
Monadic Decomposability of Regular Relations1

Pablo Barceló2

Department of Computer Science, University of Chile & IMFD Chile3

pbarcelo@dcc.uchile.cl4

Chih-Duo Hong5

Department of Computer Science, University of Oxford, United Kingdom6

chih-duo.hong@st-hughs.ox.ac.uk7

Xuan-Bach Le8

Department of Computer Science, University of Oxford, United Kingdom9

bachdylan@gmail.com10

Anthony W. Lin11

Technische Universität Kaiserslautern, Germany12

anthony.lin@cs.uni-kl.de13

Reino Niskanen14

Department of Computer Science, University of Oxford, United Kingdom15

reino.niskanen@cs.ox.ac.uk16

Abstract17

Monadic decomposibility — the ability to determine whether a formula in a given logical theory can18

be decomposed into a boolean combination of monadic formulas — is a powerful tool for devising a19

decision procedure for a given logical theory. In this paper, we revisit a classical decision problem20

in automata theory: given a regular (a.k.a. synchronized rational) relation, determine whether it is21

recognizable, i.e., it has a monadic decomposition (that is, a representation as a boolean combination22

of cartesian products of regular languages). Regular relations are expressive formalisms which,23

using an appropriate string encoding, can capture relations definable in Presburger Arithmetic. In24

fact, their expressive power coincide with relations definable in a universal automatic structure;25

equivalently, those definable by finite set interpretations in WS1S (Weak Second Order Theory of26

One Successor). Determining whether a regular relation admits a recognizable relation was known to27

be decidable (and in exponential time for binary relations), but its precise complexity still hitherto28

remains open. Our main contribution is to fully settle the complexity of this decision problem by29

developing new techniques employing infinite Ramsey theory. The complexity for DFA (resp. NFA)30

representations of regular relations is shown to be NLOGSPACE-complete (resp. PSPACE-complete).31
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1 Introduction44

Monadic decompositions for computable relations have been studied in many different guises,45

and applied to many different problem domains, e.g., see [17, 25, 38, 12, 27, 28, 37]. The notion46

of “monadic decomposability” essentially captures the intuitive notion that the components in47

a given n-ary relation R ⊆ Un are sufficiently independent from (i.e. not tightly coupled, or48

interdependent, with) each other. Some examples are in order. Given two subsets X,Y ⊆ U ,49

then X × Y is an instance of relations whose two components are completely independent50

from each other. On the other hand, the equality relation {(x, x) : x ∈ U} is an example51

of relations whose two components are tightly coupled. In this paper, we will adopt the52

commonly studied notion of component-independence1 (e.g. [25, 38, 7, 37]) in a relation53

R ⊆ Un that lies between the extremes as exemplified in the above examples, i.e., that R is54

expressible as a finite union
⋃r
i=1 Xi,1×· · ·×Xi,n of products, where each Xi,j is expressible55

in the same language L (e.g. a logic or a machine model) wherein R is expressed.56

Why should one care about monadic decomposable relations? The main reason is that57

applying appropriate monadic restrictions could make an undecidable problem decidable,58

and in general turn a difficult problem into one more amenable to analysis. Several examples59

are in order. Firstly, the well-known cartesian abstractions in abstract interpretation [17]60

overapproximate the set R ⊆ Un of reachable states at a certain program point by a relation61

R′ ⊆ X1 × · · · ×Xm such that R ⊆ R′. Having R′ instead of R sometimes allows a static62

analysis tool to prove correctness properties about a program that is otherwise difficult to do63

with only R. Another example includes restrictions to monadic predicates in undecidable64

logics that result in decidability, e.g., monadic first-order logic and extensions ([9, 10, 4]), as65

well as monadic second-order theory of successors [10]. Monadic decomposability also found66

applications in more efficient variable elimination in constraint logic programming (e.g. [23]),67

as well as constraint processing algorithms for constraint database queries (e.g. [25, 24]).68

Finally, monadic decompositions in the context of SMT (Satisfiability Modulo Theories),69

whose study was recently initiated in [38], have numerous applications, including constraint70

solving over strings [38, 14].71

The focus of this paper is to revisit a classical problem of determining monadic decompos-72

ability of regular relations, which are also known as synchronized rational relations [20, 6, 8].73

The study of classes of relations over words definable by different classes of multi-tape (finite)74

automata is by now a well-established subfield of formal language theory. This study was75

initiated by Elgot, Mezei, and Nivat in the 1960s [18, 30]; also see the surveys [7, 15]. In76

particular, we have a strict hierarchy of classes of relations as follows: recognizable relations,77

synchronized rational relations, deterministic rational relations, and rational relations. All78

these classes over unary relations (i.e. languages) coincide with the class of regular languages.79

Rational relations are relations R ⊆ (Σ∗)n definable by multi-tape automata, where the tape80

heads move from left to right (in the usual way for finite automata) but possibly at different81

speeds (e.g. in a transition, the first head could stay at the same position, whereas the82

second head moves to the right by one position). Deterministic rational relations are simply83

those rational relations that can be described by deterministic multi-tape automata. So far,84

the heads of the tapes can move at different speeds. Regular relations (a.k.a. synchronized85

rational relations) are those relations that are definable by multi-tape automata, all of whose86

heads move to the right in each transition. Unlike (non)deterministic rational relations,87

regular relations are extremely well-behaved, e.g., they are closed under first-order operations88

1 Also called variable-independence.
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and, therefore, have decidable first-order theories [22]. Regular relations are also known89

to coincide with those relations that are first-order definable over a universal automatic90

structure [6, 8]; equivalently, those relations that are definable by finite-set interpretations in91

the weak-monadic theory of one successor (WS1S) [16]. Finally, the weakest class of relations92

in the hierarchy are recognizable relations: those relations that are definable as a finite union93

of products of regular languages or, equivalently, relations that can be defined as a boolean94

combination of regular constraints (i.e. atomic formulas of the form x ∈ L, where L is a95

regular language, asserting that the word x is in L). Recognizable relations are, therefore,96

those relations definable by multi-tape automata that exhibit monadic decomposability.97

