
The Complexity of Verifying Ground Tree Rewrite
Systems

Stefan Göller
Universität Bremen, Institut für Informatik

Anthony Widjaja Lin
Oxford University Computing Laboratory

Abstract—Ground tree rewrite systems (GTRS) are an ex-
tension of pushdown systems with the ability to spawn new
subthreads that are hierarchically structured. In this paper, we
study the following problems over GTRS: (1) model checking
EF-logic, (2) weak bisimilarity checking against finite systems,
and (3) strong bisimilarity checking against finite systems. While
they are all known to be decidable, we show that problems (1)
and (2) have nonelementary complexity, whereas problem (3)is
shown to be in coNEXP by finding a syntactic fragment of EF
whose model checking complexity is complete forPNEXP. The
same problems are studied over a more general but decidable
extension of GTRS called regular GTRS (RGTRS), where regular
rewriting is allowed. Over RGTRS we show that all three
problems have nonelementary complexity. We also apply our
techniques to problems over PA-processes, a well-known class
of infinite systems in Mayr’s PRS (Process Rewrite Systems)
hierarchy. For example, strong bisimilarity checking of PA-
processes against finite systems is shown to be incoNEXP,
yielding a first elementary upper bound for this problem.

I. I NTRODUCTION

Pushdown systems (PDS) are natural abstractions of sequen-
tial programs with unbounded recursions. The problems of
verifying pushdown systems have hitherto been well-studied
(cf. [2], [25], [26]). In addition to recursions, concurrency is in-
disputably another feature that commonly arises in real-world
programs. Multithreading is often introduced by design, e.g.,
to achieve speedup or to make programming more convenient.

Ground tree rewrite systems (GTRS) (cf. [4], [8], [9],
[14]), which were also studied under the name ground term
rewrite systems in the rewriting community, are an extension
of PDS with the ability to spawn new subthreads that are
hierarchically structured, which in turn may terminate and
return some values to their parents. While the rules of a PDS
rewrite a prefix of a given word, the rules of a GTRS rewrite
a subtreeof a given tree. The decidability status for many
standard verification (i.e. model checking and equivalence
checking) problems over GTRS is well-known. For example,
reachability, recurrent reachability, and fair termination are
decidable (cf. [4], [7], [14], [22]). Moreover, model checking
first-order logic with reachability predicates is decidable [9],
which implies the decidability of model checking the common
fragment of Computation Tree Logic (CTL) known as EF-
logic. In turn, by a reduction to EF-logic (as shown in [11]),
we also obtain the decidability of the problems of weak/strong
bisimilarity checking against finite systems over GTRS. In
fact, most of these decidability results are known to hold
for regular GTRS (RGTRS) [14], which are a well-known

extension of GTRS with more general rewrite rules that are
given by tree automata1. On the negative side, it is known that
most linear-time and branching-time logics — such as LTL
and CTL — have undecidable model checking problems over
GTRS (cf. [14], [24]). This is in stark contrast with pushdown
systems, over which model checking monadic second-order
logic is still decidable [17].

The precise complexities of some verification problems
over GTRS and extensions thereof are also known. For ex-
ample, reachability and recurrent reachability are polynomial
time solvable even for RGTRS (cf. [14]). In contrast, model
checking first-order logic with reachability predicates over
GTRS has nonelementary complexity [21] since the infinite
binary tree with a descendant can be easily generated by a
fixed GTRS (in fact, by a one-state pushdown system). The
precise complexity of EF-logic model checking over GTRS
(and extensions thereof) was stated as an open question in [14].
The best known upper bound is currently nonelementary, while
the best known lower bound is onlyPSPACE (which holds
already for pushdown systems [2], [26]). Likewise, for the
problems of strong/weak bisimilarity checking against finite
systems over GTRS (and RGTRS), the best known upper
bound is nonelementary, while the best known lower bound
is only PSPACE (which holds already for pushdown systems
[13], [20]). Interestingly, the same nonelementary gaps are
also currently present (cf. [20]) when these three problemsare
considered over similar infinite-state models like PA and PAD
processes, which are well-known classes of infinite systemsin
Mayr’s PRS (Process Rewrite Systems) hierarchy (cf. [16]).
Note that these three problems are onlyPSPACE-complete
over pushdown systems (cf. [2], [13], [20], [26]).

Contributions. We investigate the following verification prob-
lems over GTRS (and the extension RGTRS): (1) model
checking EF-logic, (2) weak bisimilarity checking against
finite systems, and (3) strong bisimilarity checking against
finite systems. Such problems are arguably the most basic
verification problems over infinite-state systems, especially in
the concurrent setting (cf. [16]). Our main contribution isto
pinpoint the complexity of these problems.

The starting point of our paper is a proof that EF-logic
model checking over GTRS has a nonelementary complexity,
already when considering EF formulas with two occurrences

1This extension is analogous to howprefix-recognizable systems[5] extend
PDS.

of EF operators that are nested. This shows that the existing
automata-based algorithms for the problem (cf. [7], [9], [14])
are in some sense optimal answering Löding’s open question
[14]. The lower bound proof is achieved by an exponential re-
duction from the decidable first-order theory over finite words,
which is well-known to have a nonelementary complexity [21].
With the same arguments one can also show that Hennesy-
Milner logic (i.e. the fragment with no EF operators) suffice
to show the nonelementary lower bound over the more general
class of RGTRS.

We then proceed to look at the fragmentEF1 of EF-logic
consisting of formulas with EF operator nesting depth at most
one (i.e. in the parse tree of the formula, every branch has
at most one occurence of the operator EF). This fragment
is interesting for two reasons. Firstly, as mentioned above,
our proof of the nonelementary lower bound for problem (1)
over GTRS requires precisely two nested occurrences of EF
operators. Secondly, there is a polynomial time reduction from
problem (3) to the problem of model checkingEF1 formulas
over GTRS if the formulas are represented as DAGs, which
are single-exponentially more succinct than the standard tree
representation of formulas. Our result is that the problem
of model checkingEF1 over GTRS isPNEXP-complete (i.e.
within the second level of the exponential hierarchy). This
result cannot be obtained by simply applying the existing
automata-based algorithms for EF-logic model checking (cf.
[7], [9], [14]). Moreover, a further analysis of our proof shows
that problem (3) is solvable incoNEXP. This has substantially
closed the nonelementary gap with the best known lower
bound for the problem, which isPSPACE. In fact, these proof
techniques can be easily applied to derive better upper/lower
bounds for verification problems PA-processes: (1) strong
bisimilarity checking of PA-processes against finite systems is
solvable incoNEXP giving the first elementary upper bound
for this problem (cf. [20]), and (2) model checking EF-logic
over PA-processes isPNEXP-hard improving the best known
lower bound ofPSPACE for the problem (cf. [16]).

We then consider two natural extensions of the problem of
checking strong bisimilarity against finite systems over GTRS:
(i) checking strong bisimilarity against finite systems over the
more general class RGTRS, and (ii) checking weak bisimilar-
ity against finite systems over GTRS. In contrast, it turns out
that both of these extensions have a nonelementary complexity.
These results are the most technically involved in this paper
with the lower bound proof of problem (ii) building upon the
lower bound proof of problem (i). Bisimilarity checking has
a standard interpretation as a game between two players (cf.
[13]) called Attacker (who aims to show non-bisimilarity) and
Defender (who aims to show bisimilarity). The difficulty of
proving a complexity lower bound for bisimilarity checking
problem is due to the asymmetry between the power of
Attacker and Defender (Attacker is often more powerful) in
such games. Known lower bound techniques for bisimilarity
checking, a.k.a. “Defender’s forcing”, are often implemented
by the help of finite control unit, which many infinite-state
models have (e.g. PDS and Petri nets). The difficulty of pro-

viding Defender’s forcing techniques in the absence of finite
control unit is witnessed by the plethora of open problems
concerning decidability/complexity of equivalence checking
over infinite-state models like PA and PAD processes (cf. [20]).
The lack of global finite control unit often means that Defender
does not have animmediateway of punishing Attacker (i.e.
forcing him not to do something bad). In the case of GTRS
or RGTRS, this means that at any given time Attacker may
replace any of (potentially unbounded number of) the subtrees
that are present in the current configuration (i.e. a tree). In
this paper, we provide the first methods for implementing
Defender’s forcing technique over infinite-state models that
lack finite-control unit resulting in strong (i.e. nonelementary)
lower bounds.

