
Reasoning on Data Words over Numeric Domains

Diego Figueira
diego.�gueira@cnrs.fr

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800
Talence, France

Anthony W. Lin
awlin@mpi-sws.org
TU Kaiserslautern

Max Planck Institute for Software Systems
Kaiserslautern, Germany

ABSTRACT

We introduce parametric semilinear data logic (pSDL) for reason-

ing about data words with numeric data. The logic allows param-

eters, and Presburger guards on the data and on the Parikh image

of equivalence classes (i.e. data counting), allowing us to capture

data languages like: (1) each data value occurs at most once in the

word and is an even number, (2) the subset of the positions con-

taining data values divisible by 4 has the same number of a’s and

b’s, (3) the data value with the highest frequency in the word is

divisible by 3, and (4) each data value occurs at most once, and

the set of data values forms an interval. We provide decidability

and complexity results for the problem of membership and satis-

�ability checking over these models. In contrast to two-variable

logic of data words and data automata (which also permit a form of

data counting but no arithmetics over numeric domains and have

incomparable inexpressivity), pSDL has elementary complexity of

satis�ability checking. We show interesting potential applications

of our models in databases and veri�cation.

CCS CONCEPTS

•Theory of computation→Transducers;Automata over in�-

nite objects; Logic and veri�cation;Modal and temporal log-

ics; Regular languages; Complexity theory and logic.

KEYWORDS

Data words, logic and automata, Presburger arithmetic, counting,

complexity

ACM Reference Format:

Diego Figueira and Anthony W. Lin. 2022. Reasoning on Data Words over

Numeric Domains. In 37th Annual ACM/IEEE Symposium on Logic in Com-

puter Science (LICS) (LICS ’22), August 2–5, 2022, Haifa, Israel. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3531130.3533354

1 INTRODUCTION

A data word is a word, each of whose positions contains a label

drawn from a �nite alphabet (just like a normal word in formal

language theory), and a data value from some in�nite domain. An

example of data word over the alphabet A = {a,b} and data do-

mainD = Z is (a, 7)(b, 10)(a, 3)(a, 100). The study of automata and

logics over data words has spanned across nearly three decades,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

LICS ’22, August 2–5, 2022, Haifa, Israel

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533354

starting from the study of register automata [22] with a decid-

able emptiness problem. In addition to this basic register automata

model, there is nowadays a plethora of variants of register au-

tomata and other di�erent (andmostly incomparable)models of au-

tomata and logics over datawordswith a decidable emptiness prob-

lem including automata with pebbles [31], deterministic memory

automata over ordered data [4], data automata and two-variable

�rst-order logic [6, 39], alternating 1-register automata and LTL

with freeze quanti�ers [15], single-use register automata [8], nom-

inal automata [7], streaming data-string acceptors [2] and its vari-

ant over rationals [10], and symbolic �nite automata [14] and their

extension with registers [13].

Most of the automata models and logics over data words with

a decidable emptiness problem impose a severe restriction on the

operations that can be performed on the data values, i.e., mostly

only comparing data equalities is permitted. In practice, however,

we are interested in a speci�c domain theory like the set of integers

and permit operations like those that are allowed in the theory of

integer linear arithmetic. For example, consider the (SMT) theories

of arrays (e.g. see [9, 26]). Structurally, arrays can be construed as

data words without a �nite alphabet (or equivalently with a unary

�nite alphabet) and integers as the data domain. However, theo-

ries of arrays permit the full integer linear arithmetic to express

relationship among the data stored in the arrays, for which there

is only a very limited support by any automata model and logic

over data words. As we shall soon see, certain types of arithmetic

reasoning are also not supported by array theories.

The main goal of this paper is to initiate an investigation of how

integer arithmetic reasoning can be incorporated into automata

models and logics over data words. In doing so, our hope is to

bring automata/logic over data words closer to applications, e.g.,

in databases and veri�cation.

What type of arithmetic reasoning? In the literature of logic and

automata, many types of integer arithmetic reasoning have been

considered, which include the following:

(i) Integer arithmetic constraints on the data values in the

input word, e.g., two positions i < j in the word w =

w1 · · ·wn satisfy data(wi) > data(wj), data(wi) ≥ 100 and

data(wj) = 0 mod 2.

(ii) Letter counting and length, e.g., accept only words whose

numbers of as and bs coincide.

(iii) Data counting, e.g., every data value occurs at most once

in the input word.

(iv) Aggregation, e.g., the k-th largest (or most frequent) data

value is even.

Existing models supporting arithmetic reasoning usually permit

one but not other types of arithmetic reasoning. In practice, we

https://orcid.org/0000-0003-0114-2257
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3531130.3533354
https://doi.org/10.1145/3531130.3533354

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

are often interested in combining two such types of reasoning, as

explicated in Example 1.1 and Example 1.2.

Example 1.1. We have a daily log �le containing a sequence of

events of the form (a, i), where i is the user ID and a ∈ {−1,+1}

denoting that a dollar has been either spent (−1) or earned (+1).

Suppose that we want to ensure that each person earns at least as

much as he spends. Such a property combines (ii) and (iii), and is

to the best of our knowledge not expressible in any existing model

with decidable satis�ability/emptiness on data words.

Example 1.2. We have a log �le contining a sequence of pairs of

the form (id,heiдht) ∈ N2, where id is an id of a person in a group

and height the integer round-o� of the height of the person. For

example, we want to check that each id appears exactly once and

that the median of the heights in the sequence is between 170-180.

This property makes use of (i), (ii), and (iv) and, to the best of our

knowledge, is not expressible in existing decidable models.

State-of-the-art. As wementioned, most existing models for rea-

soning over data words do not support arithmetic reasoning over

numeric data domains. For example, guards over linear arithmetic

(i.e. (i) above) are not allowed in models like two-variable logics

FO2 (<,+1,∼) and data automata [5, 6]; this is FO2 over data words

with the order (<), successor (+1) and equal data-value (∼) binary

relations. Here, one can talk about two positions i < j in the in-

put word having the same data value data(i) = data(j), but for

example not data(i) < data(j). This limitation is partially lifted by

Schwentick and Zeume [39], in that two data values can now be

checked for inequality in their logic (e.g. data(i) < data(j)), at the

expense of disallowing the successor relation +1 over positions in

the input word (e.g. one cannot say now that j = i + 1, which can

be done in [6]). The strengths of these formalisms lie in data count-

ing, e.g., every datum occurs at most once in the word, or an even

number of times; the latter can be done in data automata, but not

in FO2.

Relaxing the ability (iii) to perform data counting, more mod-

els can come into consideration. Array Property Fragment (APF)

[9, 26] supports a full integer linear arithmetic reasoning on the

array indices as well as the elements (i.e. (i)). In an APF formula,

universal quanti�ers are restricted, so as to allow decidability of

satis�ability. APF can express, for instance, that an array is ordered.

Array Folds Logic (AFL) [12] addresses the limitations of APF in

performing length reasoning and aggregation (i.e. (iv)) at the ex-

pense of disallowing universal quanti�cation. Unlike APF, how-

ever, AFL cannot express properties like an array is ordered. We

also mention the model of nondeterministic looping word automata

with arithmetic [18], which inputω-words and consider the theory

of rational linear arithmetic. If one considers instead �nite words

and the theory of integer linear arithmetic, this model is strictly

subsumed by AFL. Another noteworthy model is that of Symbolic

Register Automata (SRA), which are an extension of symbolic au-

tomata [14] by registers that can be checked for equality. Such a

model is a one-way automata model allowing Presburger guards

on the currently seen data value, and can for example express that

all seen data are even, and that two data in every two consecu-

tive positions are di�erent (which is not expressible in AFL). We �-

nally mention the register automatamodel of [10] over rational lin-

ear arithmetic (inspired by the streaming transducer model in [3]),

extending the original model [22] of Kaminski and Francez. Here,

the registers are separated into control registers (on which guards

comprising order comparisons can be applied) and data registers

(allowing general arithmetic operations). The model supports ra-

tional arithmetic operations (i) and aggregation (iv), but not data

counting (iii).

In summary, existing logic and automata models on data words

still have limited support of arithmetic reasoning. In particular,

models that support data counting (e.g. two-variable data logic

and data automata [5, 6, 39]) typically do not permit arithmetics

on numeric data domain, letter counting and length reasoning,

and aggregation. Our goal is to identify a model that supports

these four features, while admitting decidable emptiness with el-

ementary complexity (unlike the case of FO2 (<,+1,∼) and data

automata) and interesting potential applications in databases and

veri�cation.