One of the earliest results on deciding whether a relation is monadic decomposable98

follows from Stearns in 1967 [33] and the characterization of a binary relation R ⊆ A∗ ×B∗99

by LR = {rev(u)#v | (u, v) ∈ R}, where rev(u) is the mirror image of u. In [12] it was100

proven that LR is a regular language if and only if R has a monadic decomposition and101

if R is a deterministic rational relation, then LR is a deterministic context-free language.102

Due to this characterization, Stearns’s result implies that whether a deterministic n-ary103

rational relation is monadic decomposable (i.e. recognizable) is decidable in the case when104

n = 2. Shortly thereafter, Fischer and Rosenberg [19] showed that the same problem is105

unfortunately undecidable for the full class of binary rational relations. A few years later106

Valiant [37] improved the upper bound complexity for the case solved by Stearns to double107

exponential-time. This is still the best known upper bound for the monadic decomposability108

problem for deterministic binary rational relations to date and, furthermore, no specific lower109

bounds are known. More recently Carton et al. [12] adapted the techniques from [33, 37]110

to show that this decidability extends to general n-ary relations, though no complexity111

analysis was provided. The problem of monadic decomposability for regular relations has112

also been studied in the literature. Of course decidability with a double exponential-time113

upper bound for the binary case follows from [37]. In 2000 Libkin [25] gave general conditions114

for monadic decomposability for first-order theories, which easily implies decidability for115

monadic decomposability for general k-ary regular relations. This is because regular relations116

are simply those relations that are definable in a universal automatic structures [6, 8]. The117

result of Libkin was not widely known in the automata theory community and in fact the118

problem was posed as an open problem in French version of [31] in 2003 and later on, Carton119

et al. [12] provided a double-exponential-time algorithm for deciding whether an n-ary120

regular relation is monadic decomposable. More precisely, even though it was claimed in the121

paper that the algorithm runs in single-exponential time, it was noted in a recent paper by122

Löding and Spinrath [27, 28] (with which the authors of [12] also agreed, as claimed in [28])123

that the algorithm actually runs in double-exponential time. Löding and Spinrath [27, 28]124

gave a single-exponential-time algorithm (inspired by techniques from [37]) for monadic125

decomposability of binary regular relations.126

Contributions127

In this paper we provide the precise complexity of monadic decomposability of regular128

relations, closing the open questions left by Carton et al. [12] and Löding and Spinrath129

[27, 28]. In particular, we show the following.130

I Theorem 1. Deciding whether a given regular relation R is monadic decomposable is131

NLOGSPACE-complete (resp. PSPACE-complete), if R is given by a DFA (resp. an NFA).132

The lower bounds hold already for binary relations (Lemma 5 and Lemma 6 in Section 3).133

To prove the upper bounds, we first prove the upper bounds for binary relations (Lemma 10134
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98:4 Monadic Decomposability of Regular Relations

in Section 4) and then extend them to n-ary relations for any given n > 2 (Lemma 11 in135

Section 5).136

The existing proof techniques (e.g. in [12, 28, 25]) for deciding monadic decomposability137

typically aim for finding proofs that the relations are monadic decomposable. In contrast,138

our proof technique relies on finding a proof that a relation is not monadic decomposable. As139

a brief illustration, suppose we want to show that the regular relation R = {(v, v) : v ∈ Σ∗}140

is not monadic decomposable. We define an equivalence relation ∼ ⊆ Σ∗ × Σ∗ as141

x ∼ y := ∀z([R(x, z)↔ R(y, z)] ∧ [R(z, x)↔ R(z, y)]).142
143

This relation is regular since regular relations are closed under first-order operations [31] (a144

fact that was also used in [12]), but the size of the automaton for this relation is unfortunately145

quite large; see [27] for detailed discussion. Therefore, we will only use the complement 6∼,146

which has a substantially smaller representation: polynomial (resp. exponential) size if R is147

given as a DFA (resp. an NFA). Now, that R is not monadic decomposable amounts to the148

existence of an ω-sequence σ = {vi}i∈N of words such that vi 6∼ vj for each pair i, j ∈ N. By149

applying the pigeonhole principle and König’s lemma, we will first construct a nicer sequence150

α (see the top half of Figure 2) and then by exploiting Ramsey Theorem over infinite graphs,151

we will show that there is an even nicer sequence α′ (see the bottom half of Figure 2), where152

the automaton for 6∼ synchronizes its states in particular points of the computation, no153

matter which pair of words from the sequence is being read. Moreover, we prove that one of154

the synchronizing states has a pumping property. This leads to our NLOGSPACE algorithm155

as we can guess the synchronizing states and verify that there is an accepting run that can156

be pumped. This technique was inspired by a technique for proving recurrent reachability in157

regular model checking [34, 35].158

The exponential-time upper bound for the binary case from Löding and Spinrath [28]159

(which is inspired by the techniques used by Stearns [33] and Valiant [37]) relied on char-160

acterization of a relation R using the language LR = {rev(u)#v | (u, v) ∈ R} and used161

a suitable machinery that is able to decide whether LR is regular or not. Their result is162

not easily extensible to n-ary relations as the encoding of a binary rational relation as a163

context-free language LR does not generalize to n-ary relations. In Section 5, we show that164

proving monadic decomposability for an n-ary regular relation is LOGSPACE-reducible to165

testing whether linearly many induced binary relations are monadic decomposable.166

We conclude in Section 6 with some perspectives from formal verification and a future167

research direction. The proofs omitted due to length constraints can be found in [5].168