Our results for (R)GTRS are summarized in Table I.

Related work. Other related problems over GTRS have been
shown to be decidable: confluence (cf. [8]), model checking
fragments of LTL [23], and generalized recurrent reachability
[24].

Several other extensions of PDS with multithreading capa-
bilities have been considered in [3], [12], [16], [19]. Among
these extensions, the class of process rewrite systems [16],
which generalize both Petri nets and pushdown systems by
providing hierarchical structures to threads, seem to havetight
connections with GTRS. It is interesting to note that there is
also a nonelementary gap between the best known upper/lower
bounds for EF-logic model checking and strong/weak bisim-
ilarity checking against finite systems over two proper sub-
classes of process rewrite systems known as PA-processes and
PAD-processes (cf. [15], [16], [20]). PA-processes have also
been shown to be a good abstraction of parallel programs for
the purpose of interprocedural data-flow analysis (cf. [10]).

Organization. Section II contains preliminaries. In Section
III, we analyze the complexity of model checking EF-logic
(and its fragments). We prove a nonelementary lower bound
for strong bisimilarity checking against finite systems in Sec-
tion IV. Results concerning weak bisimilarity checking against
finite systems for GTRS are discussed in Section V. Section
V depends on Section IV which in turn depends on Section
III-A.

For detailed proofs and applications to PA-processes, see
our technical report.

II. PRELIMINARIES

For eachi, j ∈ Z, we denote by[i, j] the interval{i, i +
1, . . . , j − 1, j}. Throughout the rest of this paper, we fix a
countable set ofaction labelsAct. For a setX let 2X denote
the powersetof X .
Complexity theory: The following complexity classes will
be of relevance:P, AP = PSPACE, NEXP, coNEXP, k-
EXP, ELEMENTARY =

⋃

k k-EXP. The classPNEXP denotes
deterministic polynomial time with oracle access toNEXP.
It is in the second level of exponential hierarchy, which is
in EXPSPACE. Unless stated otherwisereductionsare always

Model checking GTRS RGTRS

EF0 PSPACE-complete

EF1 PNEXP-complete

EFk, k≥2 NONELEMENTARY

Bisimilarity
against finite

systems
GTRS RGTRS

∼ PSPACE · · · coNEXP

≈ NONELEMENTARY

TABLE I
OVERVIEW OF OUR RESULTS

polynomial time many-to-one reductions. We define the tower
function TOWER : N → N as TOWER(0) = 1 and
TOWER(n+ 1) = 2TOWER(n) for eachn ∈ N.
First-order logic over words: A (binary) word is a finite
sequencea1a2 . . . an, whereai ∈ {0, 1} for eachi ∈ [1, n] that
we also identify with the logical structurew = (U,P0, P1, <),
whereU = [1, n] is the universe, unary predicatesPa = {i ∈
[1, n] | ai = a} for eacha ∈ {0, 1} and the binary predicate
<. By a result of Stockmeyer thefirst-order theory over words
is nonelementary [21]. We assume in this paper that first-order
formulas are given in prenex normal form.
Transition systems and EF logic: A transition systemis
a tuple S = (C,A, {

a
−→| a ∈ A}), where C is a set

of configurations, A ⊆ Act is some finite set ofactions,
and

a
−→⊆ C × C is a set of transitions for each action

a ∈ A. Let us fix a subsetΣ ⊆ A of S’s actions. By
Σ

−→ we abbreviate
⋃

a∈Σ
a

−→. We prefer to use the infix
notation c

a
−→ d instead of(c, d) ∈

a
−→. Similar remarks

apply to
Σ

−→. We say thatS is finite in caseC is finite – we
often use the notationF to refer to finite transition systems.
Formulas of EF-logic are given by the following grammar,
whereΣ ⊆ A: ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈Σ〉ϕ | 〈Σ∗〉ϕ. We
introduce the usual abbreviationsfalse = ¬true, ϕ1 ∨ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2), [Σ]ϕ = ¬〈Σ〉¬ϕ, and [Σ∗]ϕ = ¬〈Σ∗〉¬ϕ.
We note that all of our lower bound proofs also hold for the
more restricted version ofEF logic where each occurence
of the operator〈Σ∗〉 satisfiesΣ = A. For each transition
systemS = (C,A, {

a
−→| a ∈ A}) and each EF-formulaϕ

define the set of all configurations[[ϕ]]S ⊆ C that satisfy
ϕ by induction on the structure ofϕ as [[true]]S = C,
[[¬ϕ]]S = C \ [[ϕ]]S, [[ϕ1 ∧ ϕ2]]S = [[ϕ1]]S ∩ [[ϕ2]]S,

[[〈Σ〉ϕ]]S = {c ∈ C | ∃d ∈ [[ϕ]]S : c
Σ

−→ d}, [[〈Σ∗〉ϕ]]S =

{c ∈ C | ∃d ∈ [[ϕ]]S : c
Σ

−→
∗
d}. We write (S, c) |= ϕ

wheneverc ∈ [[ϕ]]S. The EF nesting depthnd(ϕ) of an EF-
formula ϕ is inductively defined as follows:nd(true) = 0,
nd(¬ϕ) = nd(ϕ), nd(ϕ1 ∧ ϕ2) = max{nd(ϕ1), nd(ϕ2)},

nd(〈Σ〉ϕ) = nd(ϕ), nd (〈Σ∗〉ϕ) = nd(ϕ)+1. For eachi ≥ 0,
we denote byEFi the syntactic fragment ofEF restricted to
formulas of EF nesting depth at mosti. We remark thatEF0

is Henessy-Milner logic (HM).
Strong bisimulation equivalence:Let S1 = (C1,A, {

a
−→1|

a ∈ A}) and S2 = (C2,A, {
a

−→2| a ∈ A}) be two
transition systems over a common set of actionsA. A relation
R ⊆ C1 ×C2 is a strong bisimulationif for each(c1, c2) ∈ R
the following two conditions hold for eacha ∈ A: (1) for
everyc1

a
−→1 c

′
1 there is somec2

a
−→2 c

′
2 with (c′1, c

′
2) ∈ R

and (2) for everyc2
a

−→2 c′2 there is somec1
a

−→1 c′1
with (c′1, c

′
2) ∈ R. We say thatc1 is strongly bisimilar to

c2 (abbreviated byc1 ∼ c2) whenever there is a strong
bisimulationR such that(c1, c2) ∈ R.
Weak bisimulation equivalence:Let us fix asilent actionτ 6∈
A and letAτ = A∪{τ}. Moreover letS1 = (C1,Aτ , {

a
−→1|

a ∈ Aτ}) and S2 = (C2,Aτ , {
a

−→2| a ∈ Aτ}) be two
transition systems over the common alphabetAτ . We define
the binary relations

τ
=⇒i= (

τ
−→i)

∗ and
a

=⇒i= (
τ

−→i)
∗◦

a
−→i

◦(
τ

−→i)
∗ for eacha ∈ A and for eachi ∈ {1, 2}. A binary

relation R ⊆ C1 × C2 is a weak bisimulationif for each
(c1, c2) ∈ R the following two conditions hold for each
a ∈ Aτ : (1) for everyc1

a
−→1 c

′
1 there is somec2

a
=⇒2 c

′
2

with (c′1, c
′
2) ∈ R and (2) for everyc2

a
−→2 c

′
2 there is some

c1
a

=⇒1 c′1 with (c′1, c
′
2) ∈ R. We say thatc1 is weakly

bisimilar to c2 (abbreviated byc1 ≈ c2) whenever there is a
weak bisimulationR such that(c1, c2) ∈ R. In the appendix
we describe how bisimilarity corresponds to a game between
Attacker and Defender.
Ranked trees:Let � denote the prefix order onN∗, i.e.x � y
for x, y ∈ N∗ if there is somez ∈ N∗ such thaty = xz, and
x ≺ y if x � y andx 6= y. A ranked alphabetis a collection
of pairwise disjoint finite alphabetsA = (Ai)i∈[k] for some
k ≥ 0. For simplicity we identifyA with

