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Abstract—Ground tree rewrite systems (GTRS) are an ex- extension of GTRS with more general rewrite rules that are
tension of pushdown systems with the ability to spawn new given by tree automataOn the negative side, it is known that
subthreads that are hierarchically structured. In this paper, we most linear-time and branching-time logics — such as LTL
study the following problems over GTRS: (1) model checking . .

EF-logic, (2) weak bisimilarity checking against finite sygems, and CTL — have undec!da_lbl_e model Checklng.problems over
and (3) strong bisimilarity checking against finite systemsWhile ~GTRS (cf. [14], [24]). This is in stark contrast with pushdow
they are all known to be decidable, we show that problems (1) systems, over which model checking monadic second-order
and (2) have nonelementary complexity, whereas problem (35 |ogic is still decidable [17].

shown to be incoNEXP by finding a syntactic fragment of EF  The precise complexities of some verification problems

whose model checking complexity is complete foP"E*F. The )
same problems are studied over a more general but decidable over GTRS and extensions thereof are also known. For ex-

extension of GTRS called regular GTRS (RGTRS), where regula  @mple, reachability and recurrent reachability are pofyiad
rewriting is allowed. Over RGTRS we show that all three time solvable even for RGTRS (cf. [14]). In contrast, model

problems have nonelementary complexity. We also apply our checking first-order logic with reachability predicateseov
techniques to problems over PA-processes, a well-known 88 GTRS has nonelementary complexity [21] since the infinite

of infinite systems in Mayr's PRS (Process Rewrite Systems) binary tree with a descendant can be easily generated by a
hierarchy. For example, strong bisimilarity checking of PA- y y 9 y

processes against finite systems is shown to be woNEXP, fixed GTRS (in fact, by a one-state pushdown system). The
yielding a first elementary upper bound for this problem. precise complexity of EF-logic model checking over GTRS

(and extensions thereof) was stated as an open questiof]in [1
The best known upper bound is currently nonelementarygwhil
Pushdown systems (PDS) are natural abstractions of sequée- best known lower bound is onRSPACE (which holds
tial programs with unbounded recursions. The problems afready for pushdown systems [2], [26]). Likewise, for the
verifying pushdown systems have hitherto been well-stlidiproblems of strong/weak bisimilarity checking againstténi
(cf. [2], [25], [26]). In addition to recursions, concur@nis in- systems over GTRS (and RGTRS), the best known upper
disputably another feature that commonly arises in realdvo bound is nonelementary, while the best known lower bound
programs. Multithreading is often introduced by desigug,,e. is only PSPACE (which holds already for pushdown systems
to achieve speedup or to make programming more convenig@B], [20]). Interestingly, the same nonelementary gapes ar
Ground tree rewrite systems (GTRS) (cf. [4], [8], [9]also currently present (cf. [20]) when these three problaras
[14]), which were also studied under the name ground termonsidered over similar infinite-state models like PA andPA
rewrite systems in the rewriting community, are an extemsigrocesses, which are well-known classes of infinite sysiams
of PDS with the ability to spawn new subthreads that aMayr's PRS (Process Rewrite Systems) hierarchy (cf. [16]).
hierarchically structured, which in turn may terminate andote that these three problems are oR$PACE-complete
return some values to their parents. While the rules of a P@8er pushdown systems (cf. [2], [13], [20], [26]).

rewrite a prefix of a given word, the rules of a GTRS rewrite o ) ) ) o
a subtreeof a given tree. The decidability status for manz@ontnbutmns. We investigate the following verification prob-

standard verification (i.e. model checking and equivalentglS over GTRS (and the extension RGTRS): (1) model
checking) problems over GTRS is well-known. For exampl&n€cking EF-logic, (2) weak bisimilarity checking against
reachability, recurrent reachability, and fair termipatiare finite systems, and (3) strong bisimilarity checking agains
decidable (cf. [4], [7], [14], [22]). Moreover, model chéok f|n|t_g systems. Such prob_ler_n§ are arguably the mos__t basic
first-order logic with reachability predicates is decidafg], Verification problems over infinite-state systems, esjligd
which implies the decidability of model checking the commol{!® concurrent setting (cf. [16]). Our main contributiontds
fragment of Computation Tree Logic (CTL) known as EFPINpoint the complexity of these problems. .
logic. In turn, by a reduction to EF-logic (as shown in [11]), 'N€ starting point of our paper is a proof that EF-logic
we also obtain the decidability of the problems of weakfsyro M0de!l checking over GTRS has a nonelementary complexity,
bisimilarity checking against finite systems over GTRS. |glready when considering EF formulas with two occurrences
fact, most of these decidability resu!ts are known to hOIlehis extension is analogous to hguefix-recognizable systerfts] extend

for regular GTRS (RGTRS) [14], which are a well-knowrpPDs.

I. INTRODUCTION



of EF operators that are nested. This shows that the existiriding Defender’s forcing techniques in the absence ofdinit
automata-based algorithms for the problem (cf. [7], [9#]]1 control unit is witnessed by the plethora of open problems
are in some sense optimal answering Ldding’s open questimimcerning decidability/complexity of equivalence chagk
[14]. The lower bound proof is achieved by an exponential rever infinite-state models like PA and PAD processes (cf])[20
duction from the decidable first-order theory over finite dgyr The lack of global finite control unit often means that Defeind
which is well-known to have a nonelementary complexity [21Hoes not have aimmediateway of punishing Attacker (i.e.
With the same arguments one can also show that Hennefyreing him not to do something bad). In the case of GTRS
Milner logic (i.e. the fragment with no EF operators) sufficer RGTRS, this means that at any given time Attacker may
to show the nonelementary lower bound over the more genemgplace any of (potentially unbounded number of) the selstre
class of RGTRS. that are present in the current configuration (i.e. a trae). |
We then proceed to look at the fragmétft; of EF-logic this paper, we provide the first methods for implementing
consisting of formulas with EF operator nesting depth attmoSefender’s forcing technique over infinite-state modelat th
one (i.e. in the parse tree of the formula, every branch hiaek finite-control unit resulting in strong (i.e. nonelemeary)
at most one occurence of the operator EF). This fragmédatver bounds.
is interesting for two reasons. Firstly, as mentioned above Our results for (R)GTRS are summarized in Table I.
our proof of the nonelementary lower bound for problem (1)
over GTRS requires precise'y two nested occurrences of Bﬁlated WOI‘k. Other related pr0b|emS over GTRS haVe been
operators. Secondly, there is a polynomial time reductiomf Shown to be decidable: confluence (cf. [8]), model checking
problem (3) to the problem of model checkifg; formulas fragments of LTL [23], and generalized recurrent reacfigbil
over GTRS if the formulas are represented as DAGs, whi¢#4]-
are Sing|e-exponentia”y more succinct than the standael t Several other extensions of PDS with multithreading capa-
representation of formulas. Our result is that the problehilities have been considered in [3], [12], [16], [19]. Angpn
of model checkingEF; over GTRS isPNEXP_complete (i.e. these extensions, the class of process rewrite systems [16]
within the second level of the exponential hierarchy). Thighich generalize both Petri nets and pushdown systems by
result cannot be obtained by simply applying the existingfoviding hierarchical structures to threads, seem to tigie
automata-based a|gorithms for EF-|OgiC model Checking ((qonnections with GTRS. It is interesting to note that there i
[7], [9], [14]). Moreover, a further analysis of our proofshks also a nonelementary gap between the best known upper/lower
that problem (3) is solvable imNEXP. This has substantially bounds for EF-logic model checking and strong/weak bisim-
closed the nonelementary gap with the best known lowkarity checking against finite systems over two proper sub-
bound for the problem, which iBSPACE. In fact, these proof classes of process rewrite systems known as PA-procesdes an
techniques can be easily applied to derive better uppestio?PAD-processes (cf. [15], [16], [20]). PA-processes haws al
bounds for verification problems PA-processes: (1) strofgen shown to be a good abstraction of parallel programs for
bisimilarity checking of PA-processes against finite systés the purpose of interprocedural data-flow analysis (cf. }10]