2 Preliminaries169

A finite alphabet is denoted by Σ and the free monoid it generates by Σ∗. That is, Σ∗170

consists of all finite words over Σ. The empty word is ε. We denote by |w| the length of171

word w ∈ Σ∗. We have that |ε| = 0. The word u ∈ Σ∗ is a prefix of w ∈ Σ∗ if w = uv for172

some v ∈ Σ∗. We denote this by u ≤ w. We also write v = u−1w, when u is a prefix of w, to173

state that v is the suffix of w that is obtained after prefix u is removed. Sometimes we want174

to consider a suffix of w after a prefix of particular length is removed without specifying175

the actual prefix as defined above. To this end, we define partial function σ : Σ∗ × N→ Σ∗176

such that σ(w, i) = v, where w = uv for some u ∈ Σ∗ such that |u| = i. In particular, for177

u ≤ w, σ(w, |u|) = u−1w. Similarly, we define partial function τ : Σ∗ × N → Σ∗ such that178

τ(w, i) = u, where |u| = i and u ≤ w.179

In this paper we study relations R ⊆ Σ∗ × · · · × Σ∗ with particular structural properties.180

Namely, monadic decomposable relations that are a finite union of direct products of regular181
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languages, and regular relations defined by n-tape finite automata, where the heads move in182

synchronized manner. See, for example, [31] for more details on such relations.183

I Definition 2. An n-ary relation R ⊆ Σ∗× · · · ×Σ∗ is a monadic decomposable relation iff184

it is of the form
⋃m
i=1(X1,i × · · · ×Xn,i), where m is finite and each Xj,i ⊆ Σ∗ is a regular185

language.186

As mentioned earlier, this can be intuitively seen as the components of R being independent187

in some sense. Note that in the literature, monadic decomposable relations are sometimes188

called recognizable. The monadic decomposable relations can be defined using multi-tape189

automata as is done, e.g., in [12]. The above definition is more suitable for our considerations.190

Let ⊥ be a fresh symbol not found in Σ. We use it to pad words in a relation R ⊆191

Σ∗ × · · · × Σ∗ in order for each component to be of the same length. Formally, a tuple192

(w1, . . . , wn) is transformed into (w1⊥`1 , . . . , wn⊥`n), where `i = −|wi| + max1≤j≤n |wj |193

for each i = 1, . . . , n. We extend this to the relation R⊥ in the expected way. We also194

denote Σ ∪ {⊥} by Σ⊥. An n-tape automaton over alphabet Σ⊥ is a tuple (Q,→A, q0, F ),195

where Q is the finite set of states, q0 is the initial state, F is the set of final states, and196

→A ⊆ Q× (Σ⊥)n × P(Q).197

I Definition 3. An n-ary relation R ⊆ Σ∗ × · · · ×Σ∗ is regular iff R⊥ is recognized by some198

n-tape automaton A⊥ over alphabet Σ⊥.199

That is, in a regular relation the n heads of the automaton are moving in synchronized200

manner and the n-tuple of symbols seen determines the state transition. Naturally, the state201

transition can be deterministic or non-deterministic. We say that a regular relation is defined202

by an NFA if the underlying n-tape automaton is non-deterministic, otherwise we say that203

the relation is defined by a DFA. Note that in the literature, regular relations are sometimes204

called synchronous rational or automatic relations.205

We recall a useful characterization from [12]. Consider an n-ary regular relation R ⊆206

Σ∗× · · · ×Σ∗. For each j = 1, . . . , n− 1, let ∼j be the following induced equivalence relation:207

(u1, . . . , uj) ∼j (v1, . . . , vj) := ∀(wj+1, . . . , wn) ∈ Σ∗ × · · · × Σ∗ we have that
(u1, . . . , uj , wj+1, . . . , wn) ∈ R ⇐⇒ (v1, . . . , vj , wj+1, . . . , wn) ∈ R and

(wj+1, . . . , wn, u1, . . . , uj) ∈ R ⇐⇒ (wj+1, . . . , wn, v1, . . . , vj) ∈ R.
208

209

I Lemma 4 ([12]). The n-ary regular relation R is monadic decomposable iff ∼j has finite210

index for each j = 1, . . . , n− 1. That is, there are finitely many equivalence classes over ∼j.211

In other words, R is not monadic decomposable iff for some j = 1, . . . , n− 1, there is an212

infinite sequence {ui}i≥0, where each ui is a j-tuple of words, such that for each 0 ≤ i < ` it213

is the case that ui 6= u` and ui 6∼j u`.214

In Section 4, we focus on binary relations for which we simplify the notation as there is215

only one possible value of j. We write ∼ instead of ∼j and R 6∼ for the binary regular relation216

217

R 6∼(w,w′) := ∃u
(
(R(w, u) ∧ ¬R(w′, u)) ∨ (¬R(w, u) ∧R(w′, u))∨218

(R(u,w) ∧ ¬R(u,w′)) ∨ (¬R(u,w) ∧ R(u,w′))
)
.219

220

That is, R 6∼ consists of all words w,w′ ∈ Σ∗ for which there exists a word u ∈ Σ∗ such that221

one of R(w, u) and R(w′, u) is accepted while the other is not, or one of R(u,w) and R(u,w′)222

is accepted while the other is not.223

We assume that the reader is familiar with complexity classes and logarithmic space224

reductions via logarithmic space transducers; see for example [32].225
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98:6 Monadic Decomposability of Regular Relations

