Parikh Images of Grammars: Complexity and Applications

Eryk Kopczynski
Institute of Informatics, Warsaw University

Abstract—Parikh’s Theorem states that semilinear sets are
effectively equivalent with the Parikh images of regular lan-
guages and those of context-free languages. In this paper,
we study the complexity of Parikh’s Theorem over any fixed
alphabet size d. We prove various normal form theorems
in the case of NFAs and CFGs. In particular, the normal
form theorems ensure that a union of linear sets with d
generators suffice to express such Parikh images, which in
the case of NFAs can further be computed in polynomial
time. We then apply apply our results to derive: (1) optimal
complexity for decision problems concerning Parikh images
(e.g. membership, universality, equivalence, and disjointness),
(2) a new polynomial fragment of integer programming, (3)
an answer to an open question about PAC-learnability of
semilinear sets, and (4) an optimal algorithm for verifying LTL
over discrete-timed reversal-bounded counter systems.

Keywords-Parikh Images, Automata, Grammars, Normal
Form, Algorithms

I. INTRODUCTION

A semilinear set is any subset of N? that can be described
as a finite union of linear sets over N¢ of the form {vg +
S i g, ...,y € N} for some offset vg € N¢ and
generators vy, . ..,v,, € N% Parikh’s Theorem — one of
the most celebrated theorems in automata theory — states
that semilinear sets are effectively equivalent with the sets
of letter-counts (a.k.a. Parikh images) of regular languages
and those of context-free languages [Par66].

In this paper, we study the complexity of Parikh’s The-
orem adopting nondeterministic finite automata (NFA) and
context-free grammars (CFG) as representations of regular
languages and context-free languages (respectively). Our
motivations originated from the multitude of applications of
Parikh’s Theorem in automata theory (e.g. decision problems
for semilinear sets and Parikh images of regular/context-free
languages [Esp97], [Huy80], [Huy84], [Huy85], [Huy86]
such as membership, universality and inclusion), the verifica-
tion of well-known subclasses of Minsky counter machines
[DIBKSO00], [Esp97], [GMTO09], [GI81], [Iba78], [TL10],
[Yen96], automata and logics over unranked trees with
counting [BM99], [SSMO07], and equational Horn clauses
[VSS05], among many others. While there is a simple
polynomial-time translation from a given semilinear set
S (where numbers are given in unary) to an NFA or a
CFG whose Parikh image represents .S, the reverse (more

This extended abstract is a merge of [Kop10] and [To10]

Anthony Widjaja To
School of Informatics, University of Edinburgh

important) direction is not yet fully understood. All known
translations from NFA and CFG to semilinear sets (e.g.
see [Esp97], [Koz97], [Par66], [VSS05] and the references
therein) yield at least exponentially many linear sets. It was
not clear whether (and perhaps, to what extent) such an
exponential blow-up can be avoided.

Contributions

The main contributions of this paper are various “normal
form theorems” for Parikh images of NFAs and Parikh
images of CFGs, along with their applications for obtaining
optimal algorithms for dealing with Parikh images of NFAs
and CFGs, and computational problems in many different
areas of theoretical computer science. For an underlying
alphabet ¥, we show that linear sets with at most |X|
generators always suffice to compose such Parikh images.
This is a fact that was known only for || = 1 [Ram05] and
for |X| = 2 [Abe95], but was open for larger alphabet size
(see [Abe95])).

In the case of NFAs with n states and fixed alphabet size,
we give a polynomial-time algorithm (exponential in |X|)
for computing such Parikh ima%es, each of whose linear
sets is of the form S = {vo+ >, | v; t a1, ..., 0 € N}
with k < |X| satisfying the linear independence property: if
v € S, then the witness a7, ...,a, € N for this is unique.
This fact is already known in the case of || = 1 as Chrobak-
Martinez Theorem' [Chr03], [Mart02], but was open in the
case of |X| > 1. Notice that the linear independence property
allows us to check whether a vector v is a member of
the linear set by using the standard Gaussian-elimination
algorithm, which can be implemented in polynomial-time.
Our result in fact holds also for linear grammars, which are
a more expressive formalism than regular languages and to
which NFAs can be translated in polynomial time. We also
consider a somewhat unusual extension of these automata
model with negative inputs, for which we show that our
results for NFA still hold. Such an extension is, in fact,
essential for deriving several of our desired applications. On
the other hand, we show that the running time of algorithms
for computing Parikh images of NFAs must have || as an
exponent. This is shown by establishing an infinite family
{A,,} of NFAs, where A,, has n states and its Parikh image
contains Q(n/”1~1) linear sets.

1Unfonunately, there was a subtle error in their proofs, which were
recently fixed in [To09]

We give several applications of our normal form theorem
for NFAs: (1) precise complexity of membership, inclusion,
universality, and disjointness for Parikh images of regular
languages and linear context-free languages in the case of
fixed alphabet size ranging from P to coNP, (2) a new
polynomial fragment of integer programming, (3) an answer
to an open question posed by Abe [Abe95] about polynomial
PAC-learnability of semilinear sets, and (4) an optimal algo-
rithm for LTL model checking over discrete-timed reversal-
bounded counter systems. In most of these cases, the best
previously known complexity was one exponential higher
than the complexity that we derive.

What about the case of general CFGs? In this case, we
show that their Parikh images could have exponentially
many linear sets even over unary alphabet, i.e., |X| = 1.
Despite this, in the case of d := |X| € {1,2}, we show that
the Parikh image of a CFG G can be expressed as finite
union of linear sets with d generators (whose magnitude
is exponential in ||G/||), which can be further grouped into
polynomially many “bundles” such that each linear set in
each bundle shares the same generator(s) (we call these
bundles A, B-frames). In the case of d > 2, such a normal
form is shown to be impossible even for d = 3. In spite
of this, we show that for any fixed d > 2 we can divide
N? into smaller regions, in each of which the number of
A, B-frames is polynomial.

