[t]≡1

) the≡-class (resp.≡1-class) containingt.
Mayr’s semantics on aPRSP = (Σ,A, ∆) such thatT0(P) = (G(Σ),A, {

a
−→| a ∈A}) is a transition systemT (P) = (S,A, {Ea | a ∈ A}), whereS = {[t]≡ | t ∈ G(Σ)}

and where(C, C′) ∈ Ea iff there existt ∈ C and t′ ∈ C′ such thatt
a

−→ t′. An
important result by Mayr [18] is that thePRS hierarchy is strict with respect to strong
bisimulation.
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3.2 (Regular) ground tree rewrite systems and prefix-recognizable systems

A regular ground tree rewrite system(RGTRS) is a tupleR = (A,A, R), whereA is
a ranked alphabet,A ⊆ Act is a finite set of action labels and whereR is finite set of
rewrite rulesL

a
→֒ L′, whereL andL′ are regular tree languages overA given as NTA.

The transition system defined byR is T (R) = (TreesA,A, {
a

−→| a ∈ A}), where for
eacha ∈ A, we havet

a
−→ t′ if and only if there is somex ∈ Dt and some rule

L
a
→֒ L′ ∈ R such thatt↓x = s andt′ = t[x/s′] for somes ∈ L and somes′ ∈ L′.
A ground tree rewrite system(GTRS) is anRGTRS R = (A,A, R), where for each

L
a
→֒ L′ ∈ R we have that bothL = {t} andL′ = {t′} is a singleton; we also write

t
a
→֒ t′ ∈ R for this.

A prefix-recognizable system(PREF) is anRGTRS R = (A,A, R), where onlyA0

andA1 may be non-empty. We note that analogously pushdown systemscan be defined
asGTRS R = (A,A, R), where onlyA0 andA1 may be non-empty.

4 Containment results

In this section, we prove the following containment results: PAD ≤≃ GTRS (Section
4.1),BPP ≤∼ GTRS andGTRS ≤∼ PRS, and finallyRGTRS =≃ GTRS (Section
4.2).

4.1 PAD ≤≃ GTRS

Theorem 1 (PAD ≤≃ GTRS). Given aPAD P = (Σ,A, ∆) and a termt0 ∈ G(Σ),
there exists aGTRS R = (A,Aτ , R) and a treet′0 ∈ TreesA such that(T (P), [t0]≡)
is branching bisimilar to(T (R), t′0). Furthermore,R andt′0 may be computed in time
polynomial in|P| + |t0|.

Before proving this theorem, we shall first present the general proof strategy. The main
difficulty of the proof is that the domainS′ of T (P) consists of≡-classes of process
terms, while the domain ofT (R) consists of ranked trees. On the other hand, observe
that the other semanticsT0(P) is more close to aGTRS since the domainS of T0(P)
consists of process terms (not equivalence classes thereof). Therefore, the first hurdle
in the proof is to establish a connection betweenT (P) andT0(P). To this end, we will
require thatt0 and all process terms inP have a minimum number of zeros and have no
right-associative occurrence of the sequential composition operator. We will then pick
a small subset of the axioms of≡ asτ -transitions, which we will add toT0(P). These
axioms include those that reduce the occurrences of 0 from terms, and the rule that
turns a right-associative occurrence of the sequential composition operator into a left-
associative occurrence. The resulting pointed transitionsystem(T0(P), t0) will become
branching bisimilar to(T (P), [t0]≡). In fact, fixing t0 as the initial configuration, we
will see that further restrictions to the axioms for≡ (e.g. associativity of .) may be made
resulting in a pointed transition system that can be easily captured in the framework of
GTRS.

7



Adding the τ -transitions to T0(P): We define the relation
τ

−→ on arbitrary process
terms given by the following proof rules:

0.t
τ

−→ t t‖0
τ

−→ t

t1
τ

−→ t′1

t1.t2
τ

−→ t′1.t2

t.0
τ

−→ t t1.(t2.t3)
τ

−→ (t1.t2).t3

t2
τ

−→ t′2

t1‖t2
τ

−→ t1‖t
′

2

0‖t
τ

−→ t

t1
τ

−→ t′1

t1‖t2
τ

−→ t′1‖t2

t2
τ

−→ t′2

t1.t2
τ

−→ t1.t
′

2

Here, t is allowed to be any process term. Observe that theseτ -transitions remove
redundant occurrences of 0 and turns a right-associative occurrence of the sequen-
tial composition into a left-associative one. Observe thatwe do not allow associativ-
ity/commutativity axioms for‖ in our definition of

τ
−→. It is easy to see that

τ
−→⊆≡1⊆

≡. We now note a few simple facts about
τ

−→ in the following lemmas.