solvable incoNEXP giving the first elementary upper bound L . . Lo .
for this problem (cf. [20]), and (2) model checking EF—Iogici?Irgan'zat'oln' SﬁCthl’] I Icor_1ta|n? preélwlnﬁnes. In ESFe(I:tlo_n
over PA-processes iBNEXP-hard improving the best known @ W& analyze the complexity of model checking EF-logic
lower bound ofPSPACE for the problem (cf. [16]). (and its fragme_nts). we prove a n(_)nele_m_entary Iowe_r bound
We then consider two natural extensions of the problem E%nslt\rloT:?egijslltg]gigge?r:ﬁ;k\;cgai%?;?;tiIgzlt)iecsr\y:éims :;f
checking strong bisimilarity against finite systems oversT finite systems for GTRS are discussed in Section V. Section

(i) checking strong bisimilarity against finite systems iotree . S )
more general class RGTRS, and (ii) checking weak bisimil%iepends on Section IV which in turn depends on Section

ity against finite systems over GTRS. In contrast, it turns o ) L

that both of these extensions have a nonelementary cortplexi For dEt,aHEd proofs and applications to PA-processes, see
These results are the most technically involved in this pap(c?-:ur technical report.

with the lower bound proof of problem (ii) building upon the
lower bound proof of problem (i). Bisimilarity checking has
a standard interpretation as a game between two players (cfror eachi, j € Z, we denote byfi, j] the interval{i,i +
[13]) called Attacker (who aims to show non-bisimilarity)da 1,...,j7 — 1, j}. Throughout the rest of this paper, we fix a
Defender (who aims to show bisimilarity). The difficulty ofcountable set ofction labelsAct. For a setX let 2% denote
proving a complexity lower bound for bisimilarity checkingthe powersetof X.

problem is due to the asymmetry between the power Gobmplexity theory: The following complexity classes will
Attacker and Defender (Attacker is often more powerful) ibe of relevanceP, AP = PSPACE, NEXP, coNEXP, k-
such games. Known lower bound techniques for bisimilaritgXP, ELEMENTARY = | J, k-EXP. The classPNEXP denotes
checking, a.k.a. “Defender’s forcing”, are often implertegh deterministic polynomial time with oracle access N&XP.

by the help of finite control unit, which many infinite-statdt is in the second level of exponential hierarchy, which is
models have (e.g. PDS and Petri nets). The difficulty of prsa EXPSPACE. Unless stated otherwiseductionsare always

Il. PRELIMINARIES



Model checking GTRS | RGTRS | nd((Z)p) = nd(p), nd ((X7) ¢) = nd(p) +1. For eachi > 0,
we denote byEF; the syntactic fragment oEF restricted to
EFo PSPACE-complete formulas of EF nesting depth at mastWe remark thaEF,
EF, PNEXP_complete is Henessy-Milner logic (HM).
Strong bisimulation equivalence:Let &; = (Cy, A, {1
EFk, 122 NONELEMENTARY a € A}) and Gy = (C9,A, {-%| a € A}) be two
transition systems over a common set of actiéng\ relation
Bisimilarity R C Cy x Cy is astrong bisimulatiorif for each(cy,c2) € R
agg;;f;rgg'te GTRS RGTRS the following two conditions hold for each € A: (1) for
everyc, — ¢, there is somey ——, ¢, with (c},ch) € R
~ PSPACE - - - coNEXP and (2) for everyc, -2, ¢, there is somer; ——; ¢}
~ NONELEMENTARY with (¢}, c4) € R. We say thatc; is strongly bisimilar to
co (abbreviated byc; ~ c¢3) whenever there is a strong
bisimulation R such that(c;, ¢2) € R.
OVERVIE\;\II—AOBFLOEUIR ESULTS Weak bisimulation equivalence:Let us fix asilent actiorlr 4
A and letA,; = AU {r}. Moreover let&; = (Cy, A, {—1]

a € A}) and &y = (O, A, {-%2| a € A,}) be two

transition systems over the common alphahet We define

the binary relations=;= (—;)* and==;= (——;)*o0 —;
polynomial time many-to-one reductions. We define the towef—)* for eacha € A and for eachi € {1,2}. A binary
functon TOWER : N — N as TOWER(0) = 1 and relaton k2 C C; x C is a weak bisimulationif for each
TOWER(n + 1) = 2TOWER(™) for eachn € N. (c1,¢2) € R the following two conditions hold for each
First-order logic over words: A (binary) word is a finite a € A;: (1) for everye; — ¢} there is some:, == ¢}
sequence;as . .. a,, Wherea; € {0,1} for eachi € [1,n]that With (¢,c}) € R and (2) for every; ——, ¢, there is some
we also identify with the logical structui® = (U, Py, P, <), 1 ==1 ¢, with (¢},c}) € R. We say thatc; is weakly
whereU = [1,n] is the universe, unary predicat& = {i ¢ bisimilar to c; (abbreviated by:; ~ c;) whenever there is a
[1,n] | a; = a} for eacha € {0,1} and the binary predicate weak bisimulation? such that(c;,cz) € R. In the appendix
<. By aresult of Stockmeyer tHast-order theory over words we describe how bisimilarity corresponds to a game between
is nonelementary [21]. We assume in this paper that firsgrordAttacker and Defender.
formulas are given in prenex normal form. Ranked trees:Let < denote the prefix order a¥*, i.e.z <y
Transition systems and EF logic: A transition systemis for z,y € N* if there is somez € N* such thaty = zz, and
atuple & = (C,A{-%| a € A}), where C is a set = <y if z <y andz # y. A ranked alphabeis a collection
of configurations A C Act is some finite set ofactions of pairwise disjoint finite alphabetd = (A;);c for some
and —~C C x C is a set of transitions for each actionk > 0. For simplicity we identifyA with | J;,; A:. A (ranked)
a € A. Let us fix a subset. C A of &'s actions. By tree (over the ranked alphabet) is a mappingl’ : Dy — A,
=, we abbreviate J,.;, —*>. We prefer to use the infix Where for Dy C [1,k]" we have (1)Dr is nonempty, finite