As an application of our normal form theorems for CFGs,
we derive precise complexity for membership, universality,
inclusion, and disjointness for Parikh images of CFGs over
fixed alphabet ranging from NP to the second level IT5 of the
polynomial hierarchy (previously, their known complexity
was one exponential higher). These results can, in turn, be
applied for deriving an optimal complexity for reachability
equivalence for communication-free Petri nets in the case of
fixed number of places.

Related work

It is of course well-known that semilinear sets also coin-
cide with subsets of N¢ expressible in Presburger arithmetic
[GS66] (i.e., first-order logic over (N, +)). Such an alter-
native representation has indeed been fruitfully exploited.
In fact, using a technique developed by Esparza [Esp97],
Verma et al. [VSSO5] has given a linear translation from
context-free grammars (equivalently, pushdown automata) to
the NP-complete existential fragment of Presburger arith-
metic expressing their Parikh images. Such a translation has
been used to derive optimal algorithms for equational Horn
clauses [VSS05] and can be used to provide an optimal
complexity for membership for Parikh images of NFAs
and CFGs over non-fixed alphabet size. For applications
requiring Parikh’s Theorem over fixed alphabet size, the
translation cannot be immediately applied for producing
optimal complexity. For example, even when the input is an
NFA over a unary alphabet, the translation does not produce

a formula in a known polynomial fragment of Presburger
arithmetic.

Merging note

This extended abstract is a merge of [Kop10] and [To10].
Both authors independently discovered the normal form
theorem for Parikh images of NFAs and semiliner sets
with different techniques. An extension of this theorem
to incorporate negative inputs and semilinear sets over all
integers was proven in [Tol0], which was also observed
in [Kopl0]. We are grateful to the referee who pointed
out that our results directly extend to linear grammars. In
addition, the author of [KoplO] derived the two normal
form theorems for CFGs. In this extended abstract, we
follow the presentation of [Kop10]. To make our presentation
coherent, we extend the proof of [KoplO] to incorporate
an extension of the first normal form theorem to automata
models with negative inputs. [For another proof of this
fact, see [Tol0].] In addition, both authors independently
discovered the application of the first normal form theorem
for deciding membership of Parikh images of NFAs with
fixed alphabet size, along with the lower bound for the case
of unfixed alphabet size and CFGs with singleton alphabet.
Applications to the problem of universality, inclusion, and
disjointness as well as extesions to CFGs with fixed alphabet
size were derived in [Kopl0]. Other applications (integer
programming, etc.) were given in [To10].

Organization

The paper is organized as follows. In Section II, we begin
with some basic results concerning geometry of multisets.
Section III provides some basic results concerning commuta-
tive grammars. In Section IV, we establish our normal form
theorem for linear grammars. In Section V, we provide our
normal form for CFGs of alphabet of size 2, which we show
does not extend to alphabet of size 3. Section VI gives our
normal form for CFGs of any fixed alphabet size. In Section
VII, we give applications of our results.

II. GEOMETRY OF MULTISETS

We denote the set of non-negative integers by N, all
integers by Z, non-negative rationals by P, all rationals
by @Q, and real numbers by R. We use PP for non-negative
rationals instead of the more standard Q to avoid double
upper indexing, as in (Q7)X. We use the notation [K..L]
for the set of integers from K to L, and [K; L] for the set
of rationals from K to L.

For F C R, F¥X is the set of vectors with coordinates
indexed by elements of X and coefficients from F. In
particular, the elements of NX are interpreted as multisets

of elements of X. For v € F¥X, |v]ly = >, cx|val,
[[V]]co = maxgex |vz]|- We say u > v iff u, > v, for
each z.

By F¥ we denote the set of matrices with coefficients in
F' and coordinates indexed with elements of X . For a matrix
M e F¥, M*, the i-th column of the matrix, is a vector
in FX. For M € RY and v € RX, Mu is a vector given
by (Mv); =7, M}v;, and ||M|| = maxzex, yex [My].
Thus, for example, [— K..K]§ is the set of matrices M with
integer coefficients such that ||M||, < K.

We can add or multiply sets of scalars, vectors, or matri-
ces, in the usual way. For example, U + V = {u+v:u €
Uyv € V}, and MNX for M € Z% is the set of vectors
which can be obtained as a linear combination of columns
of M with coefficients from N.

By B%4 we denote {3, 5 b : Vb € B ap € A}. A set
of form w + VON, where w € Z* and V is a finite subset
of Z*, is called a linear set.

Lemma 1 Let M be a non-degenerate matrix in Z%, and
let v € Z*. Then (det M)v € MZ*.

Proof: Immediate from the well known Cramer’s rule. B

Definition 2 An A, B-frame is a set of form W + MNZ,
where W C [—A..A]®, and M € [-B..B]%.

The following picture shows geometrically what an A, B-
frame is for |X| = 2: a set W sitting inside of a box of size
A (drawn as the letter W) is copied by shifting it in |X| = 2
directions. The vectors by which we are shifting are bounded
by B.

W

Our normal form theorems will present Parikh images
of grammars as unions of a small number of A, B-frames.
Although the A parameter is sometimes still large, such
presentation has better properties than the usual semilinear
set presentation; see Lemma 17 below for an example.

III. COMMUTATIVE GRAMMARS

Since in this paper we don’t care about the order of
symbols in strings generated by our grammars, we define our
grammars commutatively: a state (nonterminal) produces a
multiset of letters and states, not a string.

Derivation trees are defined for commutative grammars
similarly as for the usual ones; we omit this definition.
However, we usually also abstract from derivation trees, by

considering our runs as multisets rather than trees: we don’t
care where in the tree each transition (production) has been
used, we just count the total number of occurences. We show
that there is a simple condition which checks whether our
multiset corresponds to some full derivation, or a ,,cyclic”
derivation. (A similar algebraic definition of cycles is used
by the algebraic topologists.)