Lemma 2. For all termst, there exists a unique termt↓ such thatt
τ

−→
∗

t↓ andt↓ 6
τ

−→.
Furthermore, all paths fromt to t↓ are of length at mostO(|t|2), and moreovert↓ is
computable fromt in polynomial time.

Lemma 3. The following statements hold: (1) Ift ≡1 t′, thent↓ = t′↓, (2) If 0 ≡ v,

thenv
τ

−→
∗

0, and (3) IfX1.X2 . . . Xn ≡ v, thenv
τ

−→
∗

X1.X2 . . . Xn.

Lemma 2 is a basic property of a rewrite system commonly knownasconfluenceand
termination(e.g. see [1]). In fact, it does not take long to terminate. Lemma 3 gives the
form of the unique “minimal” term with respect to

τ
−→ given various different initial

starting points. The proofs of these lemmas are standard. For the rest of the proof of
Theorem 1, we assume the following conventions:

Convention 4 The termt0 and all process terms inP are minimal with respect to
τ

−→.
That is, each of such termst satisfiest = t↓.

We now add theseτ -transitions intoT0(P). So, we will writeT0(P) = (G(Σ),Aτ , {
a

−→:
a ∈ Aτ}). Our first technical result is that the equivalence relation≡ is indeed a branch-
ing bisimulation onT0(P).

Lemma 5. ≡ is a branching bisimulation onT0(P).

The proof of this lemma is not difficult but tedious. As an immediate corollary, we
obtain that(T0(P), t0) is equivalent to(T (P), [t0]≡) up to branching bisimulation.

Corollary 6. The relationR = {(C, t) ⊆ S′ × S : t ∈ C} is a branching bisimulation
betweenT (P) andT0(P).

Removing complexτ -transitions: Corollary 6 implies that we may restrict ourselves
to the transition systemT0(P). At this stage, ourτ -transitions still contain some rules
that cannot easily be captured in the framework ofGTRS, e.g., left-associativity rule
of the sequential composition. We will now show that fixing aninitial configurationt0
allows us to remove theseτ -transitions from our systems.
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Recall that our initial configurationt0 satisfiest0 = (t0)↓. Denote byW the set of
all subtrees (either oft0 or of a left/right side of a rule inP) rooted at a node that is
a right child of a.-labeled node. It is easy to see that Convention 4 implies that each
t ∈ W satisfiest = t↓. Consequently, eacht ∈ W cannot be of the formt1.t2 or 0
sincet is a right child of the sequential composition. Furthermore, |W | is linear in the
size ofP .

Lemma 7. Fix a termt ∈ post∗(t0) with respect toT0(P). Then, any subtree oft which
is a right child of a.-labeled node is inW .

This lemma can be easily proved by induction on the length of the witnessing path that
t ∈ post∗(t0) and that this invariant is always satisfied. This lemma implies that some
of the rules for defining

τ
−→ may be restricted when only consideringpost∗(t0) as the

domain of our system, resulting in the following simplified definition:

0.t
τ

−→ t
t ∈ W

t‖0
τ

−→ t

t1
τ

−→ t′1

t1.t2
τ

−→ t′1.t2
t2 ∈ W

0‖t
τ

−→ t

t2
τ

−→ t′2

t1‖t2
τ

−→ t1‖t
′

2

t1
τ

−→ t′1

t1‖t2
τ

−→ t′1‖t2

Observe that the rulet.0
τ

−→ t may be omitted since no subtree oft ∈ post∗(t0) of the
formu.0 exists. Moreover, the rulet1.(t2.t3)

τ
−→ (t1.t2).t3 is never applicable since no

subtree oft ∈ post∗(t0) of the formt1.(t2.t3) exists. Other rules are omitted because
any subtree oft of the formt1.t2 must satisfyt2 ∈ W , and that eachu ∈ W satisfies
u = u↓ (which impliesu 6

τ
−→).