notationc % d instead of(c,d) €. Similar remarks and prefix-closed and (2) for eache Dr with T'(x) € 4;
we havezl,...,zi € Dy andxj ¢ Dr for eachj > i.

apply to —. We say thai5 is finite |_n .caseC |§_f|n|te - we We say thatDr is thedomainof 7' — we call these elements
often use the notatiof to refer to finite transition systems. : .
nodes A leaf is a nodex with T'(x) € A,. We also refer

Formulas of EF-logic are given by the following grammar
whereX. C A: ¢ = true | ¢ | w Ao | (e | (550, We to ¢ € Dy as theroot of T. By Treesy4 we denote the set

. L of all ranked trees over the alphahdt Let T' be a ranked
introduce the usual abbreviationslse = —true, 1 V2 = tree and letz be a node off. We definezDy — {zy €
(-1 A —p2), [Elp = ~(E)-p, and [E)p = (%) ' T

* —1 _ *
We note that all of our lower bound proofs also hold for th L k] L| y € Dr} anda™"Dr = {y € [L,A]" | 2y € Dr}.
. ) . y T+* we denote thesubtree ofl" with root z, i.e. the tree
more restricted version oEF logic where each occurence ; 1 : |
. o = “with domain Dy,. = z~'Dy defined asT'*(y) = T(xy).
of the operator(>X*) satisfies¥ = A. For each transition !
a Let S,T € Trees4, and letxz be a node ofl’. We define
system& = (C,A,{—| a € A}) and each EF-formule . . Ay
: : d . T[z/S] to be the tree that is obtained by replacifig® in
define the set of all configurationfgo]s C C that satisfy
. : T by S, more formally Drp,/s1 = (Dr \ 2Drpie) U 2Dg
¢ by induction on the structure op as [true]s = C, . : :
ols = C\ [ele: [or A wols = [oils N [eals with T[xz/S](y) = T(y) if y € Dy \ 2Dy and S(z) if
rle ple, 1ov 7 zle T lerle L IP2lery, — 4 with » € Ds. Define|T) as the number of nodes in a
[(E)ele = {ceC|3de [[ZSD]LG e d}* [(E")¢le = treeT. We also use the notatianto refer to ranked trees, in
{ce C|3deloe : ¢ — d}. We write (6,¢) = ¢ particular subtrees.
wheneverc € [¢]s. The EF nesting deptmd(y) of an EF- Regular tree languagesA nondeterministic (bottom-up) tree
formula ¢ is inductively defined as followsad(true) = 0, automaton (NTAJs a tupleA = (Q, F, A, A), whereQ is a

nd(=p) = nd(p), nd(p1 A w2) = max{nd(¢1),nd(¢2)},



finite set ofstates /' C @ is a set offinal states A = (4;);c)  such a way that in the first phase it reaches from an input tree
is a ranked alphabet, and C Uie[k] Q" x A; x @ is the ahuge tree whose yield (a.k.a. frontier) we interpret as mlwo
transition relation By L(A) = {T € Trees, | there is an which will correspond to a word that witnessgatisfiability
accepting run ofd on T}. A set of treesS C Treesy is of an input first-order formula over finite words. This can
regular if S = L(A) for some NTAA. By Treesi" = {T € be realized by the first occurrence of the EF operator in the
Treesy : |T| < n} we denote the set of all trees ovdrwith input formula. In a second phase we mimic the assignment
at mostn nodes. of variables of the first-order sentence by labeling leaves
(Regular) ground tree rewriting systems:A regular ground appropriately. In the third and final phase, we check via a
tree rewriting system (RGTR® a tupleR = (A4,A, R), deterministic bottom-up tree automaton whether the hugg tr
whereA is a ranked alphabe#, C Act is finite set of actions, (whose leaves are now labeled with variables of the firseiord
and R is finite set of rewriting rules of the forni < [/, sentence) satisfies the remaining unquantified subformla.
whereL and L’ are regular tree languages given as NTA. &an be realized by the second occurrence of the EF operator.
ground tree rewriting system (GTRS) is an RGTRS such thatLet us now proceed with the proof. Fix a
each regular tree language is singleton (given expliciyle first-order sentence over binary wordsy =
transition system oR is G(R) = (Treesa, A, {-%=| a € A}), FziVas ... Jwon_1Vas, ¢(x1,...,22,). Without loss
where for eacl € A, we havel' - 7" if and only if there is of generality we will assuma (£ + for each binary word
somer € Dy and some ruld. <% I/ € R such thatT''* = §  w with |w| < 2. Our goal is to compute in exponential time

andT’ = T[z/S'] for someS € L and someS’ € L'. a GTRSR = (4,A, R), some initial treestart € Treesy,
Decision problems:In this paper we will be interested in theand anEF,-formula ¢ such that3w € {0,1}* : w = ¢ iff
following decision problems. start |= 0.

EF model checkingisks, given a (R)GTRR = (A4, A, R), a We define our set of actions a = {a; | i € [1,2n]} U

T € Trees 4 and anEF-formulay, to decide if(S(R),T) = ¢ {down, upy, upy,up,} and letP = ((22"1 U {1}) x {0,1}
holds? The analogous question can be asked for the sgienote the set groper leaf labelsThe first component label
tactic fragmentsEF; of EF. EF model checking of RGTRS L will not be relevant in this but in subsequent sections. We
is proven to be decidable in im&€OWER(O(n)) in [14]. define the ranked alphabdt= (A;);c10,1,2y of R as follows,
Strong Bisimilarity Checking against Finite Systerasks, where the seQ will be defined later:Ag = {start} U P U Q,
given a (R)IGTRSR = (A4,A,R), T € Treess, a finite A; = {root} and A, = {5 }.