Contributions. We propose in this paper Parametric Semilinear

Data Logic (pSDL), which is an extension of Linear Temporal

Logic (LTL) for reasoning about data words with numeric data

(i.e. the data domain is the set of integers). Aiming to address

the four types of arithmetic reasoning (i)–(iv), we extend the stan-

dard LTL with four features: (a) Presburger formulas, which serve

two purposes, namely to check the data value located at a cer-

tain position, as well as to perform letter/data counting and length

reasoning, (b) parameters (a form of read-only variables), which

can be used in the Presburger formulas, (c) additional modali-

ties of the form 〈=〉β (resp. 〈,〉β) with 〈=〉β (y1, ...,yn) (φ1, . . . ,φn)

(resp. 〈,〉β (y1, ...,yn) (φ1, . . . ,φn)) carrying the meaning that one

can jump to precisely yi di�erent positions (other than the cur-

rent position) of the same data value satisfying φi (resp. di�erent

data value to the current position), where the integer linear arith-

metic constraint β (y1, . . . ,yn) holds. The resulting logic strictly

extends LTL and the modal logic fragment of FO2 (<,+1,∼) (essen-

tially, an extension of unary temporal logic [17] with the 〈=〉 and

〈,〉 modalities). More concretely, pSDL can express the property in

Example 1.1. Moreover, in the process of proving decidability for

pSDL satis�ability, we introduce the automata counterpart called

Parametric Semilinear Data Automata (pSDA), whose expressivity

strictly subsumes pSDL, as well as Parikh automata [23], symbolic

automata [14], and nondeterministic looping word automata with

integer linear arithmetic [18].

The following is the main result of the paper:

Theorem 1.3. Satis�ability for pSDL is in 2-NEXP and is NEXP-

hard. Satis�ability for the fragment SDLMNF of pSDL without pa-

rameters and linear arithmetic constraints on data values in minterm

normal form is NEXP-complete.

Note that k-NEXP means “k-fold nondeterministic exponential

time”. The decidability and the complexity results go through a

translation to pSDA, whose decidability and complexity of empti-

ness we also determine in this paper. Here, SDL denotes the frag-

ment of pSDL without parameters. The restriction to minterm nor-

mal form (MNF) is one that is often applied in the literature of sym-

bolic automata [14] — which enforces constraints on data values

to be the same if they intersect — and does not decrease the expres-

sivity of the model. For example, the constraints p (x) := x > 7 and

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

q(x) := x ≡ 3 (mod 4) have common solutions, but they can be

turned into four constraints in MNF of the form (¬)p (x) ∧ (¬)q(x).

Our theorem also implies that the aforementionedmodal logic frag-

ment of FO2 (<,+1,∼) is decidable in elementary time (more pre-

cisely, in NEXP), unlike the case of FO2 (<,+1,∼). This is themodal

logic on data words having the successor, predecessor, future, and

past binary relations as modalities, as well as the “equal data value”

and the “distinct data value” relations. As an aside, our proofs es-

tablish interesting connections to Presburger Arithmetic with star

operations [21, 34] and unary counting quanti�ers [38].

Our logic pSDL has NP-complete membership (since satis�abil-

ity of quanti�er-free Presburger formulas can be reduced to it),

though it becomes solvable in polynomial-time when we restrict

to SDL. We believe that these complexity classes could still allow

e�cient query evaluation (e.g. on our log �le examples) with the

help of SMT-solvers.

Last but not least, our results can be lifted to the data

domain Zk and Nk using a standard “�attening trick”, e.g.,

(a, 7, 8)(b, 7, 9)(a, 3, 100) over the alphabet A = {a,b} can be

mapped to (a1, 7)(a2, 8), (b1, 7)(b2, 9)(a1, 3)(a2, 100) over the al-

phabet A′ = {a1,a2,b1,b2}. This allows us to encode the prop-

erty in Example 1.2. More generally, this allows us to reason about

a sequence of events with applications (e.g. querying/static anal-

ysis over a time series data), and verifying invariants of array-

manipulating programs.

Organization. We provide a more detailed exposition of SDL

through examples and potential applications in Section 2. We �x

notation and basic terminologies in Section 3. For readability, we

start with the simpler fragment, i.e., SDL with 1-ary modalities, i.e.,

〈=〉β (ȳ) and 〈,〉β (ȳ) with |ȳ | = 1. We de�ne this logic in Section

4, provide the automata counterpart (called SDA), for which de-

cidability and complexity of nonemptiness are proven in Section

5. Translation from SDL to SDA is in Section 6. We then provide

the extensions to the general case — with parameters, and k-ary

modalities — in Section 7. We conclude in Section 8.

2 PSDL: EXAMPLES AND APPLICATIONS

We provide here an overview of our logic pSDL by means of exam-

ples, and discuss potential applications thereof. In the sequel, we

work with the data domain N of natural numbers, but our results

easily extend to the data domain Z of all integers.

Querying log �les. Wenow discuss Example 1.1 and Example 1.2.

We �rst show how to express the property in Example 1.1. This

example can already be done in SDL with 2-ary modalities. In par-

ticular, the formula expressing it is

G(−1→ 〈=〉y2>y1 (−1,+1)).

Intuitively, the formula says that it is globally the case that if a

user (say with a user ID id) spends $1 (i.e. -1) at a particular time

point on the day, then the user earns $ y2 on that day, which is at

least the total spending (i.e. $ y1 + 1). In particular, y2 here counts

the number of occurrences of positions labeled by (+1, id), while

y1 counts the number of positions (other than the current position,

which is labeled by (−1, id)) labeled by (−1, id). The above formula

is in fact in SDLMNF because no parameters are used and that no

arithmetic constraints on the current data values are applied.

We now proceed to the property in Example 1.2, which is a

simple reasoning over a relational table. For simplicity, we will

assume that only one person has the median height; this is eas-

ily extendable to the case when there are more persons with the

median height, but will make the formula messier. Using the �at-

tening trick, we consider the �nite alphabet A = {1, 2} indicat-

ing the �rst/second arguments in the tuple (id,heiдht). Thus, we

ensure that the input word is of the form ((1, ?), (2, ?))∗, where ?

can indicate any number. This can be enforced easily in LTL, e.g.,

G((1 → X2)∧(2∧X⊤ → X1)). Next, we enforce that each ID occurs

uniquely in the sequence. This can be enforced by the formula

G(1→ ¬〈=〉y≥1 1)

which says that globally one cannot jump to another tuple whose

�rst argument has the same ID as the current one. Indeed, when

parameterized with y ≥ 1, the construct 〈=〉y≥1ψ can be regarded

as the modality “jump to a position with the same data value sat-

isfying ψ ”. Finally, we use the parameter pmed to determine the

median

F(2 ∧ 170 ≤ x = pmed ≤ 180 ∧ 〈,〉y1=y2 (x < pmed , x > pmed)).

The formula �rst �nds the second argument of a tuple in the table.

Here, x denotes the current data value that is “saved” into pmed .

[In the sequel, x is mostly used to denote the current data value.]

This is required since ourmodality “forgets” the current data value,

which has to then be alleviated by the use of parameters. The �nal

conjunct simply says that there are the same number y1 = y2 of

people who are shorter than the person with the median height

and those who are taller than the person with the median height.

Observe that linear arithmetic constraints are used for two pur-

poses in the above formula: as counting constraints (e.g. y1 = y2),

as well as for limiting the values that certain locations in the input

word can take (e.g. x < pmed).

We show that the �rst query above can be checked in

polynomial-time. The second query, on the other hand, can bewrit-

ten in pSDL, whose membership problem is NP-complete (cf. The-

orem 7.3). We leave it for future work to determine whether SMT-

solvers could be used to e�ectively perform such a query evalua-

tion for pSDL. On the side of static analysis, Theorem 1.3 implies

that vacuity of our queries can be automatically checked.

Array-manipulating programs. We now show a simple applica-

tion of pSDL for verifying that the bubble sort preserves the invari-

ant Inv that “every value occurs precisely once”. We will model the

bubble sort algorithm as a repeated nondeterministic application

of swapping the element xi at position i and the element xj at po-

sition j such that i < j and xi > xj . To treat this more formally, we

need to model a transductionT for this swap relation.

We model T as the data language over the boosted alphabet

A = {a,b, c} containing all words w obtained by replacing the

ith position (a,di) (resp. jth position (a,d j)) in the data word

(a,d1) · · · (a,dn) by (b,di)(c,d j) (resp. (b,d j)(c,di)), for some i < j

anddi > d j . Observe that the subsequencew1 ofw whose �rst com-

ponents are a or b represents the initial array content, while the

subsequencew2 ofw whose �rst components are a or c represents

the result of applying T .

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

Example 2.1. Suppose T is to swap the 2nd and 4th elements

in the array [4, 7, 1, 2, 0]. We represent this array the word w =

(a, 4)(b, 7)(c, 2)(a, 1)(b, 2)(c, 7)(a, 0).