Finally, in order to cast the system intoGTRS framework, we will further restrict
rules of the formt‖0

τ
−→ t or 0‖t

τ
−→ t. Let l-prefix(P) be the set of all prefixes

of wordsw appearing on the left hand side of the rules inP treated as left-associative
terms. More formally, l-prefix(P) contains 0 (a term representation of the empty word)
and all subtermsu of a term appearing on the left hand side of a rule inP rooted at a
node location of the form1∗. We define τ to be the restriction of

τ
−→, where rules of

the form0‖t
τ

−→ t andt‖0
τ

−→ t are restricted tot ∈ l-prefix(P). We letT ′
0 (P) to be

T0(P) with
τ

−→ replaced by τ .

Lemma 8. (T ′
0 (P), t) is branching bisimilar to(T0(P), t).

Constructions of theGTRS: It is now not difficult to castT ′
0 (P) into GTRS frame-

work. To construct theGTRS, we letA be the ranked alphabet containing: (i) a nullary
symbol for each process variable occuring inP , (ii) a binary symbol for the binary op-
erator‖, and (iii) a unary symbol̂t for each termt ∈ W . Since each subtreeu of a tree
t ∈ post∗(t0) of the formt1.t2 satisfiest2 ∈ W , we may simply substituteu with the
treet̂2(t1) and perform this substitution recursively ont1. Denote byλ(t) the resulting
tree over the new alphabetA after this substitution is performed on a process termt. The
desiredGTRS isR = (A,Aτ , R), whereR is defined as follows. For each rulet 7→a t′

in P , wherea ∈ A, we add the ruleλ(t)
a
→֒ λ(t′) to R. For eacht ∈ l-prefix(P),

we add0‖t
τ
→֒ t andt‖0

τ
→֒ t to R. Finally, we add the transition rulêt(0)

τ
−→ t for

eacht ∈ W . It is now not difficult to show that(T ′
0 (P), t) ≃ (T (R), λ(t)), which

immediately implies Theorem 1.
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4.2 Further containment results

Theorem 9. BPP ≤∼ GTRS.

Proof (sketch).The idea is to construct from someBPP a GTRS, where each leaf cor-
responds to a process constant. A leaf is either marked or unmarked. An unmarked
leaf X can become marked with the fresh symbol$ via the actiona in case the rule
X 7→a 0 is present in theBPP. Rules of the kindX 7→a Y1‖ . . . ‖Yn are realized via

X
a
→֒ •(Y1, . . . , Yn) in the GTRS. Moreover theGTRS does not contain any rules,

where a marked leaf is on the left-hand side of a rule. ⊓⊔

Theorem 10. GTRS ≤∼ PRS.

Proof (sketch).Let k be the maximal rank of the alphabet of someGTRS. Although
parallel composition is interpreted commutatively we can simulate order by usingk
additional symbols in aPRS. ⊓⊔

Theorem 11. RGTRS ≃ GTRS.

Proof (sketch).A GTRS can simulate viaτ -transitions the bottom-up computation of
an NTA. In addition, one providesτ -transitions that allow to undo these transitions.⊓⊔

In analogy to Theorem 11 one can prove the following.

Corollary 12. PDS ≃ PREF.

5 Separation results

In this section, we provide the separation results in the tworefined hierarchies. We first
note two known separation results: (1)BPA 6≤≈ PN (e.g. see [10]), and (2)BPP 6≤≈

PDS since there is aBPP trace language that is not context-free (e.g. see references in
[4]) and trace equivalence is coarser than weak bisimulation equivalence.

5.1 PA 6≤∼ GTRS

Some properties ofGTRS: We introduce some notions that were also used in [15].
Let R = (A,A, R) be an arbitraryGTRS. For eacht ∈ TreesA, we define height(t) =
max{|x| : x ∈ Dt}. We define the numberhR = max{height(t) | ∃t′ ∈ TreesA ∃σ ∈A : t

σ
→֒ t′ ∈ R or t′

σ
→֒ t ∈ R} and|R| = |A| + |A| + ∑

t
σ

→֒t′∈R
|t| + |t′|.