We will also allow productions in our commutative gram-
mars to produce negative quantities of terminal letters.
While this does not make much sense for non-commutative
grammars, it is very natural for commutative ones. Allowing
negative productions does not increase the complexity of
some of our proofs; indeed, some constructions can be made
simpler when using them. Disjointness of images of two
commutative regular grammars can be reduced to checking
membership of 0 when negative outputs are allowed. The
counterexample from Section V was also first constructed
with productions with negative outputs (actually, the original
construction even had productions with negative quantities
of states (non-terminals) on the right side, which in general
does not have a natural meaning; in this particular case,
negative quantities of both terminals and states were easy to
,,normalize”).

A commutative grammar is a tuple G = (3, S, s¢,),
where ¥ is a finite alphabet, S is a finite set of states,
So € S is an initial state, and § C S x Z¥ x N° is a set
of transitions. We will write transitions (s,a,t) as s 5 t;
in terms of derivations, each transition consumes the state s
and produces each letter from a and each state from ¢. For
a transition 7 = s % ¢, source(7) = s, target(r) = t, and
P(r) = a.

We will assume that each state is a source of some
transition. Since we want to limit things produced by the
grammar in term of |S|, we will also assume that for each
s 5t €4, |lally <1 and |[t|]]; < 2. (Grammars not
satisfying these conditions can be easily transformed by
adding additional states.) A commutative grammar satisfying
[lt|][1 < 1 is called a regular commutative grammar;
regular grammars are equivalent to non-deterministic fi-
nite automata, with initial state sy and transitions with
target(7) = 0 as transitions to the final state—we prefer
to speak about regular grammars rather than NFAs for the
sake of uniformity. Observe also that linear grammars treated
commutatively are in fact regular commutative grammars.
A commutative grammar satisfying ¢ > 0 (that is, never
producing negative quantities of terminal letters) is called
positive.

For a D € N?, source(D) € N¥ counts how many each
state appears as source of a transition: source(D)(s) =
> risource(r)—s P(7), and P(D) and target(D) counts how
many each letter and each state, respectively, is produced:
P(D) = _D(1)P(7), target(D) = >__D(7)target(r).
The support of D, supp(D) = {s € S : s € source(D)}.
We say that D is connected from s € S if for each

t € supp(D) there is a path from s to ¢ in D, ie., a
sequence 7i,...,T, such that 7; € D, s = source(ry),
source(7;4+1) € target(r;), t € target(r,,). We say that D
is a cycle from s € S iff it is connected from s and it
satisfies the Euler condition: source(D) = target(D) (in
terms of derivations, each state is consumed as many times
as it is produced). We say that D is run iff it is connected
from s¢ and source(D) = target(D) + {so} (each state is
consumed as many times as it is produced, except sg which
is consumed one time more).

For a commutative grammar G, P(G) =
D is a run in G}.

This definition of a Parikh image of grammar, based on
our algebraic definitions of runs and cycles, which are in turn
based on connectedness and Euler condition, gives the same
set as the usual one, based on derivation trees. The theorem
below is a corollary of Theorem 3.1 from [Esp97]; a proof
can also be found in [Kopl0]. For regular grammars, it is
equivalent to the classic theorems of Euler characterizing
graphs with Eulerian paths and cycles.

{P(D)

Proposition 3 Let G be a commutative grammar. Then:

e D is a run iff there is a derivation tree from sy where
each transition T appears D(T) times, and all the
branches are closed (i.e., they end with terminals).

e D is a cycle from s iff there is a derivation tree from
s where each transition T appears D(7) times, and all
the branches are closed except one with the state s at
its end (we call such derivation tree cyclic).

A cycle is called a simple cycle iff it cannot be de-
composed as a sum of smaller non-zero cycles, and a run
D is called a skeleton run if it cannot be decomposed
as a sum of a run D; and a non-zero cycle C, where
supp(D;) = supp(D). For each state s € S, let Cs be the
set of simple cycles from s, and Cpr = UseT Cs,forT C S.
Also, let Yy = P(Cs), and Yr = U, Vs (cycle outputs).

Lemma 4 Let G be a commutative grammar over 3. If D is
a simple cycle or a skeleton run, then P(D) = O 2‘S|O(l)).

If G is a regular grammar, then ||P(D)||1 < |S| for simple
cycles, and ||P(D)|| < O(|S|?) for skeleton runs.

Proof: We start with the cycle case. We consider its
cyclic derivation tree from Proposition 3.

If somewhere on the branch leading to s (the main branch)
we had another s, we can easily split our cycle into two
cycles (by splitting the derivation tree). A similar thing can
be done if we had some state ¢ in two places on the main
branch.

A similar operation can be done when we find the same
state twice on the side part of a branch (i.e. the part disjoint
with the main branch).

Since we can use each state at most twice on each branch
(once on the main part and once on the side part), this limits
the size of a simple cycle to exponential in size of G.

The construction for skeletons is similar. Indeed, consider
a skeleton run. If a state s appears |S| 4+ 1 times on a
branch of the production tree, it means that there exist two
successive appearances of s on this branch such that the part
of the tree between them can be cut off without removing
any state from the support of this skeleton (otherwise each
such state would have to be different and we would have
|S| + 1 states in total).

In case of regular grammars, we use the same methods,
except that there are no side branches, and thus we obtain
better bounds. []

[Kop10] contains a generalization of the part regarding
regular grammars, which has been obtained purely using
commutative methods (that is, the Euler condition itself).
This generalization allows obtaining Theorem 8 below in a
simpler way for alphabets of size 2.

IV. NORMAL FORM FOR COMMUTATIVE REGULAR
GRAMMARS

In this section we derive our normal form theorems for
semilinear sets and regular grammars.

Lemma 5 Let V C [~ K..K|* be a linearly dependent set
of vectors. Then for some o € ZV we have Y vev @t =0,

where ||a|oo < K‘E||E||E‘/2, and o, > 0 for some v.