3§ = (C,A,{-%| a € A}) and a configuratior: € C, to The regular tree languagéombs consists of precisely those
decide if T' ~ ¢ holds. Weak Bisimilarity Checking againsttreesT” € Trees, such that (1)1~ !(root) = {¢}, i.e. the (one
Finite Systemsasks, given a (R)\IGTRR = (A4,A,, R), and) only node ofl" that is labeled withroot is the root of

T € Treesy, a finite§ = (C,A.,{-%| a € A,}) and a T, (2) for each leaf: of T" we haveT(z) € P, (3) for each
configurationc € C, to decide ifT" ~ ¢ holds. inner nodez # ¢ of T" we have thatl'(x) = % and thatz

By a result from [11] (see also Theorem 1 and Corollafyas a left child that is a leaf, and finally (4) there is at least
1 of [13]) weak bisimilarity checking against finite systemene inner node: (with 7'(z) = %) that is the child of. For

is polynomial time reducible to model checkirigF logic, eachl C [1,2n] define the regular tree languagembs; to
where formulas are given in DAG representation. Analogguskonsist of precisely those comls € Combs such that (1)
strong bisimilarity can be reduced in polynomial time to rabd for each leafr of T' we haveT'(z) € 2! x {0,1} and (2) for
checking formulas of the kingh; A [A*]o, wherep,, o, are each two distinct leaves, 2’ of T' with T'(z) = (J,a) and

EF, formulas in DAG representation. T(z') = (J';a') we haveJ N J" = 0 and (3)1 = U{J |

x is a leaf of T andT'(z) = (J, a)}.
[11. M ODEL CHECKING Let us give an example for a tree @ombss 5 5 7}
A. EF, (resp. EFy) is nonelementary over GTRS (resp.
RGTRS) root
Ouir first result is that model checkiritfF» over GTRS has PN

nonelementary complexity, which answers the open question (0,0) *\

by Loding [14]. ({2,5},1) *\

Theorem 1. Model checkingeF, over GTRS is nonelemen- {34 1) *

tary. (0,0{ hﬂ, 1)

This proof of this theorem can easily be adapted to shdwtuitively, think of the sequence of theecond components
that model checkingeFy over RGTRS has nonelementanof leaf labels of T € Combs; (i.e. the second-component
complexity. This lower bound proof is achieved by an exprojection of the labels of the yield df) to correspond to
ponential reduction from the decidable first-order theorgro a binary word, and moreover, for each leafof 7', think
finite words, which is well-known to have a nonelementargf the first componenf T'(z) to correspond to the index
complexity [21]. Roughly speaking, we design our GTRS iget of variables{z,...,z,} of ¢ that have been bound to



the corresponding position in the word. Hence every conautomata construction (e.g. [14]) for the set of trees fsarig

in Combs; corresponds to a unique binary word along witla givenEF, formula with respect to a given GTRS since it
a variable valuation with domaif. By Combs, denote the suffers from a nonelementary blow-up. GivenEify, formula,
trees fromCombs; »,,; whose word and variable assignmenlet mrank(y) be themodality rankof ¢, i.e., the maximum

interpretation satisfies. nesting depth of-) operators inp.
The following three rewriting rules allow to reach all membe We now show thafy]s ) can be expressed as a union
of Combsy from the singleton trestart, wherea € {0, 1}: of regular tree languages, each of which can be expressed by
a tree automatond; of singly-exponential size. Furthermore,
root we can check whether somig(A;) intersects withL(.A) in
startd&vn /‘A’\ *d%! {*\* *d(O_Wf(@’a) nondeterministic time exponential || and|R|.
(0, a) > & Lemma 4. We have[y]sr) = U;c; L(A;), for a family

éAi}ief, where | A;| = exp(]¢l, |R|). One can nondetermin-
istically check whethef(A) intersects with somé (A4;) in
Ame exp(| ], I R).

Next, we add the following rules that allows to rewrite th
leafs of combs (this rewriting will correspond to assignin
variables to the leaves), wherec {0,1} and I C [1,2n]:
(I,a) & (I'u{i},a) for eachi € [1,2n] \ I. As we shall see in our proof below, the paramefef
In a next step, we compute in exponential timefqn a non- in the above lemma can be replaced byank(¢). As a
deterministic tree automatad = (Q, F, A, A) that accepts corollary, this yields the sam8lEXP upper bound for the
Combs,. We add the state s&p to A, of our GTRSR. Mmodel checking problem whep is given as a DAG.

Then we add the following rewriting rules t&8 (which will We now give a proof of Lemma 4. Let= mrank(y). We
realize the bottom-up computation of): (1) for each rule start by defining a standard equivalence relationToees 4
(0.4, a,q") € AN (Q? x A x Q) we add the rewriting rule baseld on the modality rank ﬁFq formulas: glgi\(en two trees
alq.q') <2 ¢", (2) for each rule(a,q') € AN (A x Q) T,T" € Treesy andi € N, wnte? ~; T' if for every
we add the rewriting rule: % ¢/, and (3) for each rule EFo formula ¢ with mrank(y) < it (6(R),T) = 4 iff

, # (6(R),T") = . In other wordsT" ~; T" iff T andT"’ agree
t(g’ root, (?t_) € AI M (Ci(x,){rfp?t} XtQ) whereq’ € I we add on every formula) with modality rank at most. It is obvious
e rewriting ruleroot(q’) — root.