Thus, w1 = (a, 4)(b, 7)(a, 1)(b, 2)(a, 0) gives the original array,

while w2 = (a, 4)(c, 2)(a, 1)(c, 7)(a, 0) represents the array ob-

tained after applying the swap. �

Note that we can expressT quite easily in pSDL. First we express

that the projection to the �rst components is in a∗bca∗bca∗, which

is easily expressible in LTL (and so in pSDL). The following formula

φ expresses that the swap takes place:

F(b ∧ p = x ∧ X((p ′ = x ∧ p > p ′) ∧ F(b ∧ p ′ = x ∧ X(p = x)))).

Note that x is used to record the current data value, while the pa-

rameter p (resp. p ′) is used to save di (resp. d j).

To disprove that Inv is an invariant, we need to show that, there

exists an input data wordw such thatw1 satis�es Inv butw2 satis-

�es ¬Inv . The following SDL formulaψ expresses this:

G((a ∨ b) ∧ ¬ 〈=〉y≥1 (a ∨ b)) ∧ ¬G((a ∨ c) ∧ ¬ 〈=〉y≥1 (a ∨ c)).

The �nal formula is φ ∧ ψ , which is unsatis�able since Inv is an

invariant under T . The decidability of pSDL implies that this satis-

�ability can be algorithmically checked.

Other properties. We conclude this section by collecting a few

examples that can be expressed in pSDL. As far as we are aware,

these cannot be expressed in other formalisms with decidable sat-

is�ability/emptiness problem.

(P1) Each data value occurs at most once in the word and is

an even number.

(P2) Property (P1) and the subset of the positions containing

data values divisible by 4 has the same number of a’s and

b’s.

(P3) Each data value occurs an even number of times, and a

most frequent data is even.

(P4) Each data value occurs at most once, and the set of data

values forms an interval.

(P5) Each data occurs at most once, and the k-th biggest value

is the length of the word.

(P6) Each data value occurs the same number of times.

For example, (P3) can be expressed in pSDL as the conjunction of

G(〈=〉1≤y<p∧y≡1 (mod 2) ⊤).

and

F(x ≡ 0 (mod 2) ∧ 〈=〉p−1=y≥0⊤)

(Recall that 〈=〉 is ‘strict’, in the sense that it only counts occur-

rences di�erent from the current position’s.) Note that the param-

eter p is used as a placeholder for the most frequent data value

in the input word. As another example, assuming that each data

value occurs in the input at most once (which we saw is express-

ible in pSDL), (P4) can be expressed as a conjunction of F(x =

pmax) ∧ F(x = pmin) and

G(pmin ≤ x ≤ pmax) ∧ 〈,〉y=pmax−pmin ⊤.

Here, we save the maximum and minimum data values into pa-

rameters, and say that there are precisely pmax − pmin + 1 data

values in the input word. Because of uniqueness of data values in

the input word, we are guaranteed to have every data value be-

tween [pmin,pmax] in the input word. Note, however, that this

trick does not apply when we allow each data value to occur more

than once.

3 PRELIMINARIES

Basic notation. Let N = {0, 1, 2, . . . }. We write k to denote the

set {1, . . . ,k }. The set of �nite words over a domain A is denoted

by A∗. We will often work with �nite words over the cartesian

product of pairwise disjoint alphabets, e.g., w ∈ (A × B × C)∗. We

use letters A, B to denote �nite alphabets. For w ∈ (A × N)∗, we

write data(w) and lab(w) to denote the projection ofw ontoN and

A respectively. Given a word w ∈ A∗ and a set I ⊆ {1, . . . , |w |},

we write w[I] to denote the subword of w given by the indices in

I (e.g., w[{1, . . . , |w |}] = w,w[∅] = ε). We write w[i] as short for

w[{i }]. We write |w | to denote the length ofw .

Parikh images, semilinear sets, Presburger arithmetic. The

Parikh image of a word w ∈ A∗ over a �nite alphabet A, is a

function Π(w) : A → N assigning to each a ∈ A the number of

appearances of a in w . The Parikh image of a language L ⊆ A∗ is

Π(L) = {Π(w) : w ∈ L} ⊆ NA.

A linear set is a subset of Nk that can be described as an arith-

metic progression {v̄0+α1v̄1+· · ·+αnv̄n | α1, . . . ,αn ∈ N} for some

n ∈ N and v̄0, . . . , v̄n ∈ N
k . A semilinear set is a �nite union of

linear sets. Linear sets are represented by the o�set v̄0 and the

generators v̄1, . . . , v̄n , where numbers are represented in binary.

Presburger arithmetic refers to �rst-order logic in the language

of addition (+), inequality (≤), and modulo k (mod k) operators

for every k > 1, evaluated over the natural numbers (this is some-

times called extended Presburger arithmetic). For example, ∃x (x ≥

y+y)∧ ((y+x) mod 19 = y) is a Presburger formulawith one free

variable. Each Presburger formula φ (x1, . . . , xk) with k free vari-

ables denotes a set [[φ]]
def
= {(n1, . . . ,nk) ∈ N

k : (n1, . . . ,nk) |= φ}.

It is well-known that semilinear sets correspond precisely to Pres-

burger arithmetic [19] and to Parikh images of context free (or

regular) languages by Parikh’s Theorem [32]. A quanti�er-free

Presburger formula is any Presburger formula with no quanti-

�ers. Presburger formulas admit quanti�er elimination [20, 35]: for

every Presburger formula there exists an equivalent quanti�er-free

formula. An existential formula is a Presburger formula of the form

∃x1, . . . , xnφ, where φ is quanti�er-free.

We extend now Presburger Arithmetic with the star operator ∗.

For any formulaφ (x1, . . . , xn) andm ≥ 0, we permit formulasφ≤m

and φ∗ with semantics [[φ≤m]] := {t̄1 + · · ·+ t̄m′ :m
′ ≤ m and t̄i |=

φ for every i} ⊆ Nn (or ∅ ifm = 0), and [[φ∗]] :=
⋃

m≥0[[φ
≤m]]. We

de�ne, in an analogous way, sets S∗ and S≤m for any set S ⊆ Nn .

It is known that, for every existential Presburger formula φ, φ∗ is

also expressible by an existential Presburger arithmetic formula

of at most exponential size [34], and hence that S∗ is semilinear

assuming S is too. Observe that φ≤m can be expressed as follows:

φ≤m(x̄) = ∃y ψ ∗ (x̄y)∧y ≤m, where ψ (x̄y) = φ (x̄) ∧ y = 1. (⋆)

Note that variable y is used to ‘count’ the number of applications

ofψ ∗. Observe that in the translation above, the resulting formula

is of size logarithmic in m. Piskac and Kuncak [34] have shown

that existential Presburger formulas with star is NP-complete, so

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

long as they are of star-height 1 (i.e. no nesting of the star operator

is allowed). As recently shown in [21], this NP upper bound can be

generalized to any �xed star-height.

Complexity classes We use standard notations for complexity

classes [25], includingNP, PSPACE,k-NEXP, #P, PP, P#P, andNPNP.

For example, 2-NEXP is the class of problems solvable by a nonde-

terministic Turing machine in double exponential time. The class

#P is the class of counting problems, whose solutions correspond to

the number of accepting paths of a nondeterministic polynomial-

time Turing machine. Some of these classes have also oracle ac-

cess. For example, P#P = PPP (e.g. see [41]) corresponds to the

class of problems solvable in polynomial time with access to a #P

oracle. By Toda’s theorem ([40], see also [25]), P#P contains the

entire polynomial hierarchy (PH). The class NPNP corresponds to

the second-level of PH. Finally, we use the class PNP[log] [44] of

problems solvable in polynomial-time with logarithmically many

calls to an NP oracle. It is known that PNP[log] contains the entire

boolean hierarchy, which in turn contains NP, co-NP, DP, etc.

4 SEMILINEAR DATA LOGIC

We now formally de�ne Semilinear Data Logic (SDL). For read-

ability, we disallow parameters and restrict to 1-ary modalities.

This will be generalized in Section 7. SDL has an LTL-navigational

�avor, featuring common modalities such as Next, Future, Until,

Since, etc. On top of that, it has two kinds of extra modalities. One

modality 〈=〉β ψ which allows to state that β satis�es n, for n the

number of positions j di�erent from the current one with the same

data value and a certain propertyψ . And another modality 〈,〉β ψ

which works similarly but for positions with di�erent data values.

We use quanti�er-free Presburger formulas for testing for such

properties β . Further, we allow Presburger guards on data values.

The logic can express the following properties:

• “for every a-position there is a b-position with the same

value”,

• “there are no two a-positions with the same value”, or

• “there are no two consecutive positions with the same

value”.

The �rst two properties above can be expressed with previously

studied logics such as FO2 (<,∼), and the last one with FO2 (+1, <

,∼) logics of [6], using register automata [22] or freeze-LTL [16].

Further, using the linear arithmetic power, we can ‘count’ the num-

ber of positions with the same data value as the current one. One

can then express properties like “for every a-position with an even

data value there is an odd number of b-positions with the same

value”.