Proof: Without loss of generality we can assume that
V is a minimal linearly dependent set. Thus, we get
> wev Bov = 0 for some rational coefficients 3 € QV.
Let u be such that |3,| > |B,| for each v. Let M € Zg
be a non-degenerate matrix whose |V| — 1 columns are
V — {u} (we obtain a non-degenerate matrix since V' was
a minimal linearly dependent set; if |V| < |X| + 1, we fill
up the remaining columns with independent unit vectors).
From Lemma 1 we get that |det M|u = Mw for some
weZ> Let ay, = —|det M|, o, = w; where v = M?, and
a, = 0 for remaining vectors. We have that > a,v = 0.
Moreover, we have that for some ¢ € Q we have 3, = qa,
for each v (for a minimal linearly dependent set, (3,) is
unique up to a constant); thus, |a,| < |ay,| = |det M| for
each v. From the classical Hadamard’s bound we know that
|det M| < 2|2, m

Theorem 6 Let V C [—K..K|*. Let i(V) be the set of all
linearly independent subsets of V. Let M = K|2‘|2|‘E|/2.
Then VON = ZW@-(V)(V@O“M] + WON). In particular,
a linear subset of 7=, where |Y| is fixed, is a union of a
polynomial number of A, B-frames, where both A and B
are polynomial.

Proof: ~We will prove that V&N -
Sweiy(VEO-M 4 WEN) the other inclusion s
obvious. Let w =)y, 7,v, where 7, € N.

Let P C V be set of vectors v for which ~, > M. If
P € i(V), we are done—we have already expressed w in
the required form. Otherwise, by Lemma 5, Zv ep v =10
for some (Vy), |7»| < M, and +,, > 0 for some u € P. This
allows us to transfer multiplicites between different cycles: if
we take ., = 7, —may, for v € P, and v, = =, for v ¢ P,
we have > v,v = >, v,v. We perform this transferring
operation for the largest m which does not drop any v’ below
0. Since for some v we have v, —(m+1)a, = v, —a, <0,
and o, < M, we have v, < M. Thus, after replacing with
~', the set P loses one element. We repeat this operation
until P € (V). [|

As a corollary, we get the following normal form for
Parikh images of regular grammars:

Theorem 7 Let G be a regular commutative grammar,
and K € N*. Then K € P(G) iff there exists a run
D in G, ||D|le = O(|S|2‘E||E|IEV2), and simple cycles
Cr,...,Cn, Ci € Coupp(p), such that C; are linearly
independent and K = P(D) + >, «'P(C;) for some

al, ..., a™

Proof:

Let Dy be a run in G such that K = P(Dy). We
decompose the run Dy into a sum of simpler runs (on
the same support) and simple cycles, until we get Dy =
Dy + ZCeCsuppw)*yCC’, where D, is a skeleton. From
Lemma 4 we get that ||Ds||oc < |d]. By taking P’s, we
get K = P(Dy) + ZYeys.,ppwo) vvY, where vy € N for
each Y.

Let P C Vsupp(D,) be the set of such cycle outputs ¥’
that vy > L for L = |S|‘Z||Z\|E|/2. From Theorem 6 we
get that K can be decomposed in a way such that P is
linearly independent.

Let Dy = Do+ 3 yey, 0,y —p Y- Since [Doflo =

O(|S[°), 7y < L. and there are at most O(|S|‘E|) distinct
simple cycle images in Vsupp(p,) (since they are bounded
by O(|S|)). we get that || Dy|s < O(L |S|!). Now, K =
D+ ZYGP wY. | |

Theorem 8 Let G be a regular commutative grammar. Then
P(QG) is a union of a polynomial number of A, B-frames,
where A = ||D||s and B = |S|. Moreover, we can compute
these A, B-frames in polynomial time.

Proof: Let a short cycle be a cycle C such that
[|C]l1 < |S|. Let C. be the set of all short cycles for the
given grammar G, and Y, = P(C.). The set)’ for each state
s can be calculated using simple dynamic programming.
Indeed, let A(s,t,i) be the set of outputs of paths from
s to t of length i. For ¢ = 0 we have A(s,t,0) = {0}

for s = t, and an empty set otherwise. We also have
A(s,u,i +1) = 32 ~A(s,t,i) + a. We use these
formulas to calculate sets A(s,t,7) for each ¢ by induction;
these sets are bounded polynomially.)’ is then a union of
A(s, s,1) for i <|S].

For each T C S of size at most |X|, let Wy be the
set of Parikh images of runs D such that 7' C supp(D),
and ||D||s satisfies the limit from Theorem 7. Again, we
can calculate Wr using a similar dynamic programming
algorithm (we try all possible orderings of elements of T
on the path; for each ordering, we take the sum of the
appropriate A(s,t,1) sets).

For each T' C S of size at most ||, and each sequence
Y;...Y,, of linearly independent elements of y’T, take the
A,B-frame given by W and a matrix whose columns are
Y:...Y,, (f m < |X]|, we fill the remaining columns with
zeros). Let U be the union of these A, B-frames.

It is easy to show that U C P(G). The other inclusion,
P(G) C U, follows from Theorem 7 and Y5 C V.. Note
that we could not use the sets), directly, since calculating
them is NP hard (by reduction of the Hamiltonian circuit
problem). []

It turns out that Theorem 8 does not hold for NFAs over
unbounded alphabet size and CFGs over unary alphabet,
even in descriptional complexity sense.

Proposition 9 For each fixed positive integer d, there exists
a sequence { Ay, 41525 of deterministic finite automata A,, 4
with n + 1 states over an alphabet of size d whose Parikh
image contains at least Q(n?=1) linear sets.