Lemma 13. Let Λ ⊆ A. For every t0 ∈ TreesA there is someN = exp(|R| +

height(t0)) such thatt0
Λ
−→

N

impliest0
Λ
−→

n

for infinitely manyn ∈ N.

The separating PA: Consider thePA P = (Σ,A, ∆) with Σ = {A, B, C, D}, A =
{a, b, c, d} and where∆ consists of the following rewrite rules:

A 7→a 0 B 7→b 0 C 7→c 0 D 7→d 0 A 7→a A||B||C

10



U

V

tB

y

x

Fig. 2.The treeT 1 = U [V [tB]].

For the rest of this section, we wish to prove
that the stateα = A.D in T (P) is not strongly
bisimilar to any pointedGTRS. So for the sake
of contradiction, let us assume someGTRS R =
(A,A, R) and sometα ∈ TreesA(R) with tα ∼
α. We note that e.g. by [15] it is known that the
set of maximal sequences executable fromα (the
language ofα whenP is interpreted as a language
acceptor) are recognizable by someGTRS [15].

We callU [x] acontextif U ∈ TreesA andx ∈
DU is a leaf ofU . Given a treet ∈ TreesA and a
contextU [x], we writeU [t] for U [x/t]. We define
Un[t] inductively as follows:U0[t] = t andUn =
U [Un−1[t]] for eachn > 0.

Let us considerpost∗{a}(tα). First, there is
some NTAA with L(A) = {tα}. A folklore result states that there is some NTAB
with L(B) = post∗{a}(L(A)) = post∗{a}(tα), see e.g. [15]. Note thatL(B) is infinite
sinceα can reach infinitely many pairwise non-bisimilar states andtα ∼ α by assump-
tion. By applying the Pumping Lemma for regular tree languages, there is some tree
tB ∈ TreesA and there are contextsU [x], V [y] ∈ TreesA such that (i)U [V [tB]] ∈ L(B),
(ii) height(U [V [tB]]) ≤ 2 · |B|, (iii) height(V [tB]) ≤ |B|, (iv) |y| > 0, i.e. V is not a
singleton tree, and (v)U [V n[tB]] ∈ L(B) for eachn ≥ 0.

The treeU [V [tB]] is displayed in Figure 2. We define the treeT n = U [V n[tB]]
for eachn ≥ 0. Moreover we define the consantγ = ℓ · (hR + 1) with ℓ =
2|{t∈TreesA|height(t)≤hR}|, i.e. ℓ denotes the number of different subsets of the set of all
trees inTreesA of height at mosthR.

The following lemma states that ifV γ [tB] can reach some tree of height at mosthR

by only executing the actionσ, then there is already some treetσ of height at mosthσ

such that for alli ≥ 0 we haveV θ+i·δ[tB]
σ
−→
R

∗
tσ.

Lemma 14. There existθ, δ ≥ 1 such that ifV γ [tB]
σ
−→

∗
t for somet ∈ TreesA with

height(t) ≤ hR, thenV θ+i·δ[tB]
σ
−→
R

∗
tσ for all i ≥ 0 for sometσ ∈ TreesA.

For the rest of this section, we fixθ andδ from Lemma 14. Note that due totα ∼ α we

have that for everyt ∈ post∗{a}(tα) there is some uniquek ∈ N with tα
a
−→

k
t. Thus,

for each treet ∈ post∗{a}(tα) we definek(t) to be theuniquek with tα
a
−→

k
t.

Lemma 15. {k(T n) | n ∈ N} is an infinite set.

Let us immediately apply Lemma 15. Let us fix some residue classr moduloδ such
that there are infinitely manyn with n ≡ r modδ all having pairwise distinctk(T n)
values. Among these infinitely manyn we will choose a sufficiently largeN ≥ θ for
the following arguments to work. The treeTN is depicted in Figure 3. Recall that by
definitionT N ∈ post∗{a}(tα).

The following lemma states that one can never shrink the subtreeV γ [tB] of T N to
some tree of height at mosthR by only executingb’s or only executingc’s.
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Lemma 16. If V γ [tB]
σ
−→

∗
t, then we have height(t) > hR for eacht ∈ TreesA and

eachσ ∈ {b, c}.