De�nition. The syntax of Semilinear Data Logic (SDL) over

wordsw ∈ (A × N)∗ is given by the following grammar:

φ F a | α | φ ∧ φ | ¬φ | φ U φ | φ S φ | 〈=〉β φ | 〈,〉β φ,

where a ∈ A, and α , β are quanti�er-free Presburger formulaswith

one free variable x . We call a and α base formulas of the logic

since they correspond to leaves in the grammar derivations. As

usual, we write ⊥ as short for a ∧ ¬a for some a ∈ A; ⊤ for ¬⊥;

and φ ∨ψ for ¬(¬φ ∧ ¬ψ).

For base formulas, we de�ne the satisfaction relation on a word

w ∈ (A × N)∗ as w, i |= α if z |= α , where z = data(w[i]); and

w, i |= a if a = lab(w[i]). The U, S modalities have the expected

LTL semantics, where we de�ne them as ‘strict’ modalities:w, i |=

φUψ (resp.w, j |= φ Sψ) if there is j > i such thatw, j |= ψ and for

every i < ℓ < j we have w, ℓ |= φ. As it is customary, we use the

standard LTL modalities as shorthands: Fφ
def
= ⊤Uφ, Xφ

def
= ⊥Uφ,

Gφ
def
= ¬F¬φ, F−1φ

def
= ⊤ S φ, X−1φ

def
= ⊥ S φ, G−1φ

def
= ¬F−1¬φ.

The remaining modalities are the key constructs for testing for data

values. Given a word w ∈ (A × N)∗, for any position 1 ≤ i ≤ |w |,

we have w, i |= 〈=〉β φ (resp. w, i |= 〈,〉β φ) if the number n ∈ N

of positions j ∈ {1, . . . , |w |} distinct from i such that (i) w, j |= φ,

(ii) data(w)[j] = data(w)[i] (resp. (i)w, j |= φ and (ii) data(w)[j] ,

data(w)[i]) is such that n |= β . Analogously, w, i |= 〈,〉β φ if the

numbern ∈ N of positions j ∈ {1, . . . , |w |} distinct from i such that

(i) w, j |= φ and (ii) data(w)[j] , data(w)[i] is such that n |= β .

Observe that we have opted for a ‘strict’ version of the 〈=〉

modality, in which we count positions di�erent from the current

one, to be in line with the semantics of U and S. However, a non-

strict version 〈〈=〉〉 of the modality is de�nable by 〈〈=〉〉β (y) (ψ)
def
=

(¬ψ ∧ 〈=〉β (y) (ψ)) ∨ (ψ ∧ 〈=〉β (y+1) (ψ)).

Remark. Notice that datamodalities are closed under taking dual,

in the sense: ¬ 〈=〉β ψ ≡ 〈=〉¬β ψ . Observe also that, for β (x) := x ≥

1, the formula 〈=〉β ψ evaluated at position i ofw tests whether there

exists some other position j with the same data value satisfyingψ . In a

similar way, we can test that there are at least ℓ (using β (x) := x ≥ ℓ)

or that there are an even number of such positions j (with β (x) := (x

mod 2 = 0)). Indeed, SDL allows for counting properties for each

data equivalence class. This particular restriction in fact subsumes

the modal logic fragment of FO2 (<,+1,∼). As we shall see later, our

logic has the advantage of admitting elementary complexity, in con-

trast to that FO2 (<,+1,∼) being not primitive-recursive. This is be-

cause FO2 (<,+1,∼) satis�ability can capture reachability of Petri

nets, which is decidable [24, 27, 29, 30] but not primitive-recursive

[11, 28].

Model checking. The model checking problem for this logic, that

is, the problem of given a formula φ and a word w ∈ (A × N)∗

whetherw, 1 |= φ is in polynomial time.

Proposition 4.1. The model checking problem for SDL is in poly-

nomial time.

Proof. Givenw ∈ (A×N)∗ and φ ∈ SDL, we use the following

standard algorithm to mark each position 1 ≤ i ≤ |w | with the set

of subformulasψ ofφ such thatw, i |= ψ . We proceed by induction:

we �rst treat base formulas, and then formulas containing already

treated subformulas.

For each base subformula ψ of φ, we can mark each position

i such that w, i |= ψ in linear time (remember that formulas are

quanti�er-free). For each subformulaψ Uψ ′ orψ Sψ ′ we can also

mark which positions satisfy the formula in linear time, assuming

ψ ,ψ ′ have been already treated. Similarly for ¬ψ and ψ ∧ ψ ′. For

a subformula of the form 〈=〉β ψ we proceed as follows: For each

data value d of w , we �rst count the number n of positions of w

having data d and satisfying ψ , and we then mark each position i

with data d as satisfying 〈=〉β ψ iff

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

• the position is marked as satisfying ψ and n − 1 |= β , or

• the position is marked as not satisfying ψ and n |= β .

Observe that this takes quadratic time. Finally, for a subformula

of the form 〈,〉β ψ we proceed similarly: For each data value d of

w , we count the number n of positions having data di�erent from

d and satisfying ψ , and we mark each position i with data d as

satisfying 〈,〉β ψ iff n |= β .

Once all the markings are done, we answer ‘yes’ if the �rst po-

sition is marked with the input formula φ, and ‘no’ otherwise. �

Satis�ability. Here we focus on the satis�ability problem, that

is, the problem of, given a formula φ whether there is some w ∈

(A × N)∗ such thatw, 1 |= φ.

We say that the formulaψ of SDL is inmintermnormal form

(MNF) if for every pair of distinct Presburger base subformulas

α ,α ′ thereof, we have that α (x) ∧α ′(x) is unsatis�able.1 In partic-

ular, (x ≥ 2) ∧ F(x ≤ 5) is not in MNF, but 〈=〉x ≥2⊤ ∧ F 〈=〉x ≤5⊤

is. Let SDLMNF be the set of formulas in MNF. We will show the

following in the next couple of sections.

Theorem 4.2.

(1) The satis�ability problem for SDL is in 2NEXP.

(2) The satis�ability problem for SDLMNF is NEXP-complete.

The gap between 2NEXP and NEXP is due to the cost of bring-

ing the logic to minterm normal form. Closing the gap seems to

be a di�cult problem, which underlies also the di�culties that are

dealt with in practice by symbolic automata algorithms [14]. We

leave this as an open problem. The NEXP-hardness proof can be

found in the full version of this paper, it follows by a reduction

from the exponential tiling problem [42]. We will show the upper

bound of items 1 and 2 by reduction to an automata model ‘SDA’,

or Semilinear Data Automata, that we introduce in the next sec-

tion. In fact, SDA is considerably more expressive than SDL. The

remaining sections will be dedicated �rst to de�ning and showing

decidability for SDA, and then to prove the upper bound for the sat-

is�ability of SDL, via an e�ective language-preserving translation

to SDA.

5 SEMILINEAR DATA AUTOMATA

We present an automata model which we call Semilinear Data Au-

tomata (SDA) and prove some basic properties (e.g. closures, de-

cidability) about them. We will show in Section 6 that it captures

SDL.

5.1 De�nition

For a �nite alphabet A, we de�ne a language acceptor of words

over A × N. A Semilinear Data Automaton (SDA) over A is a

pair (T , S) where, for a �nite alphabet B, we have:

(1) S is a semilinear set over NB × NB;

(2) T ⊆ (A × N)∗ × B∗ is a length-preserving transducer, de�ned

via a regular language LT ⊆ (A × Ψ × B)∗ for a �nite set Ψ

of quanti�er-free Presburger formulas φ (x) with one free vari-

able x , and some �nite alphabet B. T denotes the set of all

pairs (w,w ′) ∈ (A ×N)∗ × B∗ such that there exist a sequence

ψ1, . . . ,ψℓ of Ψ-formulas where:

1Note that we do not include formulas β of the 〈=〉β and 〈,〉β modalities.

(i) |w | = |w ′ | = ℓ,

(ii) data(w)[i] |= ψi for all i ∈ ℓ, and

(iii) (lab(w)[1],ψ1,w
′[1]) · · · (lab(w)[ℓ],ψℓ,w

′[ℓ]) is in LT .

We call B the output alphabet of T and Ψ its Presburger

alphabet.

A word w ∈ (A × N)∗ is accepted by such an SDA if there exists

somew ′ ∈ B∗ such that

(i) (w,w ′) ∈ T , and

(ii) for every n ∈ N, (Π(w ′[In]),Π(w
′[Īn])) ∈ S ,

where In = {1 ≤ j ≤ |w | : data(w)[j] = n} and Īn = {1, . . . , |w |} \

In .