3 Hardness of deciding monadic decomposability of regular relations226

In this section, we consider binary regular relations given by NFA and provide a PSPACE227

lower bound for deciding if such a relation is monadic decomposable. Then, we prove that228

the same problem for DFA is NLOGSPACE-hard.229

I Lemma 5. The problem of deciding whether a binary regular relation given by an NFA is230

monadic decomposable is PSPACE-hard.231

Proof. We give a logarithmic space reduction from the universality problem for NFA, which232

is PSPACE-hard [29]. Recall that in this problem, we are asked to decide whether L(A) = Σ∗233

given an NFA A over Σ.234

Let A be an NFA over alphabet Σ, and let {#} be a fresh symbol that we will use as a235

separator symbol. We assume that # 6= ⊥. We construct relation R = R1 ∪ R2 using the236

language L of A, where237

R1 = {(u, u) | u ∈ (Σ ∪ {#})∗} and R2 = (L · {#})∗ × (Σ∗ · {#})∗.238
239

Intuitively, R1 contains all pairs (w1, w2) such that w1 = w2 = u0#u1# · · ·#un#, where240

ui ∈ Σ∗, and R2 contains all pairs (w1, w2) such that w1 = v0#v1# · · ·#vm#, where vi ∈ L,241

and w2 = u′0#u′1# · · ·#u′n#, where u′i ∈ Σ∗. It is easy to construct an NFA that recognizes242

R in LOGSPACE. Next we show that L = Σ∗ iff R is monadic decomposable.243

Assume first that L = Σ∗. Then R1 ⊆ R2, and thus R = (Σ∗ · {#})∗ × (Σ∗ · {#})∗ which244

has a trivial monadic decomposition.245

For the other direction, assume that R is monadic decomposable, i.e., R =
⋃n
i=1(Ai×Bi)246

for some regular languages Ai, Bi. Let w ∈ Σ∗. We show that w ∈ L as well. Consider247

a set {((w#)i, (w#)i) | i = 1, . . . , n + 1} ⊆ R1 ⊆ R. By the pigeonhole principle, there248

are two elements ((w#)j , (w#)j) and ((w#)k, (w#)k) that belong to the same compon-249

ent of
⋃n
i=1(Ai × Bi), say to A1 × B1. Therefore, (w#)j ∈ A1 and (w#)k ∈ B1, and250

hence their direct product, ((w#)j , (w#)k), is in A1 × B1 ⊆ R. Recall that R = R1 ∪ R2.251

Clearly, ((w#)j , (w#)k) /∈ R1 as the lengths of the two words are different. It follows that252

((w#)j , (w#)k) ∈ R2 and hence (w#)j ∈ (L · {#})∗. This implies that w ∈ L. J253

I Lemma 6. The problem of deciding whether a binary regular relation given by a DFA is254

monadic decomposable is NLOGSPACE-hard.255

The proof is straightforward by a reduction from reachability problem for directed acyclic256

graphs.257

4 Deciding monadic decomposability of binary regular relations258

In this section we prove our main technical result.259

I Lemma 7. There is an NLOGSPACE algorithm that takes as input an NFA for R 6∼, where260

R is a binary regular relation, and decides whether R is monadic decomposable.261

We start by defining some notation. We assume any binary regular relation R 6∼ to be262

given as an NFA with set of states Q. The R 6∼-type of a pair (w1, w2) of words over Σ is an263

element of the transition monoid. Recall that the transition monoid transforms any given264

state q ∈ Q to a set Q′ ⊆ Q of states when reading (w1, w2). We denote this by R 6∼w1,w2
(q)265

for each q ∈ Q. We write types(R 6∼) for the set of all R 6∼-types.266
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Consider an infinite sequence {wi}i≥0 of words over Σ as defined in Lemma 4. Additionally,267

we assume that the words in the sequence are of strictly increasing length and that for each268

i > 0 the words wi and wi+1 have a common prefix of length |wi−1|. That is, wi can be269

written as β0 · · ·βi−1αi, where each βj and αi is a non-empty word. To simplify notation,270

we denote ρ(wi) = β0 · · ·βi. That is, ρ(wi) is of length |wi| and is a prefix of wj , for each271

0 ≤ i < j. We will show how to construct such sequence in Proposition 8. The words wi, wj272

and wk are illustrated in the top of Figure 1.273

With each pair (i, j), where i < j, we associate the following quinary tuple over types(R 6∼):274

Ci,j =
(
R 6∼wi,ρ(wi), R

6∼
ρ(wi),ρ(wi), R

6∼
σ(wj ,|wi|),σ(ρ(wj),|wi|), R

6∼
ε,σ(wj ,|wi|), R

6∼
ε,σ(ρ(wj),|wi|)

)
.275

276

Intuitively, the first component corresponds to the computation of (β0 · · ·βi−1αi, β0 · · ·βi−1βi),277

the second to (β0 · · ·βi−1βi, β0 · · ·βi−1βi) needed in order to compute the third compon-278

ent, (βi+1 · · ·βj−1αj , βi+1 · · ·βj−1βj). The final two components are used to compute the279

set of states reachable after the whole word in the first component is read. That is280

(⊥|βi+1···βj−1αj |, βi+1 · · ·βj−1αj) and (⊥|βi+1···βj−1βj |, βi+1 · · ·βj−1βj). See Figure 1 for a281

pictorial depiction.282

wi

wj

wk

β0 · · · βi−1αi

β0 · · · βi−1βiβi+1 · · · βj−1αj

β0 · · · βi−1βiβi+1 · · · βj−1βj · · ·

β0 · · · βi−1αi

β0 · · · βi−1βi

1st component

β0 · · · βi−1βi

β0 · · · βi−1βi

2nd component

βi+1 · · · βj−1αj

βi+1 · · · βj−1βj

3rd component

⊥ · · · ⊥
βi+1 · · · βj−1αj

4th component

⊥ · · · ⊥
βi+1 · · · βj−1βj

5th component

Figure 1 Correspondence between components of Ci,j and parts of computation on wi, wj and
wk, where i < j < k.