: X that~; is an equivalence relation and thét~; ,; 7’ implies
Finally we definef as T ~; T'. Furthermore, it is well-known that the equivalence
(down®) (a)as] -+ (azn_1)]asn] <{up07up2}*> (up,) true. relation~; is pf ﬁn_ite index, i.e., the.number of equivalence
classes of~; is finite. For each equivalence claSsof ~,.,
One can easily check thatw € {0,1}* : w | + iff it is clear that either(&(R),T) = ¢ for all T € C, or
(8(R),start) = 6 which concludes the proof. S(R),T [~ ¢ for all T € C. For the former case, we say that
, . the equivalence class is positive otherwise, it isnegative
B. Model checking:F; over GTRS is complete f&"= 1o otore one idea is to define the fam{lyl; }sc; of NTAs
Our nonelementary lower bound proof above uses nestgg associating an NTA for each positive equivalence class
occurences of two EF operators. Our main result now ¢ ~,. Two problems with this approach, however, are: (1)
that prohibitting nested occurences of EF operators yiafds this does not give a good way of computing an NTA for each
elementary model checking complexity. positive equivalence class, and (2) this does not reveapparu
Theorem 2. Over GTRS model checking formul@s*)¢ with bound on the mdex O#T' . .
S C A andy € EF, is in NEXP, .We_ now defme a fmgr relat_|0EEi (for eachi € N) that
will give extra information which will help us solve these
Before sketching a proof of this theorem, we mention thevo problems. To this end, It be the maximum number of
following corollary, which can be easily derived by (1) esnodes in the tree appearing in any rewrite rulédinAlso, let
tablishing a polynomial space procedure usMigXP oracles N; = i - K. Given any two tree§’, T’ € Trees, we define
(invoked whenever subformulas of the forB*)¢y are seen), T' =; T" iff for each treet € Trees, either of the following
and (2) using the fact thd®SPACENEXP — pNEXP 7], is true: (i) the number of times appears as a subtree f
. . O NEXP equals the number of timgsappears as a subtree Bf, and
Corollary 3. Model checkingeF; over GTRSs is i * (i) the number of times appears as a subtree excedds
We now sketch the proof of Theorem 2. Let us now suppobeth forT and7”. In other words, I’ =; T" iff each subtree
that (X*)¢ is the given formulaR = (4, A, R) is the given with at mostN; nodes appears il and7’ the same number
GTRS, andTlj € Trees, is the input tree. We wish to checkof times (up to some threshold). As before, it is easy to check
whether(&(R), Tp) = (¥*)¢. Let us compute in polynomial that=; is an equivalence relation and th&t=;,; 7’ implies
time (cf. [14]) an NTAA that recognizes the spbstﬁ* (Tp) of T =; T'. To complete the proof of Lemma 4, we proceed
configurations ofR reachable fromY, by applications of rules as follows: (1) show thats; is finer than~;, (2) checking
with labels fromX. It now suffices to show how to computewhether a functiory : Treesti — [0, N;] actually describes
NTAs that recognizgy]s (). We do not use the standardan equivalence class ef; can be done rather efficiently, (3)



testing whether an equivalence class=of is positive (with mialin |f|. We now proceed to step (3). This step is rather easy
respect top) can be done rather efficiently, and (4) for eachince checking whether an equivalence ctas$ =, described
positive equivalence clags of =;, an NTA A¢ recognizing by a functionfc : TreesiNT — [0, N, ] is positive can be done
C can be computed rather efficiently. As we will see, these time exponential inr and |R|. Intuitively, the idea is to
will imply Lemma 4. For step (1) the following lemma canpick a representativé’ of C of exponential size and compute
be shown. a finite transition system consisting of the neighborhood’of
up to depthr. It turns out that the finite system also has size
exponential inr < |¢| and |R|. Therefore, we may use the
standard linear-time algorithm for model checking Henessy
Intuitively, this lemma holds since satisfaction BF, for- Milner (i.e. EFy) formulas over finite systems.

mulas of modality rank is only affected by the number of \We now proceed to step (4), which is the final step. For
occurences of trees of depfty (up to some threshold). this, we need to show how to compute an NTA recognizing

Let us now proceed to step (2). Recall that each equiyn equivalence clasg of =, described by a functiorfe :
alence clasg of =, can be described by a function fromTreesler — [0, N,].
fe : Trees3™™ — [0, N,]. The converse, however, is false, .
e.g., it is impossible to have a clagswith fo(7) > 1 fora Lemma 7. Given a functionf : Trees3 " — [0, N,] that
tree T with two nodes butfc(7”) = 0 for all trees7” with Witnesses an equivalence clasf =,, we can compute an
one node. Also note that the special case whefg) = 0 NTA recognizing preciselg in time | f[Po¥("IR . exp(r, |R)).

forall T € TreesiNT is impossible for an equivalence class

since trees have nonempty domain by definition. Therefor@lrst, compute the functiop : TreesS"" — [0, N,] using the

we need<5\c[) be able to check whet.her a given funCt'oa{bove algorithm, which avoids double counting of subtrees.
f : Trees3 " — [0, N,| actually describes an equivalence,

. . / . Let U denote all treeg € Trees5™"" such thatg(t) = N,.
class in=,.. To this end, recall first that any functigh that A 9(t) <N,
. . Let ¢y,...,t, be an enumeration of all tregsc Trees;
describes an equivalence class=of counts each subtree of
treesT in Trees5"™ with fc(T) > 0, i.e., if ¢ is a subtree of

with ¢(¢) > 0 without counting multiplicities. One can now
T, thent contributes to the value of(t). We will first define a design an NTA that counts that precisglit;) many nodes
new functiong : Trees5"" — [0, N,] that avoids this “double

occur such that the subtree rootedvatqualst;, and that an
counting”. This can be done by the following algorithm: ,,Se?rbltrary number of nodes can occur such that the subtree
g(T) :=0 for all T € Trees3"" and repeat the following for

rooted atv is a tree inU. It is easy to see that such an NTA
eachT € Trees3"" with f(T) > 0 (ordered by the number

of size exponential i and|R| can be computed.
of nodes, starting from the largest): (1) LT ‘= f(T) — 1, To summarize, the proof of Lemma 4 can now be done as
(2) g(T) = ¢g(T) + 1, (3) Go through all nodes of T

follows. The NTAsA; in the statement of Lemma 4 will cor-
(except whenu is the root ofT) and substracf (T'*) by 1 respond to positive equivalence classedescribed by some
(if becomes negative, then terminate abruptly)”. Obseag t

functions fc : Trees5™" — [0, N,]. Using the last step above,
if this algorithm terminates abruptly, thehdoes not actually

the NTA A, can be computed in time exponentiakimnd|R |
describe an equivalence classCofFurthermore, the algorithm if f is given as an input. Checking whethefA)NL(A;) # 0
runs in time exponential in < |¢| and |R| simply because

for somei requires us to nondeterministically guess one such
e s ] can e Shou, . Now, suppose ral!7C100 Sheck whelher [ scrbes an cuialnce docs
the functiong has been successfully computed from the giveign Ea R intersectiorg withl inpthe stgndard’ wa
function f. This implies thaty describes dorest F' with each guag Y-

treeT TreesiN" occurringg(T) many times. The original Let us discuss the ideas of a matching lower boundfey.

function f then describes an equivalence class iff such a forgmma 8. Over GTRS model checking formulda*)e,
can be further “connected into a big tree”. This last cheak cgyhere » € EF,, is NEXP-hard.
be done using the following lemma.

Lemma 5. For each treeT, T’ € Treesy,, it is the case that
T =; T impliesT ~; T".