Henceforth, we assume that semilinear sets S ⊆ NB × NB as

above are represented as quanti�er-free Presburger formulas, us-

ing variables x=
b
for each b ∈ B for the �rst B-components, and

variables x,
b

for each b ∈ B for the last B-components. Simi-

larly, regular languages are represented as non-deterministic �-

nite automata (NFA). We say that an SDA is in minterm nor-

mal form (MNF) if, for every pair of transitions (p, (a,φ,b),q),

(p ′, (a′,φ′,b ′),q′) of the NFA representing its transducerT , either

φ ∧ φ′ is unsatis�able or φ = φ′.

The de�nition of SDA is inspired by the Data Automata (DA)

model introduced in [6]. However, it is incomparable in expressive

power. On the one hand DA work with an abstract in�nite domain

equipped with an equivalence relation, and the transducer part of

DA is just a letter-to-letter transducer T ⊆ A∗ × B∗. It cannot ex-

press, e.g., the SDA property “each datum associated with the letter

a is even”. On the other hand, DA can test for regular properties

of equivalence classes (e.g., “every class is a word in (ab)∗”) which

cannot be expressed by SDA, whereas SDA can test for semilinear

constraints on the Parikh-image of equivalence classes (e.g., “for ev-

ery class there are as many a’s as b’s”) which cannot be expressed

by DA. Unfortunately, a generalization of both DA and SDA is in-

feasible: in the full version of this paper, we show that generalizing

both mechanisms (i.e., DA extended with semilinear constraints)

would result in a model with undecidable emptiness problem.

Proposition 5.1.

(1) SDA are e�ectively closed under union and intersection.

(2) SDA are not closed under complement.

(3) The universality, equivalence and containment problems for SDA

are undecidable.

Proof of item (1). Assume (T1, S1) and (T2, S2) are SDA. We

assume without any loss of generality that the output alphabet

B1 of T1 and B2 of T2 are disjoint. Let B1 = {a1, . . . , aℓ1 } and

B2 = {b1, . . . ,bℓ2 }.

(∪) Assuming S1 and S2 are given by Presburger formulas

φS1 (xa1 , . . . ,xaℓ1 ,ya1 , . . . ,yaℓ1) and

φS2 (xb1 , . . . ,xbℓ2
,yb1 , . . . ,ybℓ2

),

we simply de�ne S = [[φS]], where φS = φS1 ∨ φS2 . Finally, let

T = T1 ∪T2 —whence having an output alphabet B1 ∪̇B2. It then

follows that the language of (T , S) is the union of the languages of

the two input SDA.

(∩) For intersection, we essentially build the product of both au-

tomata, which here implies considering the cartesian product of

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

the alphabets (in the same way as intersection of DFA implies con-

sidering the cartesian product of the states).

This time we de�ne S as a set over NB1×B2 × NB1×B2 . Assum-

ing S1, S2 are given by formulas φS1 ,φS2 as before, we de�ne S as

φS ({xai ,bj ,yai ,bj }i ∈ℓ1, j∈ℓ2) = φ1 ∧ φ2, where

φα = φSα (t
x
a1 , . . . , t

x
aℓα
, t
y
a1 , . . . , t

y
aℓα

),

for α ∈ {1, 2}, txai =
∑

j∈ℓ3−α xai ,bj , t
y
ai =

∑

j∈ℓ3−α yai,bj for every

i ∈ ℓα . We �nally de�ne T = T1 × T2, that is, given w it outputs

u ∈ (B1 × B2)
∗ iff (w,uB1) ∈ T1 and (w,uB2) ∈ T2. We then have

that (T , S) denotes the intersection of the languages of the two

SDA. �

Proof of items (2) and (3). It is easy to see that SDA is e�ec-

tively equivalent in expressive power to Parikh automata [23]

when disregarding the numeric domain N. Since the latter has an

undecidable universality problem, it follows that the universality

problem for SDA is also undecidable. The undecidability for the

equivalence and containment problems follow thus as corollaries.

Analogously, the fact that SDA are not closed under complement

can be seen also as a consequence of Parikh automata not being

closed under complement. �

5.2 The Emptiness Problem for SDA

Theorem 5.2. The emptiness problem for

(1) . . .SDA is decidable in NEXP.

(2) . . .SDA in minterm normal form is in P#P and PNP[log]-hard.

(3) . . .SDA in minterm normal form whose transducers use no mod-

ular predicates is NP-complete.

Wewill �rst show decidability, and then explain how the bounds

follow from the proof.

Lemma 5.3. The emptiness problem for SDA is decidable.

Proof. LetA = (T , S) be a SDA. Let Φ be the Presburger alpha-

bet of T . For P ⊆ Φ, we say that x ∈ N has pro�le P if it satis�es

the formula πP (x)
def
=

∧

ψ ∈P ψ (x)∧
∧

ψ ∈Φ\P ¬ψ (x). Let P∞ be the

set of pro�les P such that |[[πP]]| = ∞ and let P<∞ be the remain-

ing ones. For P ∈ P<∞, let nP be the number of x ∈ N with pro�le

P . Observe that

nP = |[[πP]]|. (†)

Consider T seen as a regular language over A×Φ×B. By Parikh’s

Theorem [33], its Parikh image is semilinear, and an existential

Presburger formulaφT (x̄) representing it can be produced, even in

linear time [43]. Assume that x̄ (i.e., the free variables ofφT (x̄)) has

a variable xa,φ,b for every a ∈ A,b ∈ B and φ ∈ Φ, representing

the number of appearances of (a,φ,b) ∈ A × Φ × B in the word;

and let us assume B = {b1, . . . ,bm }.

We now need to verify whether a given satisfying valuation for

x̄ in φT is such that one can produce a word in the language of

A. For this, we will need to �rst guess how each number denoted

by the xa,φ,b variables is distributed across pro�les. Then we have

to check, separately for each pro�le P , that the guessed number of

elements with pro�le P is in agreement with the bound nP as de-

�ned above. Concretely, for a valuation of x̄ , consider the property

µ∼ stating that

(1) there exists a number xP
a,φ,b

∈ N for every possible a ∈ A,b ∈

B, pro�le P , and φ ∈ P , such that xa,φ,b =
∑

P ∋φ x
P
a,φ,b

, and

(2) letting ti =
∑

φ∈Φ,a∈A xa,φ,bi (i ∈ m) and Ŝ ⊆ NB be

{(x1, . . . ,xm) : (x1, . . . ,xm , (t1 − x1), . . . , (tm − xm)) ∈ S },

(i) for every P ∈ P∞, we have

*.
,

∑

a∈A,φ∈P

xPa,φ,b1
, . . . ,

∑

a∈A,φ∈P

xPa,φ,bm
+/
-
∈ Ŝ∗; and

(ii) for every P ∈ P<∞, we have

*.
,

∑

a∈A,φ∈P

xPa,φ,b1
, . . . ,

∑

a∈A,φ∈P

xPa,φ,bm
+/
-
∈ Ŝ≤nP .

The idea is that (1) checks that the partitioning of each xa,φ,b into

pro�les xP
a,φ,b

is consistent, and (2) guarantees that the numbers

are such that: for those pro�les for which we can generate as many

data tuples as we want, the sum of vectors belongs to Ŝ∗, and for

pro�les containing only nP -many data tuples, the sum of vectors

belongs to Ŝ≤nP . Formally, we obtain the following.

Claim 1. There exists x̄ ∈ NA×Φ×B such that x̄ |= φT and x̄ |= µ∼
if, and only if, A has a non-empty language.

(⇐) We �rst show the right-to-left direction of Claim 1. Assume

w ∈ (A × N)∗ is in the language of A, let w ′ ∈ (A × Φ × B)∗ be

the witnessing word of the transducer. We show that x̄ = Π(w ′)

satis�es both properties. The fact that x̄ |= φT goes by de�nition.

For the satisfaction of µ∼, assume xP
a,φ,b

is the number of positions

i of w ′ such that w ′[i] = (a,φ,b) and data(w)[i] has pro�le P (i.e.

data(w)[i] |= πP). It follows that it is a partition of x̄ satisfying

item (1) of µ∼. We now proceed to show item (2). Let w ′
B
be the

projection ofw ′ onto itsB component. For d ∈ N, let Id = {1 ≤ i ≤

|w | : data(w)[i] = d } and Īd = {1, . . . , |w |}\Id . For every j ∈ m and

d ∈ N, let xdj be the number of indices i such that data(w)[i] = d

and w ′
B
[i] = bj ; in other words (xd1 , . . . ,x

d
m) = Π(w ′

B
[Id]) for

every d . Observe that for every j,
∑

a∈A,φ∈P

xP
a,φ,bj

=

∑

d ∈N s.t. d |=πP

xdj . (†)

Now, let us �x some d ∈ N appearing in w , and suppose it has

pro�le P . We show that (xd1 , . . . ,x
d
m) ∈ Ŝ . By de�nition of Ŝ , this

happens if, and only if, (xd1 , . . . ,x
d
m , (t1 − x

d
1), . . . , (tm − x

d
m)) ∈ S ,

where (t1, . . . , tm) = Π(w ′
B
). Hence, (tj − x

d
j) is the number of

positions 1 ≤ i ≤ |w | such thatw ′
B
[i] = bj and data(w)[i] , d (i.e.,

the number of bj ’s inw
′
B
[Īd]). In other words, ((t1−x

d
1), . . . , (tm −

xdm)) = Π(w ′
B
[Īd]). Since w

′ is a witness for non-emptiness of A,

it follows that (Π(w ′
B
[Id]),Π(w

′
B
[Īd])) ∈ S , and by the remarks

above (xd1 , . . . , x
d
m) ∈ Ŝ . In view of (†), we must then have that

*.
,

∑

a∈A,φ∈P

xP
a,φ,b1

, . . . ,
∑

a∈A,φ∈P

xP
a,φ,bm

+/
-
∈ Ŝ≤α ,

for some α ∈ N which cannot be greater than the number of ele-

ments from N with pro�le P . This shows that both conditions (2i)

and (2ii) must hold true.