We can then establish the following important proposition. Consider an infinite sequence283

of words that are pairwise from different equivalence classes as in Lemma 4. We show next284

that we can extract an infinite subsequence with additional structural properties. Perhaps285

the most important property is that Ci,j is the same for all i, j. This subsequence will allow286

us to prove the main lemma.287

I Proposition 8. A binary regular relation R over Σ∗ × Σ∗ is not monadic decomposable288

iff there are infinite sequences {ui}i≥0, {γi}i≥0, and {δi}i≥0 of words over Σ and a quinary289

tuple C over types(R 6∼) such that for each i ≥ 0 it is the case that290

1. |γi| = |δi| > 0,291

2. ui = δ0 · · · δi−1γi,292

3. (ui, uj) ∈ R 6∼, for each j > i, and293

4. Ci,j = C, for each j > i.294

Proof. By Lemma 4, the existence of such sequences directly implies that the relation is not295

monadic decomposable. Assume then that R is not monadic decomposable. By Lemma 4,296

there exists a sequence {vi}i≥0 such that R 6∼(vj , v`) for all j 6= `. It remains to show how to297

construct the three sequences satisfying the additional properties from {vi}i≥0. First, we298

construct an auxiliary sequence {wi}i≥0 in the following way. Let vj be the first non-empty299

word of {vi}i≥0. Denote vj = w′0 = α0. Consider prefixes of vi of length |α0|. Since |α0|300

is finite and the sequence is infinite, there exists a prefix that appears infinitely often by301

the pigeonhole principle. Denote this prefix by β0. Now we consider an infinite subsequence302

{w′i}i≥0 of {vi}i≥0 where w′0 = vj and w′i, where i > 0, has β0 as the proper prefix. We can303
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write w′1 = β0α1 and repeat the procedure. By König’s Lemma, we can always repeat the304

procedure and obtain the desired auxiliary sequence {wi}i≥0 in the limit.305

From Infinite Ramsey’s Theorem, there is an infinite sequence 0 ≤ `0 < `1 < · · · and a306

tuple C ∈ types(R 6∼)5 such that for each 0 ≤ i < j we have C`i,`j
= C. Namely, we consider a307

complete infinite graph with natural numbers as vertices. An edge between vertices i and j308

is coloured with Ci,j ∈ types(R 6∼)5. Now there is an infinite clique coloured with C which309

gives us our infinite sequence 0 ≤ `0 < `1 < · · · .310

We then define the uis, γis, and δis, for i ≥ 0, as follows.311

γ0 = w`0 and γi+1, for i > 0, is the word σ(w`i+1 , |w`i |).312

δi is defined as ρ(γi).313

ui = δ0 · · · δi−1γi, for each i ≥ 0.314

It is easy to see then that ui = w`i and ρ(ui) = δ0 · · · δi−1δi = ρ(w`i), for each i ≥ 0.315

Therefore, {ui}i≥0, {γi}i≥0, {δi}i≥0, and C satisfy the conditions in the statement of the316

proposition. See Figure 2 for a pictorial depiction of the construction. J317

In other words, by Proposition 8, there is a sequence {ui}i≥0 and a C such that for each318

i, j, the runs on R 6∼ are synchronized after (γi, δi), (δi, δi), (δ−1
i γj , δ

−1
i δj), (ε, δ−1

i γj) and319

(ε, δ−1
i δj) have been read. In particular, the runs are synchronized in states of R 6∼γi,δi

, R 6∼δi,δi
,320

R 6∼
δ−1

i
γj ,δ

−1
i
δj
, R 6∼

ε,δ−1
i
γj

and R 6∼
ε,δ−1

i
δj
, respectively.321

u0
u1
u2
u3
u4
u5
u6
...

...

α0

By the
pigeonhole
principle−−−−−−→

u′0
u′1
u′2
u′3...

...

α0
β0
β0
β0

α1

→ · · · →
By König’s
Lemma

w0
w1
w2
w3
w4
w5
w6
...

...

α0
β0
β0
β0
β0
β0
β0

α1
β1
β1
β1
β1
β1

α2
β2
β2
β2
β2

α3
β3
β3
β3

α4
β4
β4

α5
β5 α6

By Infinite
Ramsey’s Theorem−−−−−−−−−−−−→

w`0
w`1
w`2
w`3
w`4
w`5
w`6

...
...

β0
β0
β0
β0
β0
β0
β0

β1
β1
β1
β1
β1
β1
β1

α2
β2
β2
β2
β2
β2
β2

α3
β3
β3
β3
β3
β3

β4
β4
β4
β4
β4

α5
β5
β5
β5
β5

β6
β6
β6
β6

α7
β7
β7
β7

β8
β8
β8

α9
β9
β9

β10
β10

β11
β11

α12
β12 α13

δ0

γ0

δ1

γ1

δ2

γ2

δ2

γ2

δ3

γ3

δ4

γ4
γ5

Figure 2 An illustration of construction of sequence {ui}i≥0 of Proposition 8 in two steps. Here
R 6∼(ui, uj), R 6∼(u′i, u′j) and R 6∼(wi, wj) for every i 6= j. Moreover as C = Ci,j , the sets of states
reachable after each δi and γi are the same (indicated by thick lines).