⋃

i∈[k] Ai. A (ranked)
tree (over the ranked alphabetA) is a mappingT : DT → A,
where forDT ⊆ [1, k]∗ we have (1)DT is nonempty, finite
and prefix-closed and (2) for eachx ∈ DT with T (x) ∈ Ai

we havex1, . . . , xi ∈ DT and xj 6∈ DT for each j > i.
We say thatDT is thedomainof T – we call these elements
nodes. A leaf is a nodex with T (x) ∈ A0. We also refer
to ε ∈ DT as theroot of T . By TreesA we denote the set
of all ranked trees over the alphabetA. Let T be a ranked
tree and letx be a node ofT . We definexDT = {xy ∈
[1, k]∗ | y ∈ DT } and x−1DT = {y ∈ [1, k]∗ | xy ∈ DT }.
By T ↓x we denote thesubtree ofT with root x, i.e. the tree
with domainDT↓x = x−1DT defined asT ↓x(y) = T (xy).
Let S, T ∈ TreesA and let x be a node ofT . We define
T [x/S] to be the tree that is obtained by replacingT ↓x in
T by S, more formallyDT [x/S] = (DT \ xDT↓x) ∪ xDS

with T [x/S](y) = T (y) if y ∈ DT \ xDT↓x and S(z) if
y = xz with z ∈ DS . Define|T | as the number of nodes in a
treeT . We also use the notationt to refer to ranked trees, in
particular subtrees.
Regular tree languages:A nondeterministic (bottom-up) tree
automaton (NTA)is a tupleA = (Q,F,A,∆), whereQ is a

finite set ofstates, F ⊆ Q is a set offinal states,A = (Ai)i∈[k]

is a ranked alphabet, and∆ ⊆
⋃

i∈[k] Q
i × Ai × Q is the

transition relation. By L(A) = {T ∈ TreesA | there is an
accepting run ofA on T }. A set of treesS ⊆ TreesA is
regular if S = L(A) for some NTAA. By Trees

≤n
A = {T ∈

TreesA : |T | ≤ n} we denote the set of all trees overA with
at mostn nodes.
(Regular) ground tree rewriting systems:A regular ground
tree rewriting system (RGTRS)is a tupleR = (A,A, R),
whereA is a ranked alphabet,A ⊆ Act is finite set of actions,
andR is finite set of rewriting rules of the formL

a
→֒ L′,

whereL andL′ are regular tree languages given as NTA. A
ground tree rewriting system (GTRS) is an RGTRS such that
each regular tree language is singleton (given explictly).The
transition system ofR is S(R) = (TreesA,A, {

a
−→| a ∈ A}),

where for eacha ∈ A, we haveT
a

−→ T ′ if and only if there is
somex ∈ DT and some ruleL

a
→֒ L′ ∈ R such thatT ↓x = S

andT ′ = T [x/S′] for someS ∈ L and someS′ ∈ L′.
Decision problems:In this paper we will be interested in the
following decision problems.
EF model checkingasks, given a (R)GTRSR = (A,A, R), a
T ∈ TreesA and anEF-formulaϕ, to decide if(S(R), T) |= ϕ
holds? The analogous question can be asked for the syn-
tactic fragmentsEFi of EF. EF model checking of RGTRS
is proven to be decidable in timeTOWER(O(n)) in [14].
Strong Bisimilarity Checking against Finite Systemsasks,
given a (R)GTRSR = (A,A, R), T ∈ TreesA, a finite
F = (C,A, {

a
−→| a ∈ A}) and a configurationc ∈ C, to

decide if T ∼ c holds. Weak Bisimilarity Checking against
Finite Systemsasks, given a (R)GTRSR = (A,Aτ , R),
T ∈ TreesA, a finite F = (C,Aτ , {

a
−→| a ∈ Aτ}) and a

configurationc ∈ C, to decide ifT ≈ c holds.
By a result from [11] (see also Theorem 1 and Corollary
1 of [13]) weak bisimilarity checking against finite systems
is polynomial time reducible to model checkingEF logic,
where formulas are given in DAG representation. Analogously,
strong bisimilarity can be reduced in polynomial time to model
checking formulas of the kindϕ1 ∧ [A∗]ϕ2, whereϕ1, ϕ2 are
EF0 formulas in DAG representation.

III. M ODEL CHECKING

A. EF2 (resp. EF0) is nonelementary over GTRS (resp.
RGTRS)

Our first result is that model checkingEF2 over GTRS has
nonelementary complexity, which answers the open question
by Löding [14].

Theorem 1. Model checkingEF2 over GTRS is nonelemen-
tary.

This proof of this theorem can easily be adapted to show
that model checkingEF0 over RGTRS has nonelementary
complexity. This lower bound proof is achieved by an ex-
ponential reduction from the decidable first-order theory over
finite words, which is well-known to have a nonelementary
complexity [21]. Roughly speaking, we design our GTRS in

such a way that in the first phase it reaches from an input tree
a huge tree whose yield (a.k.a. frontier) we interpret as a word,
which will correspond to a word that witnessessatisfiability
of an input first-order formula over finite words. This can
be realized by the first occurrence of the EF operator in the
input formula. In a second phase we mimic the assignment
of variables of the first-order sentence by labeling leaves
appropriately. In the third and final phase, we check via a
deterministic bottom-up tree automaton whether the huge tree
(whose leaves are now labeled with variables of the first-order
sentence) satisfies the remaining unquantified subformula.This
can be realized by the second occurrence of the EF operator.

Let us now proceed with the proof. Fix a
first-order sentence over binary wordsψ =
∃x1∀x2 . . . ∃x2n−1∀x2n ϕ(x1, . . . , x2n). Without loss
of generality we will assumew 6|= ψ for each binary word
w with |w| < 2. Our goal is to compute in exponential time
a GTRSR = (A,A, R), some initial treestart ∈ TreesA,
and anEF2-formula θ such that∃w ∈ {0, 1}∗ : w |= ϕ iff
start |= θ.

We define our set of actions asA = {ai | i ∈ [1, 2n]} ∪
{down, up0, up1, up2} and letP = (

(

2[1,2n] ∪ {⊥}
)

× {0, 1}
denote the set ofproper leaf labels. The first component label
⊥ will not be relevant in this but in subsequent sections. We
define the ranked alphabetA = (Ai)i∈{0,1,2} of R as follows,
where the setQ will be defined later:A0 = {start} ∪ P ∪Q,
A1 = {root} andA2 = {⋆}.
The regular tree languageCombs consists of precisely those
treesT ∈ TreesA such that (1)T−1(root) = {ε}, i.e. the (one
and) only node ofT that is labeled withroot is the root of
T , (2) for each leafx of T we haveT (x) ∈ P , (3) for each
inner nodex 6= ε of T we have thatT (x) = ⋆ and thatx
has a left child that is a leaf, and finally (4) there is at least
one inner nodex (with T (x) = ⋆) that is the child ofε. For
eachI ⊆ [1, 2n] define the regular tree languageCombsI to
consist of precisely those combsT ∈ Combs such that (1)
for each leafx of T we haveT (x) ∈ 2I × {0, 1} and (2) for
each two distinct leavesx, x′ of T with T (x) = (J, α) and
T (x′) = (J ′, α′) we haveJ ∩ J ′ = ∅ and (3) I =

⋃

{J |
x is a leaf ofT andT (x) = (J, α)}.