Roughly speaking, this lemma can be proven as follows.
<N,

N, Proof sketch. The reduction is from the™ x 2™ tiling

L 6. The functi : Trees$ N,] de- o A ¥ :
emma e function f reesa — [0, ;] de problem [18]. The idea is to reach vids  some binary

scribes an equivalence class s, iff the function g " ith leaf h leafi i f deoih
TreesS™" — [0, N,] (and the forestF corresponding to ity oo Wit SUperieals, where superiealis a iree ot dept
one whose root has arityn. Each child of a superleaf will

can be successfully computed frgivby the above algorithm ither have a nullary symbak, or by, where the root of a

and that one of the following conditions are satisfied: (1 uperleaf contains a tile tvpe. Each superleaf correspmnds
ZTGTreeSEN" 9(T) = 1. (2) ZTGTreeSSNT g(T) > 1, and for P ype. P P

. a grid element(s,j) € [0,2" — 1] x [0,2™ — 1] where the
z?:guii:?tt?nnthwét?o?ggf :ﬂglﬁee e(Ij ;nﬁ sorjr]e t;]eaesféq’(.)}é,tag n nullary symbols of the first (resp. lastn) children encode
N nodgs ' (T, Th) (resp.j) in binary. The formulap is now a conjunction oEF

formulas expressing the followind1) A superleaf for(0, 0)
Observe that this lemma completes step (2) since this tegists,(2) whenever there are two superleafs corresponding to
can be performed in time exponentiakimnd|R| and polyno- the same(i, j) then their tile types are the san(®) if there



is a superleaf fofi, 7) with i < 2" — 1 (resp.j < 2™ — 1), againw [~ ¢ for each binary wordv with |w| < 2. Our goal
then there is a superleaf f¢i + 1,5) (resp.(¢,j + 1)), and is to compute in exponential time a RGTRS= (4, A, R),
finally (4) the horizontal and vertical tile conditions hold forsome initial treestart € Trees 4, Some finite transition system
every superleaf. 0O §=(C A {5 acA}), and a configurationy € C such
By encodingcircuit value into nodes of trees (gates andhat there is some € {0,1}* with w |= ¢ iff start £ sy. We
its evaluations will be represented in nodes in the tree) andll a subsef C [1,2n] game-conformf I = [1, k] for some
invoking a subroutine to the trees that realized the domiko€ [0,2n] and non-game-confornotherwise. Analogously,

problem one can prove a matching lower boundEéy. we call a combl" € Combs; game-conforn{resp.non-game-
Theorem 9. Over GTRS model checkingF; is hard for conform) if I is game-conform (resp. non-game-conform).
pNEXP Each game-conform conib € Combs|; ;) naturally induces a

valuationvy of variables with indices fronfil, k] to positions

Remark. PNEXP_completeness foEF; model checking over of the yield string defined b§'. Let ¢[vr]| denote the formula
PA-processes (cf. [16]) can be shown using the same tethat is obtained fronp by replacing the information given by
niques; see the technical report for a sketch. vr. This can be extended to defingvy]. Hence, e.gy[vr]
is of the form3xzy41 - - - Vza,p[vr] in casek is even.

In casel C [1,2n] andi € [1,2n] \ I we say a tree

Since strong bisimilarity checking can be reducedEt®e 77 ¢ Combs; ;) is ani-extensiorof 7' if 7" can be obtained
model checking, the following theorem is known. from T' by choosing exactly one leaf and replacing its label

Theorem 10 ([14], [11]). Strong bisimilarity checking I (¥) = (J,@) by (J U {i},a). Recall that byCombs, we

of RGTRS against finite systems is decidable in tinfgnote the trees froMombsy, 5, whose word and variable
TOWER(O(n)). assignment interpretation satisfigs Likeweise letCombsg

denote the trees fromombs; 5,) whose word and variable
Over GTRS, however, we obtain an elementary upper bounda¥signment interpretation does not satigfy

can be derived via a reduction to model checking formulas of g5, e5ch game-conformi we havetwo configurationss;

the kindy: A[A"]p2 wherep, andyp, areEFo DAG-formulas ang 57 in §. For each non-game-conforth we have one
and then applying our upper bound result from Theorem 2. [R¥responding configuration; in 3. In addition our finite

the above remark, this technique can also be used to Provg@temg has the configurationsucc and fail. We define as
coNEXP upper bound for the same problem over PA-process§siion |abelss — {a; |i € [1,2n]} U {p}.

(cf. [20])] The idea of the bisimulation game and difficulties

Theorem 11. Strong bisimilarity checking of GTRS againsThe high level idea of the strong bisimulation game goes as
finite systems is iroNEXP. follows, and uses Defender’s forcing techniques as e.d.3h [
initial round ) Attacker chooses a comb from Combsy; j

: . : i
b_As.Ia .mat;n result of th'ls sect|0r(lj we prove that ;’:;oné)r which he claims thaf” = ¢ [vr] holds. Defender can only
isimilarity between a regular ground tree rewrite syst 2 respondsg 4,5 s Hence the new pebble configuration

IV. STRONG BISIMILARITY AGAINST FINITE SYSTEMS

a finite system has nonelementary complexity. is (T, 5p1.1))

Theorem 12. Strong bisimilarity checking of RGTRS againshlext, we repeat the following round game, where the current

finite systems is nonelementary. pebble configuration i$7T), sy ;) whereT € Combsy;  for
each roundc = 1,...,2n — 1: (universal round) If k is odd,

Although the proof also goes via an exponential reducti : a1
from the first-order theory over finite words, due to the latk gﬂen Attacker is supposed to mi’:’ﬁ‘?‘" namelyts[lyk] s
| although the moves|; 1) — 3 3[1.x+1) IS possible.

finite control unit in (R)GTRS it is not merely an adaptatiorf[1.++1 o

. . k+1 vy
of the proof of the nonelementary lower bound ff, model Defender is now forced to move i&(R), namelyT — T'
checking over GTRS from the previous section. Roughfy)rsomek—i—l-extensioril”’ of T'. This response corresponds to
speaking, we implement Defender's forcing technique Bfi€ universal quantificationz,1 in 1. (existential round)
providing rewriting rules of the forml — T, where L is If & is even, then Attacker is supposed to move@iiR),
a regular tree language afidis an explicit ranked tree. Suchnamely T &5 77 for somek + 1-extensionT” of T'. This
rules will allow Defender to punish Attacker in case he dighove corresponds to the existential quantificaion; in .
not play in a way that corresponds to evaluating the firseordDefender’s only possible responsegns s, i M&- S[1,k+1]-
sentence on the huge tree. However, the biggest obstacle (figal round) Finally, when we are in the pebble configuration
have to overcome is the possibility of Attacker assigning &fT’, sj; 2,,]), Where T € Combsy; ,,), the actiony can be
arbitrary permutationof the variables in the input first-orderperformed that allows Attacker to win (via a rule & that
sentence to leaves of the tree. containsCombs,, on the left-hand side) iff" = p[vr].