We can then prove the following crucial result. We assume here that R is a binary regular322

relation over Σ× Σ such that R 6∼ is given as an NFA over Σ× Σ whose set of states is Q.323

We further assume that q0 is the initial state of R 6∼ and F its set of final states.324

I Lemma 9. Relation R is not monadic decomposable iff there are an infinite sequence325

{(xi, yi)}i≥0 of pairs of words over Σ and states q, q′, p, r ∈ Q, such that p ∈ F , it is the case326

that q ∈ R 6∼x0,y0
(q0), and the following statements hold for each i ≥ 0.327

1. |xi| = |yi| and yi is a prefix of both xi+1 and yi+1.328

2. q′ ∈ R 6∼yi,yi
(q0); q ∈ R 6∼

y−1
i
xi+1,y

−1
i
yi+1

(q′); p ∈ R 6∼
ε,y−1

i
xi+1

(q); r ∈ R 6∼
ε,y−1

i
yi+1

(q).329

3. If i > 0, we also have that p ∈ R 6∼
ε,y−1

i
xi+1

(r) and r ∈ R 6∼
ε,y−1

i
yi+1

(r).330



P. Barceló et al. 98:9

Proof. Assume first that R is not monadic decomposable. By Proposition 8, there are331

infinite sequences {ui}i≥0, {γi}i≥0, and {δi}i≥0 of words over Σ and a quinary tuple C over332

types(R 6∼) such that for each i ≥ 0 it is the case that333

1. |γi| = |δi| > 0,334

2. ui = δ0 · · · δi−1γi,335

3. (ui, uj) ∈ R 6∼, for each j > i, and336

4. Ci,j = C, for each j > i.337

We then define a sequence {(xi, yi)}i≥0 such that xi := ui, for each i ≥ 0, and yi is the338

prefix of xi+1 = ui+1 that has the same length as xi = ui, i.e., yi = τ(xi+1, |xi|). Hence,339

yi = ρ(ui) = δ0 · · · δi. Clearly, |xi| = |yi| ≥ 0 and yi is a prefix of both xi+1 and yi+1, for each340

i ≥ 0. We prove next that the sequence {(xi, yi)}i≥0 also satisfies the remaining conditions.341

Before defining q, q′, p, r ∈ Q, let us highlight the intuition why such states exist for342

every i. We can find such states because by our assumption Ci,j = C for each i < j. Further,343

whether q is reachable from q0 is stored in the first component of C. Similarly, the second344

and third components of C allow us to find q′ that is reachable from q0 and such that q is345

reachable from q′. Finally, the fourth component is for checking whether p is reachable from346

q and r, while the fifth component for checking that r is reachable from both q and r.347

Let us define q, q′, p, r ∈ Q as follows.348

q and p are states such that p ∈ F and it is the case that q ∈ R 6∼x0,y0
(q0) and p ∈ R 6∼

ε,y−1
0 x1

(q).349

Notice that such q and p must exist as (x0, x1) ∈ R 6∼, i.e., it holds that R 6∼x0,x1
(q0)∩F 6= ∅,350

and R 6∼x0,x1
(q0) = R 6∼x0,y0

(q0) ◦R 6∼
ε,y−1

0 x1
.351

q′ is a state such that q′ ∈ R 6∼y0,y0
(q0) and q ∈ R 6∼

y−1
0 x1,y

−1
0 y1

(q′). Notice that such a q′ must352

exist. Indeed, since C0,1 = C1,2 = C, we have R 6∼u0,ρ(u0) = R 6∼x0,y0
= R 6∼u1,ρ(u1) = R 6∼x1,y1

.353

This implies that q ∈ R 6∼x1,y1
(q0) = R 6∼y0,y0

(q0)◦R 6∼
y−1

0 x1,y
−1
0 y1

, as we know that q ∈ R 6∼x0,y0
(q0)354

and there must be an intermediate state q′ that is reached after reading (y0, y0).355

We have that r is a state such that356

r ∈ R 6∼
ε,y−1

0 y1
(q); p ∈ R 6∼

ε,y−1
1 x2

(r); and r ∈ R 6∼
ε,y−1

1 y2
(r).357

358

The existence of such state r is not obvious but straightforward; see [5].359

We now prove that q, q′, p, r satisfy all the requirements in the statement of the Lemma.360

By definition, q ∈ R 6∼x0,y0
(q0) and p ∈ F . We can then prove by induction that for each i ≥ 0361

it is the case that362

q′ ∈ R 6∼yi,yi
(q0); q ∈ R 6∼

y−1
i
xi+1,y

−1
i
yi+1

(q′); p ∈ R 6∼
ε,y−1

i
xi+1

(q); r ∈ R 6∼
ε,y−1

i
yi+1

(q);363
364

and, in addition, that for each i > 0 it is the case that p ∈ R 6∼
ε,y−1

i
xi+1

(r) and r ∈ R 6∼
ε,y−1

i
yi+1

(r).365

The base case i = 0 holds by definition. The inductive case is straightforward.366

Let us assume now that there are an infinite sequence {(xi, yi)}i≥0 of pairs of words367

over Σ and states q, q′, p, r ∈ Q that satisfy the conditions stated in the statement of the368

lemma. We prove next that R is not monadic decomposable by showing that there are369

infinite sequences {wi}i≥0, {αi}i≥0 and {βi}i≥0 of words over Σ such that {wi}i≥0, {αi}i≥0,370

and {βi}i≥0 satisfy the conditions stated in Lemma 4.371

We define wi := xi for each i ≥ 0. Furthermore, α0 := x0, β0 := y0, and for each i > 0372

we set αi := y−1
i−1xi and βi := y−1

i−1yi. Clearly |αi| = |βi| > 0 and wi = xi = β0 · · ·βi−1αi,373

for each i ≥ 0. We prove next that (wi, wj) ∈ R 6∼ for each 0 ≤ i < j. Actually, we prove a374

stronger claim: p ∈ R 6∼wi,wj
(q0) and r ∈ R 6∼wi,ρ(wj)(q0), for each 0 ≤ i < j, where as before375

ρ(wj) = τ(wj+1, |wj |) = β0β1 · · ·βj . The claim can be proved by induction. J376
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q0 q′ q p

r

(yi, yi) (y−1
i xi+1, y

−1
i yi+1) (ε, y−1

i xi+1)

(ε, y −
1i
y
i+

1 ) (ε
, y
−

1
i+

1
x i

+
2)

(ε, y−1
i+1yi+2)

Figure 3 Runs in R 6∼ on states q, q′, p and r as defined in Lemma 9. The runs exist for every
i ≥ 0.