The automaton A, 4
me, (Ug'l:l ai), where here II stands for language
concatenation. We can then show that P(L(A, q)) has

Q(n=1) linear sets. For more details, see [To10].

recognizes the language

Proposition 10 There exists a small positive constant ¢ and
a sequence {G,,}>2, of CFGs G, of size at most cn, over the
alphabet ¥ := {a} whose Parikh image contains precisely
2" linear sets.

This is done by a modification of the technique from
[PSWO02] of succinct encoding large numbers. Our CFG
G, contains nonterminals S, {A;}7~', and {B;}?=), and

consists precisely of the following rules:

S

— Ag...An_1
A; — € foreach0<i<n
A; — B; foreach0<i<mn
B, — B;_1B; 1 foreachO<i<n
By — a

The initial nonterminal is declared to be S. It is not hard to
show that this gives the desired CFG.

V. NORMAL FORM FOR COMMUTATIVE GRAMMARS
OVER BINARY ALPHABET

Theorem 11 Let ¥ = {a,b}, and G be a positive com-
mutative grammar over . Then P(G) = \J,c; Zi, where
1| = O(|S|?), and Z; are A, B-frames, where A, B =
O (215177,

Proof:

Let D be arun of G, and T = supp(D). For Y € Y, let
b(Y) =Y,/||Y||1; let M(T) be the matrix whose columns
M® and M? are the elements of YV with the smallest and
largest b(Y"), respectively. We have ||M || = O (2‘5‘0(1))

from Lemma 4. There are at most |S|?> possible matri-
ces M(T). Let R(M) be the set of runs D such that
M (supp(D)) = M. We will show that P(R(M)) is of
form Wy, + MN>.

We decompose D as Do + ZCECT acC, where Do
is a skeleton. Thus, P(D) is decomposed as P(Ds3) +
Yyveyy Y + M®B, + M3y, where 3, € N, ay € N.
We can assume that each «y < det M, because other-
wise we can replace (det M)Y by q,Y* + ¢ Y, where
Ga,qy € N (the coefficients are integers from Lemma 1
and non-negative since Y* and Y? are extreme cycles).

Each Y and P(D) is O (2‘5|O(1)) from Lemma 4, and
there are O 9ls7® ossible Y’s, thus D3 = P(Dsy) +
p

Yvey, ayY satisfies || Dsl|oo = O (2|S|O(U :
By taking for W3, the sets of possible D3 for all runs
from R(M), we get the required conclusion.]
In this proof, we have used some properties which hold
only for two letter alphabets (i.e., existence of extreme cy-
cles). This was necessary — Theorem 11 does not generalize
straightforwardly to larger alphabets.

Theorem 12 There exists a sequence of context-free gram-
mar (G,,) over {x,y,z} such that G, is of size O(n), and
P(Gy) is a union of Q(2™) A, B-frames.

The construction and its proof of correctness are non-
trivial; see [Kop10]. We will present the general idea of the
construction. Consider the following grammar.

S — 0 | SABCDE:
A — B? | C?D?E’xy
B — (C? | D?E%z%
C — D? | E%x'ly

D — E? | 2%

E — 0 | 2%y

The state S generates any number of 2’s together with
the same number of ABCDE’s. ABCDE generates a
convex 32-gon on the surface N{#¥} (we get 32 corners
by deciding which transition always to use for each of

five states A, B, C, D, E; they are points with coor-
y(y+1)

dinates (©%5—,y) for y € [0..31]). Since we generate
2™ together with (ABCDE)", P(G) is a cone (i.e., a
unbounded pyramid) with 32 edges (each edge is the line
{(%, zy,z}) : z € R} for some y), and hence we need
more than 16 three-dimensional A, B-frames to cover P(G).
This example generalizes to any number of states (bigger
examples are constructed using the same simple rule as the
example above) — we need more than 2"~2 A, B-frames
for a grammar with n states and two transitions for each
state. Note that it is quite easy to write this grammar in the
limited form we use in this paper (i.e., for each derivation
all1 <1, |||l < 2) using O(n) states.

a
s —t,

VI. NORMAL FORM FOR COMMUTATIVE GRAMMARS
OVER LARGER ALPHABET

The proof of the generalization Theorem 18 to alphabets
of larger (but still fixed) size is very long and technical. We
had to omit most proofs for space reasons.

In this proof, we will require lots of constants; some
of them are dependant on other. To keep our constants
ordered, and make sure that there is no circular reference be-
tween them, we will name them consistently C;,C5,Cs, . ..
through the whole section; each constant will be defined
in such a way that it will depend single exponentially on
the size of the grammar and/or polynomially on the lower
numbered constants. (Cy and Cy appear only in detailed
proofs and thus do not appear in this paper; we use the same
naming for consistence with the full version.) By induction,
all numbered constants depend single exponentially on the
size of the grammar. As usual, when we say C; is polynomial
in Cj, we assume that the size of alphabet ¥ is fixed. (If |X|
is not fixed, then C; = O(Cf(lz‘)), where p is a polynomial.)

Let Js = {z € R® : 2 >0, ||z]; = 1}.

Let F, C [0..C5]% (ie., a set of some linear functions
over N* with integer coefficients up to C5) be such that for
each set of |Z| — 1 vertices V' C [0..C1]%, there exists a
non-zero f € F¢, such that fV = 0. This can be done with
C'5 polynomial in Cj.

Let Lo, = {0,C3}* be the set of vertices of the
hypercube of dimension || and edge length Cj.

Let R(Cy,C3) be the set of functions from Fg, x L¢,
to {—1,0,1}.

Forar € R, let

_ > Vf e F(11Vl € L03
reg(r) = {’U e N~ : sgn(fv 7 fl) =7 }
_ > . vf S F01VZ S LC’g
Reg(r) = {v e R*: sen(fv— fl) € {0,rpa} |
x> 0,2 #0,
T(r) = {zeR¥: VfeF,VI€ Lg,

sgn(fz) € {0,751}
The following picture (Figure A) shows what Jyx, and
7(r) N Jx look like for C; = 2 and |¥| = 3. (If t € 7(r),

then also xt € 7(r) for > 0; thus, a cross of 7(r) and Jy
gives us information about the whole 7(r).)