Let yN denote the unique node ofT N where the subtreetB is rooted at. We call a
nodez ∈ DT N of T N off-pathif z 6� yN . For each treet ∈ TreesA and eachσ ∈ A,

we definesupσ(t) = sup
{

j ∈ N | t
σ
−→

j
}

.

...

...

Dγ(tB)







yN

Fig. 3.The treeT N .

Intuitively speaking, the following lemma states that
from the subtreeV γ [tB] of T N and subtrees ofT N that
are rooted at off-path nodes one only execute a constantly
long sequences fromb∗c∗ or from c∗b∗ (unlesstα ∼ α is
violated). Let us defineb = c andc = b. We note thatγ
andB only depend onR and ontα but not onN .

Lemma 17. Let σ ∈ {b, c}. Then there is some constant
J = J(R, tα) such thatsupσ(t) ≤ J whenever either

t = V γ [tB] or T N↓z σ
−→

∗

t for some off-pathz.

We can now prove the main result of this section.

Theorem 18. PA 6≤∼ GTRS.

Proof. We give a simple winning strategy for Attacker that

contradictstα ∼ α. First Attacker playstα
a
−→

k(T N )
T N .

We remark sinceN is chosen sufficiently large, it follows
thatk(TN ) is sufficiently large for the following arguments
to work. It has to hold for somes ∈ {0, 1}

T N ∼




A1−s‖B‖B · · · ‖B

︸ ︷︷ ︸

k(T N )−s

‖C‖C · · · ‖C
︸ ︷︷ ︸

k(T N )−s




 .D (⋆)

We only treat the cases = 1 (the cases = 0 can be proven analogously). Recall that
γ is a constant that only depends onR andtα. On the one hand we cannot modify the
subtreeV γ [tB] of T N to any tree of height at mosthR by executingb’s only by Lemma
16. On the other hand we cannot execute more thanJ manyb’s from the subtreeV γ [tB],

whereJ is the constant of Lemma 17. Thus, sinceT N b
−→

k(T N )−1

holds, Attacker can
playk(T N)−1−J manyb’s outside the subtreeV γ [tB]. We recall thatk(T N )−J can
be arbitrarily large sinceJ is a constant that only depends onR andtα. By definition
of T N all of thesek(T N)−1−J manyb’s can be played on subtrees initially rooted at
off-path nodes ofT N outsidethe subtreeV γ [tB]. However from each of these subtrees
that are initially rooted at off-path nodes outside the subtreeV γ [tB], we can execute at
mostJ manyb’s.

Analogously Attacker can executek(T N)−1−J manyc’s fromT N all on subtrees
initially rooted at off-path nodes ofTN outsidethe subtreeV γ [tB].

Attacker now has the following winning strategy. First he playsk(T N)−1−J many
b’s on subtrees rooted at off-path nodes ofT N outsideV γ [tB]. After playing theseb’s

12



the height each of these subtrees is bounded by a constant that only depends onR and
tα by Lemma 17. Next, Attacker playsk(T N) − 1 − J manyc’s at positions outside
the subtreeV γ [tB] and still, by Lemma 17, the height of all subtrees rooted at off-path
nodes outsideV γ [tB] have a height bounded by a constant that only depends onR and

tα. Let us call the resulting treeT ′. We note thatT ′ bJcJd
−−−−→, i.e. fromT ′ the sequence

bJcJ is executable thus reaching a tree where ad-labeled rule is executable. But this

implies thatT N wd
−−→ for somew ∈ {b, c}∗ where|w| is bounded by a constant that

only depends onR andtα, clearly contradicting (⋆). ⊓⊔

5.2 GTRS 6≤≈ PAD

By Theorem 11 it suffices to prove that there is someRGTRS that is not weakly bisim-
ilar to anyPAD.

Consider theRGTRS R = (A,A, R), with A0 = {X0, Y0, Z0}, A1 = {X1, Y1},
A2 = {•}, andA = {a, b, c, d, e, f}. First, we add toR the following singleton rewrite

rules: (i)X0
a
→֒ X1(X0), (ii) X1(X0)

b
→֒ X0, (iii) Y1

c
→֒ Y1(Y0), (iv) Y1(Y0)

d
→֒ Y0,

and (v)•(X0, Y0)
e
→֒ Z0.