The runs as extracted from the sequence {(xi, yi})i≥0 satisfying the conditions of Lemma 9377

are depicted in Figure 3.378

Lemma 9 allows us to reduce the monadic decomposability problem to a set of reachability379

checks on types. With the help of this property, we can then prove Lemma 7.380

Proof of Lemma 7. For each (q, q′, p, r) ∈ Q×Q×Q×Q with p ∈ F do the following.381

Check if there are words w0, v0, w1, v1 such that |w0| = |v0| > 0, |w1| = |v1| > 0, and it382

holds that (i) q ∈ R 6∼w0,v0
(q0), (ii) q′ ∈ R 6∼v0,v0

(q0), (iii) q ∈ R 6∼w1,v1
(q′), (iv) q′ ∈ R 6∼v1,v1

(q′),383

(v) p ∈ R 6∼ε,w1
(q), and (vi) r ∈ R 6∼ε,v1

(q).384

Check if there are words w, v such that |w| = |v| > 0, and it holds that (i) q ∈ R 6∼w,v(q′),385

(ii) q′ ∈ R 6∼v,v(q′), (iii) p ∈ R 6∼ε,w(q), (vi) r ∈ R 6∼ε,v(q), (v) p ∈ R 6∼ε,w(r), and (vi) r ∈ R 6∼ε,v(r).386

If this holds for any such a tuple, then R is not monadic decomposable. Else, R is monadic387

decomposable. It is easy to see that this algorithm can be implemented in NLOGSPACE. J388

We have the necessary ingredients to prove a part of Theorem 1.389

I Lemma 10. Deciding whether a given binary regular relation R is monadic decomposable390

is in NLOGSPACE (resp. in PSPACE), if R is given by a DFA (resp. an NFA).391

Proof. The claim follows from Lemma 7. Namely, from the definition of R 6∼, it follows that,392

if R is given by a DFA, then R 6∼ can be constructed in LOGSPACE. Indeed, this can be done393

as disjunctions, conjunctions and projections can all be done in LOGSPACE and then via394

composability of LOGSPACE transducers we can construct R 6∼ of logarithmic size. (Note that395

the output of a LOGSPACE transducer is of at most polynomial size.) Then by Lemma 7, we396

obtain the decidability of monadic decomposability in NLOGSPACE for R given by a DFA.397

Similarly, if R is given by an NFA, we construct R 6∼ of polynomial size since an NFA398

can be transformed into a DFA using a PSPACE transducer. (Again, the output of a PSPACE399

transducer is of at most exponential size.) Thus monadic decomposability is in PSPACE. J400

5 Deciding monadic decomposability of regular relations401

In this section, we finish the proof of Theorem 1. The remaining component is showing that402

monadic decomposability of n-ary regular relations is decidable in NLOGSPACE for DFA and403

PSPACE for NFA.404

I Lemma 11. Deciding whether a given n-ary regular relation R is monadic decomposable405

is in NLOGSPACE (resp. in PSPACE), if R is given by a DFA (resp. an NFA).406

Proof of Theorem 1. The upper bounds follow from Lemma 11 and the lower bound follows407

from Lemma 5 for NFA and from Lemma 6 for DFA. J408
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In order to prove Lemma 11, we extend Lemma 10 to n-ary relations. Let us first define409

some helpful notation used throughout the section.410

Recall that words of regular relations are padded to be of the same length using ⊥.411

We denote this function by PAD⊥. For example, PAD⊥((a, ε, ab)) = (a⊥,⊥⊥, ab). Let412

us now define a padding function δn that acts slightly differently. Instead of padding the413

words in a tuple to make them of the same length, the new function pads a sequence of414

tuples with tuples where some elements are ⊥. Let us describe δn in more details. Define415

Σn = (Σ⊥)n \ {⊥n}, i.e., an alphabet consisting of n-tuples of letters from Σ⊥, excluding416

(⊥, . . . ,⊥). Now δn : (Σ∗)n → Σ∗n is an injective mapping that uses ⊥ to extend the shorter417

words to the same length as the longest word. For example, δ3 maps (a, ε, ab) ∈ (Σ∗)3 to418

(a,⊥, a)(⊥,⊥, b) ∈ Σ∗3 as follows:419

(a, ε, ab) −→

 a

ε

ab

 −→
a⊥⊥⊥
ab

 −→
a⊥
a

⊥⊥
b

 −→ (a,⊥, a)(⊥,⊥, b).420

421

I Lemma 12. For n ≥ 1, {(x1, . . . , xn, y) | δn(x1, . . . , xn) = y} ⊆ (Σ∗)n × Σ∗n is regular.422

Given an n-ary relation R ⊆ (Σ∗)n and positive integers x1, . . . , xm such that
∑m
i=1 xi = n,423

an m-ary relation Rx1,...,xm ⊆ Σ∗x1
× · · · ×Σ∗xm

can be uniquely determined via the mappings424

δx1 , . . . , δxm
. More precisely, there exists a one-to-one correspondence ∆x1,...,xm

between425

relations R and Rx1,...,xm that maps each (w1, . . . , wn) ∈ R to426

(δx1(w1, . . . , wx1), δx2(wx1+1, . . . , wx1+x2), . . . , δxm(wx1+···+xm−1+1, . . . , wn)) ∈ Rx1,...,xm .427428

For example, a ternary relation R = {(a, ε, ab)} over (Σ∗)3 uniquely determines a binary429

relation R1,2 = {(a, (⊥, a)(⊥, b))} over Σ∗1 × Σ∗2 through the correspondence ∆1,2. For the430

sake of readability, if the integers x1, . . . , xm have a constant subsequence of length k, i.e.,431

xi = xi+1 = · · · = xi+k−1 for some i, we write the relation as Rx1,...,xi−1,xk
i
,xi+k,...,xm