Let us give an example for a tree inCombs{2,3,5,7}:

root

⋆⋆

(∅, 0) ⋆

({2, 5}, 1) ⋆

({3}, 1) ⋆

(∅, 0) ({7}, 1)

Intuitively, think of the sequence of thesecond components
of leaf labels ofT ∈ CombsI (i.e. the second-component
projection of the labels of the yield ofT) to correspond to
a binary word, and moreover, for each leafx of T , think
of the first componentof T (x) to correspond to the index
set of variables{x1, . . . , xn} of ϕ that have been bound to

the corresponding position in the word. Hence every comb
in CombsI corresponds to a unique binary word along with
a variable valuation with domainI. By Combsϕ denote the
trees fromCombs[1,2n] whose word and variable assignment
interpretation satisfiesϕ.
The following three rewriting rules allow to reach all members
of Combs∅ from the singleton treestart, whereα ∈ {0, 1}:

start
down
→֒

root

⋆

(∅, α) ⋆

⋆
down
→֒

⋆

(∅, α) ⋆
⋆

down
→֒ (∅, α)

Next, we add the following rules that allows to rewrite the
leafs of combs (this rewriting will correspond to assigning
variables to the leaves), whereα ∈ {0, 1} and I ⊆ [1, 2n]:
〈I, α〉

ai

→֒ 〈I ∪ {i}, α〉 for eachi ∈ [1, 2n] \ I.
In a next step, we compute in exponential time in|ψ| a non-
deterministic tree automatonA = (Q,F,A,∆) that accepts
Combsϕ. We add the state setQ to A0 of our GTRSR.
Then we add the following rewriting rules toR (which will
realize the bottom-up computation ofA): (1) for each rule
(q, q′, a, q′′) ∈ ∆∩

(

Q2 ×A2 ×Q
)

we add the rewriting rule

a(q, q′)
up2

→֒ q′′, (2) for each rule(a, q′) ∈ ∆ ∩ (A0 ×Q)

we add the rewriting rulea
up0−→ q′, and (3) for each rule

(q, root, q′) ∈ ∆ ∩ (Q× {root} ×Q) whereq′ ∈ F we add
the rewriting ruleroot(q′)

up1−→ root.
Finally we defineθ as

〈down∗〉 〈a1〉[a2] · · · 〈a2n−1〉[a2n]
〈

{up0, up2}
∗〉 〈up1〉 true.

One can easily check that∃w ∈ {0, 1}∗ : w |= ψ iff
(S(R), start) |= θ which concludes the proof.

B. Model checkingEF1 over GTRS is complete forPNEXP

Our nonelementary lower bound proof above uses nested
occurences of two EF operators. Our main result now is
that prohibitting nested occurences of EF operators yieldsan
elementary model checking complexity.

Theorem 2. Over GTRS model checking formulas〈Σ∗〉ϕ with
Σ ⊆ A andϕ ∈ EF0 is in NEXP.

Before sketching a proof of this theorem, we mention the
following corollary, which can be easily derived by (1) es-
tablishing a polynomial space procedure usingNEXP oracles
(invoked whenever subformulas of the form〈Σ∗〉ψ are seen),
and (2) using the fact thatPSPACENEXP = PNEXP [1].

Corollary 3. Model checkingEF1 over GTRSs is inPNEXP.

We now sketch the proof of Theorem 2. Let us now suppose
that 〈Σ∗〉ϕ is the given formula,R = (A,A, R) is the given
GTRS, andT0 ∈ TreesA is the input tree. We wish to check
whether(S(R), T0) |= 〈Σ∗〉ϕ. Let us compute in polynomial
time (cf. [14]) an NTAA that recognizes the setpostΣ

∗

R (T0) of
configurations ofR reachable fromT0 by applications of rules
with labels fromΣ. It now suffices to show how to compute
NTAs that recognize[[ϕ]]S(R). We do not use the standard

automata construction (e.g. [14]) for the set of trees satisfying
a givenEF0 formula with respect to a given GTRS since it
suffers from a nonelementary blow-up. Given anEF0 formula,
let mrank(ϕ) be themodality rankof ϕ, i.e., the maximum
nesting depth of〈·〉 operators inϕ.

We now show that[[ϕ]]S(R) can be expressed as a union
of regular tree languages, each of which can be expressed by
a tree automatonAi of singly-exponential size. Furthermore,
we can check whether someL(Ai) intersects withL(A) in
nondeterministic time exponential in|ϕ| and |R|.

Lemma 4. We have[[ϕ]]S(R) =
⋃

i∈I L(Ai), for a family
{Ai}i∈I , where|Ai| = exp(|ϕ|, |R|). One can nondetermin-
istically check whetherL(A) intersects with someL(Ai) in
time exp(|ϕ|, |R|).

As we shall see in our proof below, the parameter|ϕ|
in the above lemma can be replaced bymrank(ϕ). As a
corollary, this yields the sameNEXP upper bound for the
model checking problem whenϕ is given as a DAG.

We now give a proof of Lemma 4. Letr = mrank(ϕ). We
start by defining a standard equivalence relation onTreesA

based on the modality rank ofEF0 formulas: given two trees
T, T ′ ∈ TreesA and i ∈ N, write T ≃i T ′ if for every
EF0 formula ψ with mrank(ψ) ≤ i: (S(R), T) |= ψ iff
(S(R), T ′) |= ψ. In other words,T ≃i T

′ iff T andT ′ agree
on every formulaψ with modality rank at mosti. It is obvious
that≃i is an equivalence relation and thatT ≃i+1 T

′ implies
T ≃i T

′. Furthermore, it is well-known that the equivalence
relation≃i is of finite index, i.e., the number of equivalence
classes of≃i is finite. For each equivalence classC of ≃r,
it is clear that either(S(R), T) |= ϕ for all T ∈ C, or
S(R), T 6|= ϕ for all T ∈ C. For the former case, we say that
the equivalence classC is positive; otherwise, it isnegative.
Therefore, one idea is to define the family{Ai}i∈I of NTAs
by associating an NTA for each positive equivalence classC
of ≃r. Two problems with this approach, however, are: (1)
this does not give a good way of computing an NTA for each
positive equivalence class, and (2) this does not reveal an upper
bound on the index of≃r.

We now define a finer relation≡i (for eachi ∈ N) that
will give extra information which will help us solve these
two problems. To this end, letK be the maximum number of
nodes in the tree appearing in any rewrite rule inR. Also, let
Ni = i ·K. Given any two treesT, T ′ ∈ TreesA, we define
T ≡i T

′ iff for each treet ∈ TreesA either of the following
is true: (i) the number of timest appears as a subtree ofT
equals the number of timest appears as a subtree ofT ′, and
(ii) the number of timest appears as a subtree exceedsNi

both forT andT ′. In other words,T ≡i T
′ iff each subtree

with at mostNi nodes appears inT andT ′ the same number
of times (up to some threshold). As before, it is easy to check
that≡i is an equivalence relation and thatT ≡i+1 T

′ implies
T ≡i T

′. To complete the proof of Lemma 4, we proceed
as follows: (1) show that≡i is finer than≃i, (2) checking
whether a functionf : Trees

≤Ni

A → [0, Ni] actually describes
an equivalence class of≡i can be done rather efficiently, (3)

testing whether an equivalence class of≡i is positive (with
respect toϕ) can be done rather efficiently, and (4) for each
positive equivalence classC of ≡i, an NTA AC recognizing
C can be computed rather efficiently. As we will see, these
will imply Lemma 4. For step (1) the following lemma can
be shown.

Lemma 5. For each treeT, T ′ ∈ TreesA, it is the case that
T ≡i T

′ impliesT ≃i T
′.

Intuitively, this lemma holds since satisfaction ofEF0 for-
mulas of modality ranki is only affected by the number of
occurences of trees of depthNi (up to some threshold).

Let us now proceed to step (2). Recall that each equiv-
alence classC of ≡r can be described by a function from
fC : Trees

≤Nr

A → [0, Nr]. The converse, however, is false,
e.g., it is impossible to have a classC with fC(T) > 1 for a
treeT with two nodes butfC(T ′) = 0 for all treesT ′ with
one node. Also note that the special case wheref(T) = 0
for all T ∈ Trees

≤Nr

A is impossible for an equivalence class
since trees have nonempty domain by definition. Therefore,
we need to be able to check whether a given function
f : Trees

≤Nr

A → [0, Nr] actually describes an equivalence
class in≡r. To this end, recall first that any functionf that
describes an equivalence class of≡r counts each subtree of
treesT in Trees

≤Nr

A with fC(T) > 0, i.e., if t is a subtree of
T , thent contributes to the value off(t). We will first define a
new functiong : Trees

≤Nr

A → [0, Nr] that avoids this “double
counting”. This can be done by the following algorithm: “Set
g(T) := 0 for all T ∈ Trees

≤Nr

A and repeat the following for
eachT ∈ Trees

≤Nr

A with f(T) > 0 (ordered by the number
of nodes, starting from the largest): (1) Letf(T) := f(T)−1,
(2) g(T) := g(T) + 1, (3) Go through all nodesu of T
(except whenu is the root ofT) and substractf(T ↓u) by 1
(if becomes negative, then terminate abruptly)”. Observe that
if this algorithm terminates abruptly, thenf does not actually
describe an equivalence class ofC. Furthermore, the algorithm
runs in time exponential inr ≤ |ϕ| and |R| simply because
|Trees

≤Nr

A | = exp(r, |R|) can be shown. . Now, suppose that
the functiong has been successfully computed from the given
functionf . This implies thatg describes aforestF with each
treeT ∈ Trees

≤Nr

A occurringg(T) many times. The original
functionf then describes an equivalence class iff such a forest
can be further “connected into a big tree”. This last check can
be done using the following lemma.