Let us proceed to the proof of Theorem 12. We reuse sonmeorder to implement such a game, several difficulties arise
of the notation that was introduced in Section IlI-A. Agdet, Let us discuss these difficulties for the universal roune (th
us fix a first-order sentence interpreted over binary wagrds existential round can be treated dually) and give solutions
Jz1Vee ... Fzop_1Vxe,p(z1,...,p2,) and let us assumeto them. The question is: In the universal round, how can



we force Attacker to make ir§ the move s ak—*%g

spxt1? 1. Difficulty: What if Attacker movess; 5 5 5

S+ (which will exist in §)? Solution: We add the rule - a7 frsoteny
Combsy i) Eas S[L,k+1 t0o R such that Defender has the uL30(6) U[1 80i7} U1 3u{2n)
possibility to establish syntactic equivalence by respogd ’

T 44 3[Lk+1) In 6(R) and hence wing2. Difficulty: What e 3} azn  SUCC
if Attacker movesl” %3 T” in §(R) for somek+1-extension O ken,3) /D

of T rather than playing ir§? Solution: Defender can react

in §, depending on whether’ = [vp/] or T (= Ylvr]. S0 —»5[1 1] HS[l 2] HS[l 3] S[in—1] o> S[1.2n] Dai
In caseT” |= ¢[vr/] she can move tG[; ;1] and can win.

a1 az CL3 an @i

!
In caseT” [~ ¢[vr/] she can move t@; ;1) and can win. 5 > F01] > 112] > 5[0 STTa—1] o> SL20]
3. Difficulty: What if Attacker playsT -~ T’ where
i € [1,k]? l.e. Attacker plays an action that has already _ )
been played.Solution: We allow a simple transition to a @ Cfail

configuration ing from which Defender can surely win sinceFig. 1. A snapshot of and the outgoing transitions af; 3 in the strong
surelyT’ € Combs, and hencel” ¢ Combs,,. 4. Difficulty: ~ Pisimulation gamei(ranges ovef1, 2n]).

What if Attacker plays i’ -* T" in G(R) wherei > k-+1?

l.e. Attacker deviates from playing a sequence of actions
a1 - - - a, that correspond to assigning variables to positions of

the yield string of the tree. We also say that the current teaebk?. Thi.mf'mt%syséiw: uls zcall :hatt(; dentot(;:s the S(Tt off IC%n_I
configuration is non-game-conforrBolution: We allow in 'gurations ot and thatl - denotes fhe Set of proper jeat 'abels

; e ai as defined in Section IlI-A. We define the ranked alphabet
§ a special ransition for Defendef, iy = wivuug At " 04 1 of R as follows: Ay — {start} U P UC,
A; = {root} and A, = {%}. We note that the only relevant
The solutions to Difficulty 1 and 2 are standard and are smiliees (i.e. configurations) i®G(R) in our reduction whose
to a technique elaborated in [13]. The solution to Difficultyeafs are labeled wittC' are singleton treesTo R we add
3 is straightforward. The real difficultin the absence of a the rewriting rules &, ¢ for each transition: Lg cin §.
finite control (pushdown systems have a finite control) in thEurthermore, we add the following leaf rewriting rules, wéhe
game is Difficulty 4. We have to provide configurations i, ¢ {0, 1} (1) (I,a) <> 2, (Iu{i},a) for eachi e [ Qn]\[
§ that allow to remember the set of variables in the currem) (1, o) < (1L, o) for eachi € I, and (3)(L, o) <5 (1, )
treeT" that have been assigned. The difficulty that now arisgsy each; < 1. We define the regular tree languagembs | =
is that Attacker can continue labeling leafsihand pretend Combs \ ;¢ 1 2, Combs;. In other wordsCombs . consists
some moves later that the current ttEeés game-conform all 5 those Combg73 € Combs that satisfy (1) there is some leaf

of a sudden (and hence threaten to play the above-mentionegk 7 \ith T(z) € {L} x{0,1} or (2) there are two distinct
punishing moves for instance). We have to carefully des'%‘aveSx o' of T with T(z) = (J,a) andT(z') = (J', o)

transitions ing that sooner or later punish Attacker since hg,ch that7 N .J’ £,

was the one who deviated from playing game-conform. | ot us add for each possibleC [1,2n] andk € [0, 2n—1], the

The finite system: We now define the outgoing transmons,f . . ak+1
. I les t 1 b if k dd,
of sy, and of 57y, for each possible: € [0,2n — 1] (1) ofiowing T es 0ft: (1) Combspy g = S[iiay If K is 0

a ag _ 2) Comb i if kis even, (3 b

S[LA] k+1E S[Lkt1]) (2) 8[1 q _+13 SR (3) S[1.4] _)3 ( ) Ofm S(1, k]h % i[lkk-H e b ( )COm 51 JkIN{i} f;»

S if k is odd, (4)3ma —F5 spapy if ks even, si for eachi € | 2, (4) OMDBS[LkI\{i} = 57 for
eachi € [1,k — 2], (5) Combsp i &y for eachi e I if I

(5) s[1,4] —)g sp1,2n) for eachi € [1,k], (6) 31 n —>g
Si1.2n) fOr €achi € [1,k], (7) spu NG Ui k1o for is non-game-conform, (6fombs; & sp,2n) for eachi € I,

eachi € [k + 2,2n], (8) m BN ULk for each (7) Combs, <, fail, and (8)Combsz U Combs | <, succ.
i€ [k+2,2n], (9) sp 20 £z succ (10)S[2n] —>5 Sp,2n  One can easily verify that for eachi € Combsg U Combs .

for eachi € [1,2n], (11) Sam] —5 fail and the transition We have T ~ s} 9,). This following Iemma establishes
(12) fail i>3 £2il for eachz c [1 2n]. correctness of the constructlon

Let us now define the outgoing transitionswgf for each non-

game-conformy C [1,2n]: (1) ur —5 sj1,20) foreachi € I, | amma 13, Let 7 C [1,2n]. If I is game-conform, then
(2) ur oz urugqy for eachi ¢ I for which I U {i} is non- (1) s; + 57, (2) VT € Combs;: T + s iff T = ¥y,
game-conform, (3)i; =3 sy for eachi ¢ I for which and (3) VT € Combs;: T ~ 57 iff T |= ¢lvr]. (4) If I
I U {i} is game-conform, and (4); -3 S7uqi} for each is non-game-conform, then for eadh € Combs; we have
i ¢ I for which I U {i} is game-conform. T ~ uy.

A snapshot of§ is depicted in Figure 1.