.432

In the following, we shall use Rk to denote the binary relation Rk,n−k induced by R. It433

turns out that being able to check monadic decomposability for binary relations is sufficient434

to check monadic decomposability for general n-ary relations.435

I Lemma 13. Let R be an n-ary regular relation and let R1, . . . , Rn−1 be the induced binary436

relations. Then R is monadic decomposable iff R1, . . . , Rn−1 are monadic decomposable.437

Proof. Define δi(S) = {δi(s1, . . . , si) | (s1, . . . , si) ∈ S}. The only-if part of the lemma is438

immediate, since R =
⋃
iXi,1 × · · · × Xi,n implies that Rk =

⋃
i δk(Xi,1 × · · · × Xi,k) ×439

δn−k(Xi,k+1×· · ·×Xi,n) for 1 ≤ k ≤ n−1, namely, R1, . . . , Rn−1 are monadic decomposable.440

To see the other direction, we say that an n-ary relation R is k-decomposable if the441

induced k-ary relation R1k−1,n−k+1 of R is monadic decomposable. Now it suffices to442

show that R is n-decomposable since R = R1n . We shall prove this by induction on443

k ∈ {2, . . . , n}. Note that R is 2-decomposable by the assumption that R1 is monadic444

decomposable. For 2 ≤ k ≤ n− 1, suppose that Rk =
⋃
j Aj ×Bj and R is k-decomposable,445

say R1k−1,n−k+1 =
⋃
iXi,1 × · · · ×Xi,k−1 × Yi. Then R is (k + 1)-decomposable as we have446

R1k,n−k =
⋃

i

⋃
j
Xi,1 × · · · ×Xi,k−1 ×Ai,j ×Bj ,447

448

where Ai,j = {x ∈ Σ∗ | ∃x1 ∈ Xi,1 · · · ∃xk−1 ∈ Xi,k−1. δk(x1, . . . , xk−1, x) ∈ Aj}, i.e., Ai,j is449

the projection of δ−1
k (Aj) ∩ (Xi,1 × · · · ×Xi,k−1 × Σ∗) on the k-th component. Note that450

δ−1
k (Aj) is regular since Aj and {(x1, . . . , xk, y) | δk(x1, . . . , xk) = y} are regular (cf. [8]).451

Hence Ai,j is also regular. The claim that R is n-decomposable then follows by induction. J452
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Proof (sketch) of Lemma 11. To prove the lemma, we show that if R is regular, then so453

are the induced relations R1, . . . , Rn−1. Moreover, given the automaton of R, one can454

construct the automaton for each Ri in logarithmic space from R. We then check if each Ri455

is monadic decomposable for i = 1, . . . , n− 1. From Lemma 10 the latter is in NLOGSPACE456

(resp. PSPACE), and thus the whole procedure is in NLOGSPACE (resp. PSPACE) if R is given457

by a DFA (resp. an NFA). J458

6 Concluding Remarks459

Monadic decomposability for rational relations (and subclasses thereof) is a classical problem460

in automata theory that dates back to the late 1960s (the work of Stearns [33] and Fischer and461

Rosenberg [19]). While the general problem is undecidable, the subcase of regular relations462

(i.e. those recognized by synchronized multi-tape automata) provides a good balance between463

decidability [25, 12] and expressiveness. The complexity of this subcase remained open for over464

a decade (exponential-time upper bound for the binary case [27, 28], double exponential-time465

upper bound in the general case [12], and no specific lower bounds). This paper closes this466

question by providing the precise complexity for the problem: NLOGSPACE (resp. PSPACE)467

for DFA (resp. NFA) representations.468

Some perspectives from formal verification and future work: Researchers from469

the area of formal verification have increasingly understood the importance of the monadic470

decompositions techniques, e.g., see [38]. Directly pertinent to monadic decomposability of471

regular relations is the line of work of constraint solving over strings, wherein increasingly472

more complex string operations are needed and thus added to solvers [36, 3, 26, 1, 13, 2, 14].473

As an example, let us take a look at the recent work of Chen et al. [14], which spells out474

a string constraint language with semantic conditions for decidability that directly use the475

notion of monadic decomposability of relations over strings. Loosely speaking, a constraint is476

simply a sequence of program statements, each being either an assignment or a conditional:477

S ::= y := f(x1, . . . , xr) | assert(g(x1, . . . , xr)) | S;S478
479

where f : (Σ∗)r → Σ∗ is a partial string function and g ⊆ (Σ∗)r is a string relation. The480

meaning of a constraint is what one would expect in a program written in a standard481

imperative programming language, which should support assignments and assertions. Note482

that loops are not allowed in the language since their target application is symbolic executions483

(e.g. see [11]). They provided two semantic conditions for ensuring decidability, one of which484

requires that each conditional g is effectively monadic decomposable. There is evidence485

(e.g. [21, 14]) that some form of length reasoning in g is indeed required for many applications486

of symbolic executions of string-manipulating programs, but much of the length constraints487

could be (not yet fully automatically) translated to regular constraints. A potential application488

for our results is therefore to provide support for complex string relations for g in the form489

of regular relations, which permit a rather expressive class of conditionals (e.g. some form of490

length reasoning, etc.). Despite this, this application also highlights what is currently missing491

in the entire literature of monadic decomposability of rational relations: a study of the492

problem of outputting the monadic decompositions of the relations, if monadic decomposable.493

(In fact, this is also true of other logical theories before the recent work of Veanes et al. [38].)494

What is the complexity of this problem with various representations of recognizable relations495

(e.g. finite unions of products, boolean combinations of regular constraints, etc.)? Although496

our results provide a first step towards solving this function problem, we strongly believe497

this to be a highly challenging open problem in its own right that deserves more attention.498
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