Lemma 6. The function f : Trees
≤Nr

A → [0, Nr] de-
scribes an equivalence class in≡r iff the function g :
Trees

≤Nr

A → [0, Nr] (and the forestF corresponding to it)
can be successfully computed fromf by the above algorithm
and that one of the following conditions are satisfied: (1)
∑

T∈Trees
≤Nr

A

g(T) = 1. (2)
∑

T∈Trees
≤Nr

A

g(T) > 1, and for
some lettera with some rankh ∈ N and some treesT1, . . . , Th

occuring in the forestF , the treea(T1, . . . , Th) has more than
Nr nodes.

Observe that this lemma completes step (2) since this test
can be performed in time exponential inr and|R| and polyno-

mial in |f |. We now proceed to step (3). This step is rather easy
since checking whether an equivalence classC of ≡r described
by a functionfC : Trees

≤Nr

A → [0, Nr] is positive can be done
in time exponential inr and |R|. Intuitively, the idea is to
pick a representativeT of C of exponential size and compute
a finite transition system consisting of the neighborhood ofT
up to depthr. It turns out that the finite system also has size
exponential inr ≤ |ϕ| and |R|. Therefore, we may use the
standard linear-time algorithm for model checking Henessy-
Milner (i.e. EF0) formulas over finite systems.

We now proceed to step (4), which is the final step. For
this, we need to show how to compute an NTA recognizing
an equivalence classC of ≡r described by a functionfC :
Trees

≤Nr

A → [0, Nr].

Lemma 7. Given a functionf : Trees
≤Nr

A → [0, Nr] that
witnesses an equivalence classC of ≡r, we can compute an
NTA recognizing preciselyC in time |f |poly(r,|R|) ·exp(r, |R|).

Roughly speaking, this lemma can be proven as follows.
First, compute the functiong : Trees

≤Nr

A → [0, Nr] using the
above algorithm, which avoids double counting of subtrees.
Let U denote all treest ∈ Trees

≤Nr

A such thatg(t) = Nr.
Let t1, . . . , tm be an enumeration of all treest ∈ Trees

≤Nr

A

with g(t) > 0 without counting multiplicities. One can now
design an NTA that counts that preciselyg(ti) many nodesv
occur such that the subtree rooted atv equalsti, and that an
arbitrary number of nodesv can occur such that the subtree
rooted atv is a tree inU . It is easy to see that such an NTA
of size exponential inr and |R| can be computed.

To summarize, the proof of Lemma 4 can now be done as
follows. The NTAsAi in the statement of Lemma 4 will cor-
respond to positive equivalence classesC described by some
functionsfC : Trees

≤Nr

A → [0, Nr]. Using the last step above,
the NTAAi can be computed in time exponential inr and|R|
if f is given as an input. Checking whetherL(A)∩L(Ai) 6= ∅
for somei requires us to nondeterministically guess one such
function f , check whether it describes an equivalence class,
compute the NTAAi corresponding to it, and check for
language intersection withA in the standard way.

Let us discuss the ideas of a matching lower bound forEF1.

Lemma 8. Over GTRS model checking formulas〈A∗〉ϕ,
whereϕ ∈ EF0, is NEXP-hard.

Proof sketch. The reduction is from the2n × 2n tiling

problem [18]. The idea is to reach via
A

−→
∗

some binary
tree with superleafs, where asuperleaf is a tree of depth
one whose root has arity2n. Each child of a superleaf will
either have a nullary symbolb0 or b1, where the root of a
superleaf contains a tile type. Each superleaf correspondsto
a grid element(i, j) ∈ [0, 2n − 1] × [0, 2n − 1] where the
nullary symbols of the firstn (resp. lastn) children encodei
(resp.j) in binary. The formulaϕ is now a conjunction ofEF0

formulas expressing the following:(1) A superleaf for(0, 0)
exists,(2) whenever there are two superleafs corresponding to
the same(i, j) then their tile types are the same,(3) if there

is a superleaf for(i, j) with i < 2n − 1 (resp.j < 2n − 1),
then there is a superleaf for(i + 1, j) (resp.(i, j + 1)), and
finally (4) the horizontal and vertical tile conditions hold for
every superleaf. ⊓⊔

By encodingcircuit value into nodes of trees (gates and
its evaluations will be represented in nodes in the tree) and
invoking a subroutine to the trees that realized the domino
problem one can prove a matching lower bound forEF1.

Theorem 9. Over GTRS model checkingEF1 is hard for
PNEXP.

Remark. PNEXP-completeness forEF1 model checking over
PA-processes (cf. [16]) can be shown using the same tech-
niques; see the technical report for a sketch.

IV. STRONG BISIMILARITY AGAINST FINITE SYSTEMS

Since strong bisimilarity checking can be reduced toEF

model checking, the following theorem is known.

Theorem 10 ([14], [11]). Strong bisimilarity checking
of RGTRS against finite systems is decidable in time
TOWER(O(n)).

Over GTRS, however, we obtain an elementary upper bound. It
can be derived via a reduction to model checking formulas of
the kindϕ1∧[A∗]ϕ2 whereϕ1 andϕ2 areEF0 DAG-formulas
and then applying our upper bound result from Theorem 2. [By
the above remark, this technique can also be used to prove a
coNEXP upper bound for the same problem over PA-processes
(cf. [20]).]

Theorem 11. Strong bisimilarity checking of GTRS against
finite systems is incoNEXP.

As a main result of this section we prove that strong
bisimilarity between a regular ground tree rewrite system and
a finite system has nonelementary complexity.

Theorem 12. Strong bisimilarity checking of RGTRS against
finite systems is nonelementary.

Although the proof also goes via an exponential reduction
from the first-order theory over finite words, due to the lack of
finite control unit in (R)GTRS it is not merely an adaptation
of the proof of the nonelementary lower bound forEF2 model
checking over GTRS from the previous section. Roughly
speaking, we implement Defender’s forcing technique by
providing rewriting rules of the formL →֒ T , whereL is
a regular tree language andT is an explicit ranked tree. Such
rules will allow Defender to punish Attacker in case he did
not play in a way that corresponds to evaluating the first-order
sentence on the huge tree. However, the biggest obstacle we
have to overcome is the possibility of Attacker assigning an
arbitrary permutationof the variables in the input first-order
sentence to leaves of the tree.

Let us proceed to the proof of Theorem 12. We reuse some
of the notation that was introduced in Section III-A. Again,let
us fix a first-order sentence interpreted over binary wordsψ =
∃x1∀x2 . . . ∃x2n−1∀x2nϕ(x1, . . . , ϕ2n) and let us assume

againw 6|= ψ for each binary wordw with |w| < 2. Our goal
is to compute in exponential time a RGTRSR = (A,A, R),
some initial treestart ∈ TreesA, some finite transition system
F = (C,A, {

a
−→F| a ∈ A}), and a configurations∅ ∈ C such

that there is somew ∈ {0, 1}∗ with w |= ψ iff start 6∼ s∅. We
call a subsetI ⊆ [1, 2n] game-conformif I = [1, k] for some
k ∈ [0, 2n] and non-game-conformotherwise. Analogously,
we call a combT ∈ CombsI game-conform(resp.non-game-
conform) if I is game-conform (resp. non-game-conform).
Each game-conform combT ∈ Combs[1,k] naturally induces a
valuationνT of variables with indices from[1, k] to positions
of the yield string defined byT . Let ϕ[νT] denote the formula
that is obtained fromϕ by replacing the information given by
νT . This can be extended to defineψ[νT]. Hence, e.g.ψ[νT]
is of the form∃xk+1 · · · ∀x2nϕ[νT] in casek is even.