Figure A

The big equilateral triangle is Jx. The 19 small white
circles are points v/||v||; for v € [0..C1]*. We connect each
pair of points with a line; these lines correspond to elements
of F Cy-

For each r, 7(r) N Jx is a part of the triangle defined
by their relationship with each line (above, below, or on
the line). Thus, each 7(r) is either an empty set, or one of
the points where lines cross (including the 19 circles), or
a line segment between two consecutive points where the
lines cross, or a polygon bounded by lines.

The next picture shows the subdivision of R* into regions
(reg and Reg) for |X| = 2 and Cy = 3; C5 is the size of the
dark square in the bottom left corner. Lines shown on the
picture are boundaries between regions. They are grouped
in bundles—each bundle corresponds to different element of
F¢,. Lines in each bundle correspond to different elements
of LCg‘

%’/7/
"z

There are several types of regions: bounded ones, 8 un-
bounded regions in angular shapes (between two consective
bundles of lines — there are 9 bundles of lines because
vectors in [0..3]¥ go in 9 directions), and unbounded strip-
shaped regions between semi-lines in the same bundle. It
can be easily calculated that each point where bundles of
lines going in different directions cross has its coordinates
bounded polynomially (by O(AB?)), and thus for region
Reg(r) we can find a polynomially bounded v’ € Reg(r).
Moreover, for each v € reg(r) and each C4 we can find a
polynomially bounded v’ € reg(r) such that v—v' € C4Z*.

This observation is generalized in the following lemma,
whose proof is very technical.

Lemma 13 Let C1,C3,Cy € N. There exist constants Cy
polynomial in C1, and Cg polynomial in C1, Cs and Cy,
such that for each r € R(C1,Cs3), for each v € reg(r), if
[|[v||oo > Cs, then v = vy + Cyt, where t € 7(r) N [0..C7]*
and vy € reg(r). Also, for each v € reg(r) there is a v' €
reg(r) such that ||v'|| < Cs and v —v' € C4Z*.

Another fact we need is a polynomially bounded sep-
aration property for disjoint convex sets in R*. It is a
well known property of convex sets that two disjoint closed
convex polygons in affine space can be separated strictly
with a hyperplane. In our case, the space is Jx, the polygons
are its intersections with P9 and Q®F, and we need a
polynomial bound for coefficients of the hyperplane.

Lemma 14 Let C; € N. Then there exists Cg polynomial
in C7 such that:

Let P,Q C [0..C7])* such that P®* N Q%% = {0}, and
0¢ P,Q. Thenthereisa ® € le (i.e., a linear function over
N> with integer coefficients) such that ®P > 0, ®Q < 0,
and ||®||oo < Cy.

We use these two lemmas to show that an intersection of
a region and a linear set with bounded offset and periods
can be expressed as an intersection of this region and a
polynomially bounded A, B-frame.

Lemma 15 Ler C'1,C3 € N. Then there exists a constant
Ch1 such that:

Let S = W + YN ywhere W C [0..C5]* and Y C
[0..C1]%. Let r € R(C1,C3). Then there exists a matrix
M e [O..Cl]g and Wy C [0..C11]* such that S Nreg(r) =
(W1 + MN®) Nreg(r).

After applying Lemma 15 to commutative grammars, we
get:

Theorem 16 Let G be a positive commutative grammar,
and let v be a region.

The intersection of P(G) Nreg(r) is an intersection of
reg(r) and a polynomial union of Ch1,Ci-frames, where
Cy1 and C are single exponential in |G)|.

VII. APPLICATIONS
Decision problem for Parikh images

Our normal form theorems lead to efficient algorithms
for the basic problems regarding Parikh images of regular
grammars (equivalently, Parikh images of finite automata)
and (positive) context free grammars (equivalently, Parikh
images of push down automata, or of finite automata on
trees) over an alphabet of fixed size. These basic problems
include deciding membership (check whether v € Z*, where

v is given in binary, is in P(G)), universality (P(G) = Z*?),
inclusion (P(G) C P(H)?), equivalence (P(G) = P(H)?),
disjointness (are P(G) and P(H) disjoint?). The following
table summarizes complexities of these problems. F stands
for alphabets of fixed size, while U stands for alphabet of
unfixed size.

regular languages
alphabet size 1 2 F U
membership P P P NPc
universality | coNPc coNPc coNPc ?
inclusion coNPc coNPc coNPc ?
disjointness P P P coNPc
context-free languages
alphabet size 1 2 F U
membership NPc NPc NPc NPc
universality JNEY ¥ JNEY ?
inclusion ¥c JREYS JNEYS
disjointness | coNPc coNPc coNPc ?

For example, checking membership for Parikh images
of regular grammars boils down to generating the normal
form (Theorem 8) and then checking whether any of the
semilinear sets in the normal form contain v. Since the
normal form uses linearly independent periods for each
semilinear set, this can be done by solving a system of
equations.

Algorithms for problems regarding context free grammars
are based on the following property of unions of a small
number of A, B-frames.

Lemma 17 Let W; C [0..C53]%, M; C [0..C4]% for i € I
Let Z; = W; + M;N>. Then for each v € N* there exists a
v' € N® such that ||v'||« is polynomial in Cy and Cs for
fixed ||, and, for each i, v € Z; iff v' € Z,.

Proof: Assume that the matrices M, are non-degenerate
(the case of degenerate matrices can be solved easily by
changing the matrices).

Let Cy be the least common multiple of determinants of
matrices M;, C = O(C,°U1D),

Let v € N*. Let v’ be the vector v/ from Lemma 13 for
our v and C; We will show that it satisfies our conditions.

It is enough to check whether v € Z' iff v' € Z’ for each
Z' of form wy + M;N¥, where wy € W;.