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

(⇒) For the left-to-right direction of Claim 1, suppose φT ∧ µ∼

has a satisfying assignment x̄ ∈ NA×Φ×B. We show how to build a

wordw ∈ (A×N)∗ in the language ofA. Since x̄ |= φT there must

be somew ′ = (c1,ψ1, c
′
1) · · · (cℓ ,ψℓ, c

′
ℓ
) ∈ LT such that Π(w ′) = x̄ .

Since x̄ |= µ∼ each index 1 ≤ j ≤ |w ′ | can be assigned a pro-

�le Pr j so that the word restricted to any �xed pro�le P satis�es
∑

a∈A,φ∈P (x
P
a,φ,b1

, . . . , xP
a,φ,bm

) ∈ Ŝ≤α for some α ∈ N such that

α ≤ nP if |[[πP]]| < ∞. For any such pro�le P , we can then take

any α-many pairwise distinct elements dP1 , . . . ,d
P
α ∈ N with pro-

�le P , and assign to each index j ∈ {1 ≤ j ≤ ℓ : Pr j = P }

some value dPi j so that the Parikh image restricted to each dPi is

in Ŝ . The �nal word w in the language of A is then any word

w = (c1,d1) · · · (cℓ ,dℓ) ∈ (A × N)∗ such that d j = d
Prj
i j

for ev-

ery 1 ≤ j ≤ ℓ. This concludes the proof of Claim 1.

We �nally show that these properties can be expressed in Pres-

burger arithmetic. Since as already discussed φT (x̄) is an existen-

tial Presburger formula, it only remains to show:

Claim 2. µ∼ (x̄) is expressible by a Presburger formula.

Let χS be a formula having, besides x̄ , some extra free variables

x1, . . . , xm , de�ned as

χS (x1, . . . ,xm , x̄)
def
= (x1, . . . , xm , (t1 − x1), . . . , (tm − xm)) ∈ S,

where ti =
∑

φ∈Φ,a∈A xa,φ,bi for every i ∈ m. For α ∈ {∗} ∪ N,

let φ〈α 〉
S

be the formula expressing that there exist variables ȳ

(one for each xa,φ,bi) such that χ ≤α
S

(x1, . . . , xm , ȳ) holds.
2 For

the sake of brevity we will henceforth abuse notation writing

∃cond(P,a,φ,b)x
P
a,φ,b

ψ to denote ∃xP1
a1,φ1,b1

· · · ∃x
Pz
az,φz ,bz

ψ for all

the triples Pi ,ai ,φi ,bi satisfying the condition cond. Now we de-

�ne µ∼ (x̄)
def
= ∃a∈A,b ∈B,P ⊆Φ,φ∈P x

P
a,φ,b

A ∧ B ∧C , where

A =
∧

a∈A,
φ∈Φ,
b ∈B

*.
,
xa,φ,b =

∑

P ∋φ

xP
a,φ,b

+/
-
,

B =
∧

P ∈P∞

φ
〈∗〉

S
*.
,

∑

a∈A,φ∈P

xPa,φ,b1
, . . . ,

∑

a∈A,φ∈P

xPa,φ,bm
, x̄
+/
-
,

C =
∧

P ∈P<∞

φ
〈nP 〉
S

*.
,

∑

a∈A,φ∈P

xP
a,φ,b1

, . . . ,

∑

a∈A,φ∈P

xP
a,φ,bm

, x̄
+/
-
.

It is straightforward to see that µ∼ is an existential Presburger

formula expressing properties (1) and (2). Hence, decidability fol-

lows from decidability of the satis�ability problem for Presburger

formulas. �

Corollary 5.4. For every SDA recognizable language L ⊆ (A ×

N)∗ , we have Π({lab(w) : w ∈ L}) ⊆ NA is semilinear.

As a corollary of the previous proof we obtain the bounds of

Theorem 5.2.

2Recall the de�nition of ·∗ and ·≤m of (⋆).

Proof of Theorem 5.2. First observe that, in the proof of

Lemma 5.3, µ∼ uses Ŝ
∗ in its de�nition. As already mentioned this

star operator preserves semilinearity [34], but the equivalent ex-

istential Presburger formulas without star may be of exponential

size. However, in [21] it is shown that the satis�ability problem for

existential Presburger formulas with star operators which happen

to be of star-height 1 (as is our case) is decidable in NP. Observe

that, in light of the translation (⋆), Ŝ≤nP can be written as an exis-

tential formula of star-height 1 of size logarithmic in nP and poly-

nomial in the formula expressing Ŝ . On the other hand, counting

the number of satisfying assignments of an existential Presburger

formula φ is in the counting hierarchy [1], in particular in #PNP .

This is because if [[φ]] is �nite, then any satisfying assignment for

φ use numbers which are at most exponential [36]; hence an NP

Turing machine can guess an assignment x̄ ∈ Nk and accept iff

x̄ |= φ, which necessitates a call to an NP procedure for existential

Presburger satis�ability. The number of accepting runs will then

correspond to the number of satisfying assignments.

Proposition 5.5 ([36, 45]). For any quanti�er-free formula φ we

have the following bounds. |[[φ]]| and ‖[[φ]]‖∞ are bounded by some

singly exponential function [36].3 Further, if φ does not use modular

predicates, |[[φ]]| can be computed in polynomial time [45].4

In view of Proposition 5.5, observe that we can compute, in #P,

|[[πP]]| for every pro�le P . Further, if no formula of the transducer

uses modular predicates, |[[πP]]| can be computed in polynomial

time.

Bearing all this in mind, we now proceed to extract the stated

upper bounds.

(1) Let (T , S) be a SDA. We compute, in exponential time, all the

nP ’s and we produce a singly exponential sized existential formula

φT ∧ µ∼ of star-height 1, whose satis�ability can be checked in

NEXP (in the size of the automaton).

(2) Let (T , S) be a SDA in MNF. Observe that in this case the

nonempty pro�les are just singleton sets, and hence that πP can

be equivalently expressed as π {φ } (x) = φ (x). In this case, we can

compute in P#P the nP ’s according to (†). Thus, the produced for-

mula φT ∧ µ∼ can be written as a polynomial sized existential for-

mula of star-height 1, which can be tested in NP. This gives an P#P

upper bound. The lower bound can be found in the full version of

the paper.

(3) As already observed, in this case n {φ } can be computed in

polynomial time, which was the bottleneck of the previous case.

Thus, we end up with an NP procedure.

NP-hardness follows by an easy reduction form SAT. Given a

Boolean formula φ in n variables x1, . . . , xn we produce the semi-

linear set S ⊆ NB × NB for B = {b1, . . . ,bn }, as a quanti�er-free

formula with free variables {y=i }i ∈n , {y
,

i }i ∈n as the result of replac-

ing each xi withy
=

i +y
,

i > 0 in φ. We �nally let the transducerT be

the set of all words (w,w ′) ⊆ (A×N)∗×B∗ such thatw ′ ∈ B |w | . It

is easy to check that the resulting SDA (T , S) is non-empty if, and

3 ‖S ‖∞ is the maximum value contained in any of the components of an element of
S .
4In fact, [45] shows that the number of solutions of an existential Presburger formula
with a �xed number of variables is polynomial-time computable.

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

only if, φ is satis�able. Observe that NP-hardness is independent

of using or not modular predicates in S , and of data classes. �

6 SATISFIABILITY OF SDL

In order to prove decidability for SDL, we show an e�ective trans-

lation from the logic to SDA. We focus here on the upper bounds

of items (1) and (2) from Theorem 4.2. The lower bound of item (2)

follows by a reduction from the exponential tiling problem [42] and

can be found in the full version of this paper.