Proof: We prove the lemma by downward induction on

[ =2n,2n~1,... equivalence.e If Attacker playsT %> T” for some i-
Induction baseLet |I| be maximal, i.el = [1,2n] and sol  extensionT’ € Combs yuq;; Of T wherei € [k + 2,2n],

is game-conform. Thus, we only have to prove Points (1),(2hen Defender responds; ;) s up1 kuqsy and vice versa.
and (3).(1) We have to prove that|; o, 7 371 2,]- Attacker By Point (4) of induction hypothesis, we haf&’ ~ wu 4,
moves fromsy oy Lg succ and hence reaches a deadhence Defender wins.

end. Defender can only respond wifi5,; —~5 fail and \We omit the proof of Poin(3).

does not reach a dead-end. Thys,,] % 52 (2) Let  LetI C [1, k] be non-game-conform and €t Combs;. We

T € Combsyy 2,). On the one hand, assunie |= +[vr] or have to prove thal’ ~ u;.

equivalently? = ¢[vr]. Hence, ' € Combs, by definition, o If Attacker movesT % T’ for somei € I and some
so Attacker can mov@ —> fail in &(R) and thus reaches 7’ € Combs, then Defender responds witly - 5[1,2n]

a configuration that is not a dead-end, whereas Defender @and vice versa, which results in a pair of bisimilar con-
only respond withs(; »,; 5 succ in F' which is a dead-end. figurations. e If Attacker movesT —- T’ where T’ &
HenceT + s} 2,). On the other hand, assurié (= o[vp]. Combsyyg;y is ani-extension ofl’, wherei € [1,2n] \ I and
HenceT € Combs; and therefore Henc& ~ s 5,). Point I U {i} is non-game-conform, then Defender responds with

(3) can be proven similar to (2). up urugiy and vice versa. Defender wins by Point 2 of
Induction stepLet I C [1,2n]. Let us assume thatis game- nduction hypothesiss If Attacker playsu; =g i1, (resp.
conform, i.e.l = [1, k] for somek € [2n — 1]. ur —>g S, I-€. in particular U {i} is game-conform,

(1) If k is odd, then Attacker plays 5 53 sp41) and  then Defender responds with =5 sp, (resp.T =5 57)
and vice versa. Hence Defender wins by establishing syatact
equivalencee If Attacker playsT” -*- T’ for somei-extension
T' € Combsyy i) of T, i.e. I U {i} = [1,k] is game-conform,
then Defender responds, >3 sp1 5 in caseT” = ¢[vy/]
and withu; 25z 5, in caseT” |~ 4p[vp]. In the former
case Defender wins sin@& ~ s ;) by Point (2) of induction

Defender can only respond withy ;] ‘”‘—*13 SLet1- BY
induction hypothesis we hav@, ;1) % 5[ x+1], SO S,k #
5. If K is even, then Attacker playsiy “5 Spar
and Defender can only respond with, ;) a’“—*%g S[1,k41]-
By induction hypothesis we havey ;i1 % 3[1x+1, SO

S[1,k] 7 S[LA]- . tle) ¢ uctio
(2) Let T € Combsy; ;). We only treat the case whereis Eyplgct)?:tsg) Icr)lftifrl‘(zlljittti(c-:;rnchaseozil‘;aigder wins sifice- S[L’:
odd. Then recall that)[vr] = Vog13xpia -+ Vaapplvr]. y yp '

In order to realize the initial round (as mentioned above)
we add the rulestart <% s; ;; andstart <> Combs; ;) to R.
Theorem 12 now easily follows.

On the one hand, assuriel= ¢ [vr]. Hence, in other words,
for eachk + 1-extensionT’ of T we haveT’ = ¢[vr].

Attacker can now play; x) ak—*ig s[1,k+1]- Defender cannot
play 7 %2 Sieg1] SINCE sy k1] 7 S[rey by Point (1) V. WEAK BISIMILARITY AGAINST FINITE SYSTEMS

of induction hypothesis. Defender only has the possibility  Since weak bisimilarity checking can be reducedB®
respondl” — 7" in &(R) for somek + 1-extensionT” of model checking, the following theorem follows from known
T. SinceT’ |= [vr] we haveT” ~ sy ;1) by Point (2) of regylts.

induction hypothesis, hencg # sy i) o )

On the other hand, assunie j£ [v7]. Thus, there is some Theorem 14 ([14], [11]). Weak bisimilarity checking
extensionT” € Combsy,;1 of T' such thatT” £ y[vr]. We of RGTRS against finite systems is decidable in time

have to show thal™ ~ s|; ;). e If Attacker playss|; y) Mg TOWER(O(n)).
spk1), then Defender responds Y+t and wins by Our main resultin this section is a nonelementary lower looun

Point (2) of induction hypothesis. Conversely, if Attacléays for weak bisimilarity checking of GTRS against finite system
T E T" for some extensiol™ € Combsy 1) Of T, We  Theorem 15. Weak bisimilarity of GTRS against finite systems
distinguish two cases. In case’ |~ ¢[vr~], then Defender g nonelementary.
plays s k) a’“—*ig s[1,k+1] @nd wins by Point (2) of induction o . i )
hypothesis. In cas@” = w[vp], then Defender responds Thls_ is technically the most involved result. Although its
S[1,k] ’1’“—*13 371,5+1] and wins by Point (3) of induction hypoth-]f)rOOf IS bas_eq on t_he previous nonel_emer)ta_lry lower bou_nd
; ki1 or strong bisimiliarity of RGTRS against finite systems, it
esis.e If f\ktt?cker playsspu —5 S[kr], then Defender i o o “straightforward adaption of the proof for strong
plays T == 3px.q in T(R) and vice versa. Defenderpjisimulation of Section IV. In a nutshell, we mimic one such
wins byv establishing syntactic equivalenedf Attacker plays rewriting rule L — T of a RGTRS, wherel is a regular
511,k —55 s[1,.2n) fOr somei € [1, k], then Defender respondsree language and is an explicit ranked tree by simulating a
T -5 T" for someT” € Combs by labeling a leaf o and  tree automaton fof, via a sequence af-transitions. However,
vice versa. We know that each tree frdfambs  is bisimilar again due to the absence of a finite control unit, we are now
to s(1,20). © If Attacker playssi; x —53 up,kuqiy for some  faced with new obstacles. Firstly, we have to provide bottom
i € [k + 2,2n], then Defender responds up,kKufiy  UP computations for numerous tree automata and we have
and vice versa. Hence Defender wins by establishing syatadb provide means of making these bottom-up computations



“visible” to the finite system. Secondly, we should not allow{3] A. Bouajjani, M. Muller-Olm and T. Touili. Regular Synotic
two bottom-up computations at the same time although we Analysis of Dynamic Networks of Pushdown Systems. In
have to be able to realize the first obstacle. Thirdly, it i st CONCUR'05 p. 473-487.

. . . 4] W. S. Brainerd. Tree Generating Regular Systeinformation
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