Since M; is non-degenerate, for some «,a’ € QZ we
have v = wg + M« and v/ = wy + M;a’. Since v’ is in
the same region as v, a > 0 iff @’ > 0. On the other hand,
v—2v € CZ* C (det M;)Z* C M;Z* from Lemma 1.
Thus, v € N* iff o' € N*.]

Theorem 18 Let G and G5 be two commutative grammars
over ¥ = {a,b}. Then the problem of deciding P(G1) C
P(Gy) is TIE -complete.

Proof of Theorem 18: The problem is 15 -hard because
we can reduce the problem of semilinear set inclusion
[Huy80] to it.

We will first show the proof for d = 2.
Using Theorem 11, we can write each P(Gy) as

Uier, ZF, where I} is a polynomial set of indices and ZF
[om

is a A, B-frame, where A and B are O (2'5 .

From Lemma 17 we get that it is enough to check
inclusion on vectors v € N of size [v| < P = O((A +
B)OULIFI2D) We call such vectors small vectors.

A witness for membership of v in a grammar G is a run D
such that P(D) = v. For each small v € P(G) we can find
a small witness for its membership, i.e., one that does not
contain non-productive cycles (i.e., C such that P(C) = 0;
such cycles can be eliminated), and thus it can be described
as a string of length polynomial in size of G.

For each small v, and each small witness of membership
of v in G1, we have to find a small witness of membership
of v in Gs. This can be done in II5.

For d > 2, we have to apply these methods separately for
each region from Theorem 16. []

See [KoplO], [Tol0] for the remaining algorithms and
lower bounds.

An immediate corollary of our result on inclusion of
Parikh images of CFGs over a fixed alphabet is related to the
problem of reachability equivalence for communication-free
Petri nets, which was shown in [Yen96] to be solvable in
double exponential time. In the case of nets with a fixed
number of places, our result gives a substantially lower
complexity.

Theorem 19 Reachability equivalence for communication
free nets with a fixed number of places is 115 -complete.

Integer Programming

Integer programming (IP) is the problem of checking
whether a given integer program Ax = b (x > 0), where
A is an k-by-m integer matrix and b € ZF, has a solu-
tion. It is well-known that this problem is NP-complete.
On the other hand, for ¥ = 1, it is well-known that
there is a pseudopolynomial-time algorithm for this prob-
lem (a.k.a. knapsack problem), which remains NP-complete
under binary representation of input numbers. Furthermore,
Papadimitriou [Pap81] has established a pseudopolynomial-
time algorithm for solving IP, for any fixed £ > 1. Using
Theorem 8, we could show that the problem remains poly-
time solvable (for any fixed k£ > 1) even if the numbers in
b are given in binary (and A in unary).

Theorem 20 Fix an integer k > 0. Given a k-by-m integer
matrix A, where numbers are represented in unary, and a
vector b € 7*, where numbers are represented in binary.
Then, checking whether the integer program Ax = b (x > 0)
has a solution can be done in polynomial time.

Theorem 20 is known to be true when k£ = 1, by solutions
to the Frobenius problem, and has such applications as the
coin problem [RamO05].

Polynomial PAC-learnability of semilinear sets

Valiant’s notion of PAC (Probably Approximately Correct)
learning is a standard model in computational learning
theory [AB92]. In this framework, a learning algorithm is
required to run in time polynomial in the size of the training
sample, and output a hypothesis for an (unknown) target
concept that is as precise as the “user” desires, given any
sufficiently large training sample (but still polynomial in the
reciprocals of approximation/confidence parameters).

The issues of PAC-learnability of semilinear sets have
been addressed by Abe [Abe95]. In particular, learning
semilinear sets of dimension 1 under binary representation of
numbers is shown to be as hard as learning boolean formulas
in DNF, which is (still) a major open question in learning
theory. On the positive side, he shows that semilinear sets of
dimension 1 and 2 can be poly-time PAC-learned when the
numbers are represented in unary. To this end, he established
a normal form lemma for semilinear sets of dimension 2 (in
unary), which is simply a special case of Theorem 8§ for
dimension 2. However, his proof makes use of geometric
facts that are specific to R2. For this reason, he leaves open
the learnability question of semilinear sets in unary over
any fixed dimension k£ > 2 [Abe95, Section 9]. Replacing
Abe’s normal form lemma with Theorem 8 and following
the proof of [Abe95, Theorem 6.1], we can easily deduce
the more general theorem (a sketch is given in [To10]).

Theorem 21 Semilinear sets in unary representation over
any fixed dimension k > 1 can be polynomially PAC-learned
with respect to concept complexity.

Verifying counter systems

Minsky’s counter machines are well-known to be a
Turing-powerful model of computation. In verification liter-
ature, many decidable subclasses of counter machines have
been studied including reversal-bounded counter systems
[GI81], [Iba78], [TL10], and their extensions with pushdown
stacks and discrete clocks [DIBKS00], [TL10]. Intuitively,
r-reversal k-counter systems are simply Minsky’s counter
machines with &k counters, each of which can change from an
incrementing mode to a decrementing mode (or vice versa)
only for a fixed » number of times. Their connection to our
result is due to the use of Parikh’s Theorem for obtaining
decidability (initially used in [Iba78]).

In [TL10], it was shown that model checking Linear Tem-
poral Logic (LTL) over reversal-bounded counter systems
with discrete clocks is solvable in double exponential time,
even when one of the counters is free (not reversal-bounded).
More precisely, if ¢ is the number of clocks, n the number
of states in the finite control, c the size (in binary) of the

maximum number appearing in clock constraints, and ||¢||
the size of the input LTL formula ¢, then model checking
LTL on such systems is decidable in time exponential in n
but double exponential in ¢, k, r, ||¢||, and ¢. This result was
derived by carefully analyzing the complexity of effective
semilinearity of the Parikh images of languages recognized
by reversal-bounded counter machines [Iba78] and replacing
the application of Parikh’s Theorem in [Iba78] by the linear
translation of [VSSO05] from CFGs to existential Presburger
formulas expressing their Parikh images. By replacing the
application of the translation of [VSS05] by Theorem 8 and
not allowing a single free counter, we can easily obtain the
following upper bound.