For a formulaψ , we writeψ¬ to denoteψ ′ ifψ is of the form¬ψ ′,

or ¬ψ otherwise. Given a formula φ ∈ SDL, let sub(φ) = {ψ ,ψ¬ :

ψ a subformula of φ}. A set S ⊆ sub(φ) is amaximally consistent

set of φ on the alphabet A if it is ⊆-maximal with respect to the

following properties

(1) for every ψ ∈ sub(φ), ψ ∈ S i�ψ¬ < S ,

(2) for every ψ ,ψ ′ ∈ sub(φ), ψ ∧ψ ′ ∈ S i�ψ ∈ S and ψ ′ ∈ S ,

(3) there is a ∈ A s.t. a ∈ S and for every b ∈ A \ {a}, ¬b ∈ S .

Let us write MCS(φ) to denote the set of all maximally consistent

sets of φ (the alphabet being implicit). Two sets S, S ′ ∈ MCS(φ) are

one-step consistent if they satisfy

(a) ψ1 Uψ2 ∈ S i� {ψ1 Uψ2,ψ1} ⊆ S
′ orψ2 ∈ S

′;

(b) ψ1 Sψ2 ∈ S
′ i� {ψ1 Sψ2,ψ1} ⊆ S or ψ2 ∈ S .

We de�ne an exponential-sized SDA Aφ = (T ,S), whose lan-

guage consists of all data words that satisfy φ. We de�ne T ⊆

(A×N)∗×B∗ as a transducer over the output alphabetB = MCS(φ).

T is de�ned as the set of all pairs ((a1,d1) · · · (an ,dn), S1 · · · Sn)

such that

(i) φ ∈ S1;

(ii) for every 1 ≤ i < n we have that Si , Si+1 are one-step consis-

tent;

(iii) for every 1 ≤ i ≤ n we have that ai ∈ Si ;

(iv) for every 1 ≤ i ≤ n and Presburger formula α ∈ Si , we have

di |= α .

We de�ne S ⊆ NB × NB as the set denoted by the quanti�er-free

formula with variables {x=,S }S ∈B ∪ {x,,S }S ∈B consisting on the

conjunction of:

(I) x=,S > 0→ α ((
∑

S ′∈B,ψ ∈S ′ x=,S ′) − r) for every α ,ψ , S such

that 〈=〉α ψ ∈ S , where r = 1 ifψ ∈ S or r = 0 otherwise;

(II) x=,S > 0→ ¬α ((
∑

S ′∈B,ψ ∈S ′ x=,S ′)−r) for every α ,ψ , S such

that ¬ 〈=〉α ψ ∈ S , where r = 1 ifψ ∈ S or r = 0 otherwise;

(III) x=,S > 0 → α ((
∑

S ′∈B,ψ ∈S ′ x,,S ′)) for every α ,ψ , S with

〈,〉α ψ ∈ S ; and

(IV) x=,S > 0 → ¬α ((
∑

S ′∈B,ψ ∈S ′ x,,S ′)) for every α ,ψ , S with

¬ 〈,〉α ψ ∈ S .

Observe that S is a single exponential quanti�er-free formula.

Therefore Aφ is computable in exponential time. Hence, in the

light of Theorem 5.2–(1) we obtain a 2NEXP upper bound as stated

in item (1) of Theorem 4.2. Further, if φ is in MNF, thenAφ is too.

Observe that the size of base formulas in φ is logarithmic in terms

of the size of Aφ . This means that the cardinalities |[[πP]]| that

need to be computed for every pro�le P (which are singleton since

we are in MNF) are at most polynomial in Aφ , and can then be

computed in space logarithmic in Aφ . With this in mind, follow-

ing the upper bound proof of Theorem 5.2–(2), we obtain a non-

deterministic polynomial time algorithm in the size of Aφ for its

non-emptiness. This then yields the NEXP upper bound of Theo-

rem 4.2–(2).

Lemma 6.1. A word is accepted by Aφ if, and only if, it satis�es

φ.

Proof. (⇐) Suppose �rst w, 1 |= φ and let us show that w

is accepted by Aφ . Let w
′ be a word of length |w | whose i-th

position is labelled with {ψ ∈ sub(φ) : w, i |= ψ }, for every i .

It is easy to verify that (i) w ′ ∈ B∗, (ii) (w,w ′) ∈ T , and (iii)

(Π(w ′[Id]),Π(w
′[Īd])) ∈ S for every d ∈ N, Id = {1 ≤ i ≤ |w | :

data(w)[i] = d }, and Īd = {1, . . . , |w |} \ Id .

(⇒) Suppose now that w ∈ (A × N)∗ is accepted by Aφ , and

let us show that w, 1 |= φ. Let w ′ ∈ B∗ be the witnessing word

used for the acceptance ofw . We will show that for every position

i and subformulaψ :ψ ∈ w ′[i] iffw, i |= ψ . We show this by induc-

tion on the size of ψ . The base case is when ψ is either (a) a letter

a ∈ A which follows by condition (iii) in the de�nition ofT , or (b)

a Presburger formula α which follows by condition (iv). Boolean

combinations follow by induction as a direct consequence of the

de�nition of MCS(φ).

The Until modality follows by applying the the one-step-

consistency: ψ U ψ ′ ∈ w ′[i] iff there is some i ′ > i such that

ψ ′ ∈ w ′[i ′] and for every i < j < i ′ we have ψ ∈ w ′[j]. The Since

modality follows analogously.

Consider �nally a subformula of the form 〈=〉α ψ ∈ sub(φ), and

let d = wN[i]. By the semilinear constraint S, we have 〈=〉α ψ ∈

w ′[i] if, and only if, the number n of distinct positions of w ′[Id]

containing ψ is such that n |= α . By induction, this happens iff

there are n positions 1 ≤ i1 < · · · < in ≤ |w
′ | such that w, i j |= ψ

for all j ∈ {1, . . . ,n}. Hence, 〈=〉α ψ ∈ w
′[i] i� w, i |= 〈=〉α ψ . The

case of 〈,〉α ψ is analogous. �

Corollary 6.2 (of Lemma 6.1 and Corollary 5.4). The spec-

trum (i.e. the set of sizes of models) of any SDL formula is semilinear.

7 EXTENSIONS

We show in in this section how to extend our results with param-

eters and k-ary modalities.

7.1 Adding parameters

Adding parameters to SDL. We use pSDL to denote the exten-

sion of SDL with parameters. The de�nition is the same as be-

fore but now all Presburger formulas (base formulas and formulas

used in modalities) may use some extra free variables p1, . . . ,pt
which correspond to the parameters. Now the satisfaction rela-

tion w, i |=σ φ is de�ned relative to some parameter valuation

σ : {p1, . . . ,pt } → N. For any Presburger base formula α , we de-

�ne w, i |=σ α iff x,σ |= α , where x = data(w[i]). Given a word

w ∈ (A×N)∗, for any position 1 ≤ i ≤ |w |, we havew, i |=σ 〈=〉β φ

(resp. w, i |= 〈,〉β φ) iff the number n ∈ N of positions 1 ≤ j ≤ |w |

such that (i) w, j |=σ φ, (ii) data(w[j]) = data(w[i]) and (iii) j , i

(resp. (i) w, j |= φ and (ii) data(w[j]) , data(w[i])) is such that

n,σ |= β . Finally, w, i |= φ holds if there exists some σ such that

w, i |=σ φ.

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

Adding parameters to SDA. To derive decidability and complex-

ity of pSDL, we extend SDA with parameters, which we call para-

metric SDA (pSDA). A parametric SDA (pSDA) with t parame-

ters, is a tuple (T , S) as before, but the formulas in the transitions

of T may also use some parameters p1, . . . ,pt . Now T is a regu-

lar language over A × Ψ × B, where Ψ a �nite set of quanti�er-

free Presburger formulas with free variables x,p1, . . . ,pt , and S is

a semilinear set over NB ×NB ×N{p1, ...,pt } . Acceptance is de�ned

analogously: A wordw ∈ (A×N)∗ is accepted by (T , S) if for some

w ′ ∈ B∗ and valuation σ ∈ N{p1, ...,pt } , we have

(i) (w,w ′) ∈ Tσ , whereTσ is the transducer without parameters

obtained by replacing each pi with σ (pi),

(ii) for every x ∈ N, (Π(w ′[Ix]),Π(w
′[Īx]),σ) ∈ S .

where Ix = {1 ≤ j ≤ |w | : data(w[j]) = x } and Īx = {1, . . . , |w |} \

Ix .

This model is still closed under union and intersection. The con-

struction is exactly as in Proposition 5.1 (item (1)) assuming, with-

out any loss of generality, that the parameter names used by both

automata are disjoint.

We show that the decidability proof of Lemma 5.3 can be

adapted to having parameters.

Theorem 7.1. The emptiness problem for pSDA is in NEXP and

NPNP-hard.

Proof. For the upper bound, suppose the pSDA automaton

A = (T , S) has t parameters p1, . . . ,pt andT is in minterm normal

form (that is, in minterm normal form for every possible instantia-

tion of the parameters). We follow closely the proof of Lemma 5.3.