In caseI ⊂ [1, 2n] and i ∈ [1, 2n] \ I we say a tree
T ′ ∈ CombsI∪{i} is ani-extensionof T if T ′ can be obtained
from T by choosing exactly one leafx and replacing its label
T (x) = (J, α) by (J ∪ {i}, α). Recall that byCombsϕ we
denote the trees fromCombs[1,2n] whose word and variable
assignment interpretation satisfiesϕ. Likeweise letCombsϕ
denote the trees fromCombs[1,2n] whose word and variable
assignment interpretation does not satisfyϕ.

For each game-conformI we havetwo configurationssI

and sI in F. For each non-game-conformI we haveone
corresponding configurationuI in F. In addition our finite
systemF has the configurationssucc and fail. We define as
action labelsA = {ai | i ∈ [1, 2n]} ∪ {ϕ}.
The idea of the bisimulation game and difficulties
The high level idea of the strong bisimulation game goes as
follows, and uses Defender’s forcing techniques as e.g. in [13]:
(initial round) Attacker chooses a combT from Combs[1,1]

for which he claims thatT |= ψ[νT] holds. Defender can only
responds∅

a1−→F s[1,1]. Hence the new pebble configuration
is (T, s[1,1]).
Next, we repeat the following round game, where the current
pebble configuration is(T, s[1,k]) whereT ∈ Combs[1,k] for
each roundk = 1, . . . , 2n− 1: (universal round) If k is odd,
then Attacker is supposed to move inF, namelys[1,k]

ak+1

−→F

s[1,k+1] although the moves[1,k]
ak+1

−→F s[1,k+1] is possible.

Defender is now forced to move inS(R), namelyT
ak+1

−→ T ′

for somek+1-extensionT ′ of T . This response corresponds to
the universal quantification∀xk+1 in ψ. (existential round)
If k is even, then Attacker is supposed to move inS(R),
namelyT

ak+1

−→ T ′ for somek + 1-extensionT ′ of T . This
move corresponds to the existential quantification∃xk+1 in ψ.
Defender’s only possible response inF is s[1,k]

ak+1

−→F s[1,k+1].
(final round) Finally, when we are in the pebble configuration
(T, s[1,2n]), where T ∈ Combs[1,2n], the actionϕ can be
performed that allows Attacker to win (via a rule inR that
containsCombsϕ on the left-hand side) iffT |= ϕ[νT].
In order to implement such a game, several difficulties arise.
Let us discuss these difficulties for the universal round (the
existential round can be treated dually) and give solutions
to them. The question is: In the universal round, how can

we force Attacker to make inF the move s[1,k]
ak+1

−→F

s[1,k+1]? 1. Difficulty: What if Attacker movess[1,k]
ak+1

−→F

s[1,k+1] (which will exist in F)? Solution: We add the rule

Combs[1,k]

ak+1

→֒ s[1,k+1] to R such that Defender has the
possibility to establish syntactic equivalence by responding
T

ak+1

−→ s[1,k+1] in S(R) and hence wins.2. Difficulty: What

if Attacker movesT
ak+1

−→ T ′ in S(R) for somek+1-extension
of T rather than playing inF? Solution: Defender can react
in F, depending on whetherT ′ |= ψ[νT ′] or T ′ 6|= ψ[νT ′].
In caseT ′ |= ψ[νT ′] she can move tos[1,k+1] and can win.
In caseT ′ 6|= ψ[νT ′] she can move tos[1,k+1] and can win.
3. Difficulty: What if Attacker playsT

ai−→ T ′ where
i ∈ [1, k]? I.e. Attacker plays an action that has already
been played.Solution: We allow a simple transition to a
configuration inF from which Defender can surely win since
surelyT ′ ∈ Combs⊥ and henceT ′ 6∈ Combsϕ. 4. Difficulty:
What if Attacker plays inT

ai−→ T ′ in S(R) wherei > k+1?
I.e. Attacker deviates from playing a sequence of actions
a1 · · · ak that correspond to assigning variables to positions of
the yield string of the tree. We also say that the current pebble
configuration is non-game-conform.Solution: We allow in
F a special transition for Defenders[1,k]

ai−→ u[1,k]∪{i} that
allows her to win.

The solutions to Difficulty 1 and 2 are standard and are similar
to a technique elaborated in [13]. The solution to Difficulty
3 is straightforward. The real difficultyin the absence of a
finite control (pushdown systems have a finite control) in the
game is Difficulty 4. We have to provide configurations in
F that allow to remember the set of variables in the current
treeT that have been assigned. The difficulty that now arises
is that Attacker can continue labeling leafs inT and pretend
some moves later that the current treeT is game-conform all
of a sudden (and hence threaten to play the above-mentioned
punishing moves for instance). We have to carefully design
transitions inF that sooner or later punish Attacker since he
was the one who deviated from playing game-conform.
The finite system: We now define the outgoing transitions
of s[1,k] and of s[1,k], for each possiblek ∈ [0, 2n − 1]: (1)

s[1,k]
ak+1

−→F s[1,k+1], (2) s[1,k]
ak+1

−→F s[1,k+1], (3) s[1,k]
ak+1

−→F

s[1,k+1] if k is odd, (4) s[1,k]
ak+1

−→F s[1,k+1] if k is even,
(5) s[1,k]

ai−→F s[1,2n] for each i ∈ [1, k], (6) s[1,k]
ai−→F

s[1,2n] for each i ∈ [1, k], (7) s[1,k]
ai−→F u[1,k+1]∪{i} for

each i ∈ [k + 2, 2n], (8) s[1,k]
ai−→F u[1,k+1]∪{i} for each

i ∈ [k+ 2, 2n], (9) s[1,2n]
ϕ

−→F succ, (10) s[1,2n]
ai−→F s[1,2n]

for eachi ∈ [1, 2n], (11) s[1,2n]
ϕ

−→F fail and the transition
(12) fail

ai−→F fail for eachi ∈ [1, 2n].
Let us now define the outgoing transitions ofuI for each non-
game-conformI ⊆ [1, 2n]: (1) uI

ai−→F s[1,2n] for eachi ∈ I,
(2) uI

ai−→F uI∪{i} for eachi 6∈ I for which I ∪ {i} is non-
game-conform, (3)uI

ai−→F sI∪{i} for eachi 6∈ I for which
I ∪ {i} is game-conform, and (4)uI

ai−→F sI∪{i} for each
i 6∈ I for which I ∪ {i} is game-conform.
A snapshot ofF is depicted in Figure 1.

s∅

s∅

s[1,1]

s[1,1]

s[1,2]

s[1,2]

s[1,3]

s[1,3]

· · ·

· · ·

s[1,n−1]

s[1,n−1]

s[1,2n]

s[1,2n]

succ

fail

u{2,3}

u{1,3}

u[1,3]∪{6} u[1,3]∪{7} u[1,3]∪{2n}

u[1,3]∪{6,7}

a1

a2 a6

a7 a2n

a7

a1

a1

a1 a2

a2

a2

a3

a3

a3

an

an

an

ϕ

ai

ϕ

ai

ai

ak,k∈[1,3]

Fig. 1. A snapshot ofF and the outgoing transitions ofs[1,3] in the strong
bisimulation game (i ranges over[1, 2n]).