Theorem 22 Model checking LTL over reversal-bounded
counter systems with discrete clocks is solvable in time
polynomial in n and exponential in ¢, k, r, ||¢||, and t.

It turns out that none of the exponents in the algorithm can
be lowered, assuming the usual complexity assumption (see
[To10]).

ACKNOWLEDGMENT

We thank anonymous referees for their useful comments.
The first author thanks Stawek Lasota for his introduction to
these problems, and to everyone on the Automata Scientific
Excursion for the great atmosphere of research. The second
author thanks Shunichi Amano, Floris Geerts, Stefan Goller,
Filip Murlak, Benjamin Rubinstein, and Tony Tan for their
helpful comments. The first author is supported by the Polish
government grant no. N206 008 32/0810. The second author
is supported by EPSRC grant E005039.

REFERENCES

[Abe95] N. Abe. Characterizing PAC-Learnability of Semilinear
Sets. Inf. Comput. 116(1):81-102 (1995)

[AB92] M. Anthony and N. Biggs. Computational learning
theory: an introduction. Cambridge University Press, 1992.

[BHLW10] P. Barcelo, C. Hurtado, L. Libkin and P. Wood. Expres-
sive languages for path queries over graph-structured data. To
appear in PODS’10.

[BM99] C. Beeri and T. Milo. Schemas for Integration and Trans-
lation of Structured and Semi-structured Data. In ICDT’99,
pages 296-313.

[Chr03] M. Chrobak. Finite automata and unary languages. In
TCS 302:497-498 (2003)

[DIBKSO00] Z. Dang, O. Ibarra, T. Bultan, R. Kemmerer and
J. Su. Binary reachability analysis of discrete pushdown timed
automata In CAV’00, pages 69-84.

[EN94] J. Esparza and M. Nielsen. Decidability issues for Petri
nets — a survey. Bulletin of the EATCS 52:245-262 (1994)

[Esp97] J. Esparza. Petri nets, Commutative Context-Free Gram-
mars, and Basic Parallel Processes. Fundam. Inform.
31(1):13-25 (1997)

[GS66] S. Ginsburg and E. H. Spanier. Semigroups, Presburger
Formulas, and Languages. Pacific Journal of Mathematics
16(2):285-296 (1966)

[GMTO09] S. Goller, R. Mayr and A. W. To. On the Computational
Complexity of Verifying One-Counter Processes. In LICS’09,
pages 235-244.

[GI81] E. Gurari and O. Ibarra. The Complexity of Decision
Problems for Finite-Turn Multicounter Machines. JCSS
22:220-229 (1981)

[Hac76] M.H.T. Hack. Decidability Questions for Petri Nets. PhD
Thesis, MIT, 1976.

[Huy80] T. D. Huynh. The Complexity of Semilinear Sets. In
ICALP’80, pages 324-337.

[Huy84] D. T. Huynh. Deciding the inequivalence of context-free
grammars with 1-letter terminal alphabet is %5 —complete.
TCS 33:305-326 (1984)

[Huy85] D. T. Huynh. Complexity of equivalence problems for
commutative grammars. Inform. and Control 66(1/2):103—
121 (1985)

[Huy86] D. T. Huynh. A simple proof for the 35 upper bound
of the inequivalence problem for semilinear sets. Inform.
Process. Cybernet. (EIK) 22:147-156 (1986)

[Hiit94] H. Hiittel. Undecidable equivalences for basic parallel
processes. In TACS’94.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and
their decision problems. JACM 25:116-133 (1978)

[Kop10] E. Kopczyfiski. Complexity of Problems for Commutative
Grammars. CoRR abs/1003.4105: (2010)

[Koz97] Automata and Computability. Springer, 1997.

[Kos82] S. R. Kosaraju. Decidability of Reachability in Vector
Addition Systems. In STOC’82, pages 267-281.

[Mart02] A. Martinez. Efficient computation of regular expres-
sions from unary NFAs. In DFCS’02, pages 174-187.

[Pap81] C. H. Papadimitriou. On the complexity of integer
programming. J. ACM 28(4): 765-768 (1981)

[Par66] R.J. Parikh. On context-free languages. JACM 13(4):570—
581, 1966.

[Pet81] J. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, 1981.

[PSWO02] G. Pighizzini, J. Shallit, and M. Wang. Unary Context-
Free Grammars and Pushdown Automata, Descriptional Com-
plexity and Auxiliary Space Lower Bounds. JCSS 65(2): 393—
414 (2002)

10

[RamO5] J. L. Ramirez Alfonsin. The Diophantine Frobenius
Problem. Oxford University Press, 2005.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer, 1985.

[SSMO07] H. Seidl, Th. Schwentick, and A. Muscholl. Counting
in Trees. Texts in Logic and Games 2:575-612 (2007)

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoret.
Comput. Sci. 3:1-22 (1977)

[To09] A. W. To. Unary finite automata vs. arithmetic progres-
sions. IPL 109(17):1010-1014 (2009)

[Tol0] A. W. To. Parikh Images of Regular Languages: Complex-
ity and Applications. CoRR abs/1002.1464: (2010)

[TL10] A. W. To and L. Libkin. Algorithmic metatheorems for
decidable LTL model checking over infinite systems. In
FoSSaCS’10, pages 221-236.

[VSSO5] K. N. Verma, H. Seidl and T. Schwentick. On the
complexity of equational Horn clauses. In CADE’05, pages
337-352.

[Yen96] H. C. Yen. On reachability equivalence for BPP-nets. TCS
179:301-317 (1996)