Z0

t(0, 0)

t(0, 1)

t(0, 2)

t(1, 0)

t(1, 1)

t(2, 0)

a a

b b

a

b

c
d

c
d

cd

e

f

f

f

f

f

...

...
· · ·

...

Fig. 4.The transition systemT (R).

We note that so far all rewrite rules
are standard ground tree rewrite rules.
Also note that the singleton treeZ0 is a
dead-end. It is easy to see that for ev-
ery tree in t ∈ TreesA that is reach-
able from•(X0, Y0) we havet = Z0 or
t is of the form t = •(tX , tY ), where
tX = Xm

1 [X0] and tY = Y n
1 [Y0] for

somem, n ≥ 0. In the latter case we de-
note t by t(m, n). Finally, we add toR
the regular tree rewrite rule{t(m, n) |

n ≥ 1 or m ≥ 1}
f
→֒ Z0. The transi-

tion systemT (R) is depicted in Figure
4.

It is easy to see that the set of max-
imal sequences executable fromt(0, 0)
is not a context-free language. We claim
that there is noPAD that is weakly bisim-
ilar to t(0, 0) = •(X0, Y0).

Let us assume by contradiction that
for somePAD P = (Σ,Aτ , ∆) and for some termα0 ∈ G(Σ) we haveα0 ≈ t(0, 0).
We call a termα ∈ G(Σ) inactiveif α 6

σ
=⇒ for all σ ∈ A. We note thatα

τ
=⇒ might be

possible even thoughα is inactive.

Lemma 19. Assume some termα with α ≈ t(m, n) for somem, n ∈ N andα contains
an enabled subtermβ1‖β2. Thenβ1 or β2 is inactive.

Theorem 20. GTRS 6≤≈ PAD.
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Proof (sketch).The proof idea is to show that anyPAD that satisfies the property of
Lemma 19 is already weakly bisimilar to a pushdown process.

5.3 PDS 6≤≈ PAN and PN 6≤≈ GTRS

Theorem 21. PDS 6≤≈ PAN.

Proof (sketch).The proof idea is an adaption of an idea from [18] separatingPAN

from PDS with respect to strong bisimulation, but is technically more involved. The
separating pushdown process behaves as follows: First, it executes a sequence of actions
w = {a, b}∗ and then executes either of the following: (1) The actionc, then the reverse
of w and finally ane. (2) The actiond, then the reverse ofw and finally anf . ⊓⊔

Theorem 22. PN 6≤≈ GTRS

The proof can be done by observing that{anbncn | n ∈ N} is aPN language (e.g. see
[22]), while this language is not a trace language ofGTRS (e.g. see [15]).

6 Applications

In this section, we provide applications of the connectionsthat we establish between
GTRS and thePRS hierarchy. Instead of attempting to exhaust all possible applications,
we shall only highlight a few of the key applications. In particular, Theorem 1 allows
us to transfer decidability/complexity upper bounds on model checking overGTRS to
model checking overPA/PAD-processes.

The first application is the decidability of EF-logic overPAD. The logic EF (e.g. see
[13, 23]) is the extension of Hennessy-Milner logic with reachability operators (possi-
bly parameterized over subsets of all possible actions). The decidability of EF model
checking overGTRS has been known for a long time, e.g., it follows from the results of
[8, 12]. Together with Theorem 1, this easily gives another proof of the following result
of Mayr.

Theorem 23 ([19]).Model checking EF-logic overPAD is decidable.

The second application is the decidability/complexity of model checking the com-
mon fragments LTLdet (called deterministic LTL) and LTL(Fs, Gs) [7, 17] of LTL over
PAD. These fragments are suffciently powerful for expressing interesting properties
like safety, fairness, liveness, and also some simple stuttering-invariant LTL properties.
The following two theorems follow from the results forGTRS [23, 24]; decidability
with no upper bounds was initially proven in [7].

Theorem 24. Model checking LTLdet overPAD is decidable in exponential time in the
size of the formula and polynomial in the size of the system. Model checking LTL(Fs, Gs)
overPAD is decidable in time double exponential in the size of the formula and poly-
nomial in the size of the system.
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