The infinite system: Recall thatC denotes the set of con-
figurations ofF and thatP denotes the set of proper leaf labels
as defined in Section III-A. We define the ranked alphabet
A = (Ai)i∈{0,1,2} of R as follows:A0 = {start} ∪ P ∪ C,
A1 = {root} andA2 = {⋆}. We note that the only relevant
trees (i.e. configurations) inS(R) in our reduction whose
leafs are labeled withC are singleton trees. To R we add

the rewriting rulesc
b
→֒ c′ for each transitionc

b
−→F c

′ in F.
Furthermore, we add the following leaf rewriting rules, where
α ∈ {0, 1}: (1) 〈I, α〉

ai

→֒ 〈I ∪ {i}, α〉 for eachi ∈ [1, 2n] \ I,
(2) 〈I, α〉

ai

→֒ 〈⊥, α〉 for eachi ∈ I, and (3)〈⊥, α〉
ai

→֒ 〈⊥, α〉
for eachi ∈ I. We define the regular tree languageCombs⊥ =
Combs \

⋃

I⊆[1,2n] CombsI . In other words,Combs⊥ consists
of those combsT ∈ Combs that satisfy (1) there is some leaf
x of T with T (x) ∈ {⊥}×{0, 1} or (2) there are two distinct
leavesx, x′ of T with T (x) = (J, α) and T (x′) = (J ′, α′)
such thatJ ∩ J ′ 6= ∅.
Let us add for each possibleI ⊆ [1, 2n] andk ∈ [0, 2n−1], the

following rules toR: (1) Combs[1,k]

ak+1

→֒ s[1,k+1] if k is odd,

(2) Combs[1,k]

ak+1

→֒ s[1,k+1] if k is even, (3)Combs[1,k]\{i}
ai

→֒

s[1,k] for eachi ∈ [1, k − 2], (4) Combs[1,k]\{i}
ai

→֒ s[1,k] for

eachi ∈ [1, k − 2], (5) CombsI\{i}
ai

→֒ uI for eachi ∈ I if I

is non-game-conform, (6)CombsI
ai

→֒ s[1,2n] for eachi ∈ I,

(7) Combsϕ
ϕ
→֒ fail, and (8)Combsϕ ∪ Combs⊥

ϕ
→֒ succ.

One can easily verify that for eachT ∈ Combsϕ ∪ Combs⊥
we have T ∼ s[1,2n]. This following lemma establishes
correctness of the construction.

Lemma 13. Let I ⊆ [1, 2n]. If I is game-conform, then
(1) sI 6∼ sI , (2) ∀T ∈ CombsI : T 6∼ sI iff T |= ψ[νT],
and (3) ∀T ∈ CombsI : T ∼ sI iff T |= ψ[νT]. (4) If I
is non-game-conform, then for eachT ∈ CombsI we have
T ∼ uI .

Proof: We prove the lemma by downward induction on
|I| = 2n, 2n− 1,

Induction base.Let |I| be maximal, i.e.I = [1, 2n] and soI
is game-conform. Thus, we only have to prove Points (1),(2),
and (3).(1) We have to prove thats[1,2n] 6∼ s[1,2n]. Attacker
moves froms[1,2n]

ϕ
−→F succ and hence reaches a dead-

end. Defender can only respond withs[1,2n]
ϕ

−→F fail and
does not reach a dead-end. Thuss[1,2n] 6∼ s[1,2n]. (2) Let
T ∈ Combs[1,2n]. On the one hand, assumeT |= ψ[νT] or
equivalentlyT |= ϕ[νT]. Hence,T ∈ Combsϕ by definition,
so Attacker can moveT

ϕ
−→ fail in S(R) and thus reaches

a configuration that is not a dead-end, whereas Defender can
only respond withs[1,2n]

ϕ
−→F succ in F which is a dead-end.

HenceT 6∼ s[1,2n]. On the other hand, assumeT 6|= ϕ[νT].
HenceT ∈ Combsϕ and therefore HenceT ∼ s[1,2n]. Point
(3) can be proven similar to (2).

Induction step.Let I ⊂ [1, 2n]. Let us assume thatI is game-
conform, i.e.I = [1, k] for somek ∈ [2n− 1].
(1) If k is odd, then Attacker playss[1,k]

ak+1

−→F s[1,k+1] and

Defender can only respond withs[1,k]
ak+1

−→F s[1,k+1]. By
induction hypothesis we haves[1,k+1] 6∼ s[1,k+1], so s[1,k] 6∼

s[1,k]. If k is even, then Attacker playss[1,k]
ak+1

−→F s[1,k+1]

and Defender can only respond withs[1,k]
ak+1

−→F s[1,k+1].
By induction hypothesis we haves[1,k+1] 6∼ s[1,k+1], so
s[1,k] 6∼ s[1,k].
(2) Let T ∈ Combs[1,k]. We only treat the case wherek is
odd. Then recall thatψ[νT] = ∀xk+1∃xk+2 · · · ∀x2nϕ[νT].
On the one hand, assumeT |= ψ[νT]. Hence, in other words,
for each k + 1-extensionT ′ of T we haveT ′ |= ψ[νT ′].
Attacker can now plays[1,k]

ak+1

−→F s[1,k+1]. Defender cannot

play T
ak+1

−→ s[k+1] since s[1,k+1] 6∼ s[1,k+1] by Point (1)
of induction hypothesis. Defender only has the possibilityto
respondT

a
−→ T ′ in S(R) for somek + 1-extensionT ′ of

T . SinceT ′ |= ψ[νT ′] we haveT ′ ∼ s[1,k+1] by Point (2) of
induction hypothesis, henceT 6∼ s[1,k].
On the other hand, assumeT 6|= ψ[νT]. Thus, there is some
extensionT ′ ∈ Combs[k+1] of T such thatT ′ 6|= ψ[νT ′]. We

have to show thatT ∼ s[1,k]. • If Attacker playss[1,k]
ak+1

−→F

s[1,k+1], then Defender respondsT
ak+1

−→ T ′ and wins by
Point (2) of induction hypothesis. Conversely, if Attackerplays
T

ak+1

−→ T ′′ for some extensionT ′′ ∈ Combs[1,k+1] of T , we
distinguish two cases. In caseT ′′ 6|= ψ[νT ′′], then Defender
playss[1,k]

ak+1

−→F s[1,k+1] and wins by Point (2) of induction
hypothesis. In caseT ′′ |= ψ[νT ′′], then Defender responds
s[1,k]

ak+1

−→F s[1,k+1] and wins by Point (3) of induction hypoth-

esis.• If Attacker playss[1,k]
ak+1

−→F s[1,k+1], then Defender

plays T
ak+1

−→ s[1,k+1] in T (R) and vice versa. Defender
wins by establishing syntactic equivalence.• If Attacker plays
s[1,k]

ai−→F s[1,2n] for somei ∈ [1, k], then Defender responds
T

ai−→ T ′′ for someT ′′ ∈ Combs⊥ by labeling a leaf ofT and
vice versa. We know that each tree fromCombs⊥ is bisimilar
to s[1,2n]. • If Attacker playss[1,k]

ai−→F u[1,k]∪{i} for some
i ∈ [k + 2, 2n], then Defender respondsT

ai−→ u[1,k]∪{i}

and vice versa. Hence Defender wins by establishing syntactic

equivalence.• If Attacker plays T
ai−→ T ′′ for some i-

extensionT ′ ∈ Combs[1,k]∪{i} of T where i ∈ [k + 2, 2n],
then Defender respondss[1,k]

ai−→F u[1,k]∪{i} and vice versa.
By Point (4) of induction hypothesis, we haveT ′′ ∼ u[1,k],
hence Defender wins.
We omit the proof of Point(3).

Let I ⊆ [1, k] be non-game-conform and letT ∈ CombsI . We
have to prove thatT ∼ uI .
• If Attacker movesT

ai−→ T ′ for somei ∈ I and some
T ′ ∈ Combs⊥, then Defender responds withuI

ai−→F s[1,2n]

and vice versa, which results in a pair of bisimilar con-
figurations. • If Attacker movesT

ai−→ T ′ where T ′ ∈
CombsI∪{i} is an i-extension ofT , wherei ∈ [1, 2n] \ I and
I ∪ {i} is non-game-conform, then Defender responds with
uI

ai−→F uI∪{i} and vice versa. Defender wins by Point 2 of
induction hypothesis.• If Attacker playsuI

ai−→F s[1,k] (resp.
uI

ai−→F s[1,k]), i.e. in particularI ∪ {i} is game-conform,
then Defender responds withT

ai−→ s[1,k] (resp.T
ai−→ s[1,k])

and vice versa. Hence Defender wins by establishing syntactic
equivalence.• If Attacker playsT

ai−→ T ′ for somei-extension
T ′ ∈ Combs[1,k] of T , i.e. I ∪ {i} = [1, k] is game-conform,
then Defender respondsuI

ai−→F s[1,k] in caseT ′ |= ψ[νT ′]

and with uI
ai−→F s[1,k] in caseT ′ 6|= ψ[νT ′]. In the former

case Defender wins sinceT ′ ∼ s[1,k] by Point (2) of induction
hypothesis. In the latter case Defender wins sinceT ′ ∼ s[1,k]

by Point (3) of induction hypothesis.
In order to realize the initial round (as mentioned above)

we add the rulesstart
a1

→֒ s[1,1] andstart
a1

→֒ Combs[1,1] to R.
Theorem 12 now easily follows.

