
22 Inspired Research: News from the Department of Computer Science, University of Oxford

Strings have been a fundamental data
type in programming languages since
the inception of Computer Science.
This is true now more than ever with
the past decade having witnessed
the rapidly growing popularity of
scripting languages (for example
JavaScript, Python and PHP).
JavaScript, for instance, was ranked
as the most used programming
language worldwide ever by back-
end developers in a recent developer
survey conducted by Stack Overflow.

Programs written in scripting
languages tend to make heavy use
of string variables, which are difficult
to reason about and could easily
lead to programming errors. In some
cases, such mistakes could have
serious security consequences. For
example, in the case of client-side

web applications, cross-site scripting
(XSS) attacks could lead to a security
breach by a malicious user.

The top ten classes of web
application security vulnerabilities
today include XSS, based on
OWASP’s (Open Web Application
Security Project) most recent studies.
These vulnerabilities are typically
caused by improper handling of user
inputs and submitted requests (in the
form of strings, for example ‘Donald
Duck’) by the web applications.

The goal of the project ‘Algorithmic
Verification of String Manipulating
Programs’ (for which I am the
Principal Investigator) is to develop
a constraint language for reasoning
about how strings are manipulated
in a program, along with decision

procedures for automating this
reasoning. For instance, the boxed
example below requires us to
have logic for reasoning about
concatenation and finite-state
transductions applied to strings.
This is a challenging problem in both
theory and practice since it requires
us to solve some long-standing open
problems about constraint solving
over strings in the most general case.

The European Research Council is
funding the project (November 2017
to October 2022), which aims to make
scientific advances towards this in
both theory and tool implementation,
and apply the results to challenging
real-life problems, including the
analysis of XSS vulnerabilities in web
applications.

Automated
verification of
string-manipulating
programs

Programs written in scripting languages with heavy use of string variables can easily lead to
programming errors, with potentially serious security consequences. A new project will tackle
these issues by developing algorithms to analyse how strings are manipulated in a program,
and decision procedures to automate this reasoning. Professor Anthony W Lin explains.

The following JavaScript code snippet is adapted from
the paper ‘Securing the tangled web’ by Christopher
Kern in 2014.

var x = goog.string.htmlEscape(cat);
var y = goog.string.escapeString(x);
catElem.innerHTML = ‘<button onclick= “createCatList
(\’’ + y + ‘\’)”>’ + x + ‘</button>’;

The code creates a DOM element catElem by
assigning HTML markup. The value for the category
cat is provided by an untrusted third party. The code
attempts to first sanitise the value of cat. This is done
via the Closure Library, string functions, htmlEscape
and escapeString. Inputting the value ‘Flora & Fauna’
into cat gives the desired HTML markup:

<button onclick=”createCatList(‘Flora & Fauna’)
”>Flora & Fauna</button>

On the other hand, inputting the value ‘);attackScript()
;// into cat, results in the HTML markup:

<button onclick=”createCatList(‘');
attackScript();//’)”>');attackScript();//’)</button>

When this is inserted into the DOM via innerHTML,
an implicit browser transduction will take place,
ie, first HTML-unescaping the value inside the
onclick attribute and invoking the attacker’s script
attackScript() after createCatList. This subtle XSS
bug (a type of mutation XSS) is due to calling the
appropriate escaping functions in the wrong order.

Example of an XSS vulnerability