V. WEAK BISIMILARITY AGAINST FINITE SYSTEMS

Since weak bisimilarity checking can be reduced toEF

model checking, the following theorem follows from known
results.

Theorem 14 ([14], [11]). Weak bisimilarity checking
of RGTRS against finite systems is decidable in time
TOWER(O(n)).

Our main result in this section is a nonelementary lower bound
for weak bisimilarity checking of GTRS against finite systems.

Theorem 15. Weak bisimilarity of GTRS against finite systems
is nonelementary.

This is technically the most involved result. Although its
proof is based on the previous nonelementary lower bound
for strong bisimiliarity of RGTRS against finite systems, it
is not a straightforward adaption of the proof for strong
bisimulation of Section IV. In a nutshell, we mimic one such
rewriting rule L →֒ T of a RGTRS, whereL is a regular
tree language andT is an explicit ranked tree by simulating a
tree automaton forL via a sequence ofτ -transitions. However,
again due to the absence of a finite control unit, we are now
faced with new obstacles. Firstly, we have to provide bottom-
up computations for numerous tree automata and we have
to provide means of making these bottom-up computations

“visible” to the finite system. Secondly, we should not allow
two bottom-up computations at the same time although we
have to be able to realize the first obstacle. Thirdly, it is still
possible that during the bottom-up computation the scanned
tree is modified (in particular for the tree languageCombsϕ).
The finite system has to be able to react to this.

The goal of this section is to sketch our proof that weak
bisimilarity checking of GTRS against finite systems has
nonelementary complexity. Due to lack of space, we mainly
describe the difficulties that one has to deal with in the proof
in more details. The reader is recommended to consult our
technical report to get a feeling for the proof.
Recall that in Section IV we provided in the RGTRS rules
of the kindL →֒ c, whereL is a regular tree language and
c ∈ C is a configuration ofF. These rules allowed Defender to
punish Attacker in case e.g. Attacker played inF rather than
in S(R) or Attacker deviates from playing game-conform.
However, since in GTRS the rewriting rules only allow to
rewrite trees rather than trees from a tree language, we haveto
find a way of simulating the computations of tree automata. An
ad-hoc approach we follow is to simulate such a ruleL →֒ c
by a sequence ofτ -transitions inS(R) that correspond to a
bottom-up computationof the respective tree automaton.
Let us fix a game-conform combT . The major difficulties
that now arise are the following: (1) Due to theabsenceof
a finite control unit in our GTRSR we must provide in
the rewriting rules ofR the possibility to simulate fromT
all possible tree automata. Hence Defender must have the
possibility to react inF to each of such computations. (2)
Assume that we construct in our finite systemF a response
for Defender to react to an initialization of a bottom-up
computation of a tree language. We have to be guarantee
in F that each two such responses are not weakly-bisimilar
in order to distinguish different (intializations of) tree
languages. (3) Since we allow the bottom-up computation for
Combsϕ, Attacker can in theory initialize fromT a bottom-up
computation forCombsϕ although T 6∈ Combs[1,2n], i.e.
not all of the variables have yet been assigned. In doing so,
Attacker might add toT the remaining variables that have
not yet been assigned and threaten to label the leafs of comb
during the bottom-up computation. We have to provide a
mechanism for Defender to win always as soon as Attacker
initializes Combsϕ too early.

ACKNOWLEDGEMENTS:

We thank Thomas Colcombet, Lane Hemasspaandra,
Markus Lohrey and Carsten Lutz for discussions. Anthony
W. Lin is supported by EPSRC (EP/H026878/1).

REFERENCES

[1] E. Allender, M. Koucky, D. Ronneburger and S. Roy. The
Pervasive Reach of Resource-Bounded Kolmogorov Complexity
in Computational Complexity Theory. To appear atJCSS’10.

[2] A. Bouajjani, J. Esparza and O. Maler. Reachability Analysis
of Pushdown Automata: Application to Model-Checking. In
CONCUR’97, p. 135–150.

[3] A. Bouajjani, M. Müller-Olm and T. Touili. Regular Symbolic
Analysis of Dynamic Networks of Pushdown Systems. In
CONCUR’05, p. 473–487.

[4] W. S. Brainerd. Tree Generating Regular Systems.Information
and Control, 14(2):217–231, 1969.

[5] D. Caucal. On infinite transition graphs having a decidable
monadic theory.TCS290(1):79–115, 2003.

[6] H. Comon et al. Tree Automata Techniques and Applications.
Available at: http://www.grappa.univ-lille3.fr/tata.

[7] J. -L. Coquidé, M. Dauchet, R. Gilleron and S. Vágvölgyi.
Bottom-Up Tree Pushdown Automata: Classification and Con-
nection with Rewrite Systems.Theor. Comput. Sci., 127(1):69–
98, 1994.

[8] M. Dauchet, T. Heuillard, P. Lescanne and S. Tison. Decidability
of the Confluence of Finite Ground Term Rewrite Systems
and of Other Related Term Rewrite Systems.Inf. Comput.,
88(2):187–201, 1990.

[9] M. Dauchet and S. Tison. The Theory of Ground Rewrite
Systems is Decidable. InLICS’90, p. 242–248.

[10] J. Esparza and A. Podelski. Efficient algorithms for pre* and
post* on interprocedural parallel flow graphs. InPOPL’00, p.
1–11.

[11] P. Jancar, A. Kucera and R. Mayr. Deciding bisimulation-like
equivalences with finite-state processes.Theor. Comput. Sci.,
258(1–2):409–433, 2001.

[12] V. Kahlon and A. Gupta. On the analysis of interacting
pushdown systems. InPOPL’07, p. 303–314.

[13] A. Kucera and R. Mayr. On the Complexity of Checking
Semantic Equivalences between Pushdown Processes and Finite-
state Processes. Inf. Comput., 208(7):772–796, 2010.

[14] C. Löding. Infinite Graphs Generated by Tree Rewriting. PhD
Thesis, RWTH Aachen, 2003.

[15] D. Lugiez and Ph. Schnoebelen. The regular viewpoint onPA-
processes.Theor. Comput. Sci., 274(1–2):89–115,2002.

[16] R. Mayr. Decidability and Complexity of Model Checking
Problems for Infinite-State Systems. PhD thesis, TU-Munich,
1998.

[17] D. E. Muller and P. E. Schupp. The Theory of Ends, Pushdown
Automata, and Second-Order Logic.Theor. Comput. Sci., 37:51–
75, 1985.

[18] C. Papadimitriou. Computational Complexity.Addison Wesley,
1994.

[19] S. Qadeer and J. Rehof. Context-Bounded Model Checkingof
Concurrent Software. InTACAS’05, p. 93–107.

[20] J. Srba. Roadmap of Infinite Results.Bulletin of the EATCS,
78:163–175, 2002. Updated version: http://www.brics.dk/∼srba/
roadmap/

[21] L. J. Stockmeyer. The complexity of decision problems in
automata theory and logic. PhD Thesis, MIT, 1974.

[22] S. Tison. Fair Termination is Decidable for Ground Systems.
In RTA’89, p. 462–476.

[23] A. W. To and L. Libkin. Algorithmic Metatheorems for
Decidable LTL Model Checking over Infinite Systems. In
FoSSaCS’10, p. 221–236.

[24] A. W. To. Model Checking Infinite-State Systems: Generic
and Specific Approaches. PhD Thesis, University of Edinburgh,
2010.

[25] I. Walukiewicz. Pushdown Processes: Games and Model Check-
ing. In CAV’96, pages 62–74.

[26] I. Walukiewicz. Model Checking CTL Properties of Pushdown
Systems. In FSTTCS’00, p.127–138.