The �rst di�erence being that now φT has some t extra free vari-

ables p1, . . . ,pt . We will need to adjust µ∼ to take into account the

parameter valuations. Observe that each nP may depend on the as-

signment of parameters p1, . . . ,pt . The crux of the proof will still

be to produce a Presburger formula φ such that φ is satis�able if

and only if A has a non-empty language. But in order to do this,

we need to use two constructs in the logic, which preserve semi-

linearity, and which we describe next.

Given a Presburger formula φ (x̄) and a fresh variable y let

φ≤y (x̄) be a formula with free variables x̄y. Its semantics is such

that φ≤y (x̄) is satis�ed by a valuation ỹ of y and n̄ of x̄ if n̄ |=

[[φ]]≤ỹ where, recall,

C≤ỹ = {x̄1 + · · · + x̄ỹ′ : ỹ
′ ≤ ỹ and x̄i ∈ C for every i }.

Observe that [[φ≤y]] is e�ectively semilinear, de�nable by the same

star-height 1 formula of (⋆): φ≤y (x̄) = ∃y′ψ ∗ (x̄y′)∧y′ ≤ y, where

ψ (x̄y′) = φ (x̄) ∧ y′ = 1. It then follows that φ
〈y〉
S

(x̄) is de�nable as

a star-height 1 existential formula.

Consider the following unary counting quanti�er

∃=xy ψ (y,p1, . . . ,pt) having x,p1, . . . ,pt as free variables,

which expresses that, for a given assignment p̃1, . . . , p̃t ∈ N of

p1, . . . ,pt and x̃ ∈ N of x , there are exactly x̃ many di�erent

valuations ỹ ∈ N of variable y such that (ỹ, p̃1, . . . , p̃t) |= ψ . It

was shown in [38] that such a quanti�er preserves semilinearity.

Although the complexity was not explicitly mentioned in the

paper, the algorithm of [38] could be easily adapted to produce

an equivalent existential Presburger formula (without counting

quanti�ers) in single exponential time. See the full version of

the paper for more details. Observe that given an assignment of

p1, . . . ,pt , the number of equivalence classes with pro�le P ⊆ Φ

is given by the satisfying valuation of y in the formula

ρP (y,p1, . . . ,pt)
def
= ∃

=yx
∧

φ∈P

φ (x,p1, . . . ,pt) ∧

∧

φ∈Φ\P

¬φ (x,p1, . . . ,pt).

Hence, for a given assignment σ ∈ N{p1, ...,pt } we have that there

are �nitely many distinct equivalence classes with pro�le P ⊆ Φ if,

and only if, σ |= ∃y ρP .

We also de�ne the in�nite version ρ∞
P
of ρP :

ρ∞P (p1, . . . ,pt)
def
= ∃

∞x
∧

φ∈P

φ (x,p1, . . . ,pt) ∧

∧

φ∈Φ\P

¬φ (x,p1, . . . ,pt).

The quanti�er ∃∞x ψ (x, z̄) simply says there are in�nitely many

x’s such that φ (x, z̄) is true. By standard results for quanti�er-

free and Presburger arithmetic [36], we could replace ∃∞x ψ with

∃x (x > C ∧ ψ) for some constant C that is exponential in the

size ofψ (which can therefore be represented in polynomial size in

binary).

Then, the �nal formula is

µ∼ (x̄, p̄)
def
= ∃a∈A,b ∈B,P ⊆Φ,φ∈P x

P
a,φ,b

A ∧
∧

P ⊆Φ

BP , where

A =
∧

a∈A,φ∈Φ,b ∈B

*.
,
xa,φ,b =

∑

P ∋φ

xP
a,φ,b

+/
-
,

BP =
(

ρ∞P ∧ φ
〈∗〉

S
(τ1, . . . , τm , x̄)

)

∨
(

∃y ρP ∧ φ
〈y〉
S

(τ1, . . . , τm , x̄)
)

, and

τi =
∑

a∈A,φ∈P

xP
a,φ,bi

for every i ∈m.

As before, the language is non-empty if, and only if, φT (x̄ , p̄) ∧

µ∼ (x̄, p̄) is satis�able. Note that now any satisfying assignment

does not only yield the Parikh image under T of the witnessing

word but also the valuation for all parameters. Since the ∃=y quan-

ti�er can be eliminated in exponential time, ρP can be translated

into an equivalent, single-exponential size existential Presburger

formula . Thus, φT (x̄, p̄) ∧ µ∼ (x̄ , p̄) is an exponential sized existen-

tial formula of star-height 1, whose satis�ability can be checked in

NP. Thus, the upper bound follows.

We now prove that pSDA emptiness is NPNP-hard. The reduc-

tion is from the standard NPNP-complete problem [25, 37] of satis-

�ability for quanti�ed Boolean formulas of the form

F := ∃y1, . . . ,yn∀z1, . . . ,znG (ȳ, z̄)

where G is a quanti�er-free Boolean formula. The corresponding

pSDA (T , S) will use the parameter p for encoding assignments to

ȳ, and will only have one stateq, which is both initial and �nal. The

assignments to ȳ will be stored as the data values of the pSDA. Let

1 < r1 < · · · < rn be the �rst n primes. We use the Gödel encoding

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

techniques for encodingG as a Presburger formulaφG . Namely by

recursive de�nition:

(1) φG := 0 = p mod ri ifG = yi ,

(2) φG := 0 = x mod ri ifG = zi ,

(3) φG := φG1 ∧ φG2 if G = G1 ∧G2, and

(4) φG := ¬φG1 ifG = ¬G1.

To �nish the reduction, let A = B = {a}, and R :=
∏n
i=1 ri . The

only transition ofT is

(q, (a,φG ∧ 0 < x ≤ R, a),q)

Finally, the semilinear set S is given by the quanti�er-free formula

x=a = 1 ∧ x,a = R − 1. These enforce that only permutations of the

word (a, 1) · · · (a,R) could be accepted by (T , S), i.e., must contain

each of the Gödel encoding of assignments for z̄ restricted to the

interval {1, . . . ,R} exactly once as data values. Therefore, F is true

i� (T , S) is nonempty. �

Satis�ability of SDL. It is easy to see that the reduction of SDL to

SDA can be adapted to work also in the case of parameters, which

yields decidabilty for the satis�ability problem.We comment more

on this adaptation below when discussing extensions with k-ary

modalities.

Theorem 7.2. The satis�ability problem for pSDL is in 2NEXP.

7.2 SDL with k-ary modalities

The logic SDL (with or without parameters) can be also ex-

tended with k-ary versions of the (unary) data modalities

〈=〉β (y,p̄) (φ) and 〈,〉β (y,p̄) (φ). We consider now formulas with

k-ary modalities of the form 〈=〉β (y1, ...,yk,p̄) (φ1, . . . ,φk) and

〈,〉β (y1, ...,yk,p̄) (φ1, . . . ,φk).

Given a parameter valuation σ : p̄ → N, a word w ∈

(A × N)∗ , and a position 1 ≤ i ≤ |w |, we de�ne the satisfac-

tion relation w, i |=σ 〈=〉β (y1, ...,yk ,p̄) (φ1, . . . ,φk) (resp. w, i |=

〈,〉β (y1, ...,yk,p̄) (φ1, . . . ,φk)) iff n1, . . . ,nk ,σ |= β , where each nℓ
(for ℓ ∈ k) is the number of positions 1 ≤ j ≤ |w | such that (i)

w, j |=σ φℓ , (ii) data(w[j]) = data(w[i]) and (iii) j , i (resp. (i)

w, j |=σ φℓ and (ii) data(w[j]) , data(w[i])). As before, w, i |= φ

holds if w, i |=σ φ for some σ . Let us call SDL+ and pSDL+ the

extensions of SDL and pSDL with k-ary modalities (for every k),

respectively.

The exponential-time translation from this further extension to

SDA can be adapted, and we obtain the following.

Theorem 7.3.

• Satis�ability for pSDL+ is in 2NEXP.

• Model-checking for SDL+ is in PTIME.

• Model-checking for pSDL+ and pSDL is NP-complete.

Proof. For satis�ability, we can translate in exponential time

from the logic to pSDA. The translation is exactly as de�ned in

Section 6 but now the semilinear set S needs to be updated to take

into account thek-arymodalities semantics. That is, we de�neS ⊆

N
B×NB×Np̄ as the set denoted by the quanti�er-free formulawith

variables {x=,S }S ∈B∪ {x,,S }S ∈B∪ p̄ consisting on the conjunction

of:

(I) x=,S > 0 → α (t1, . . . , tk , p̄) for every α ,ψ1, . . . ,ψk , S such

that 〈=〉α (y1, ...,yk,p̄) (ψ1, . . . ,ψk) ∈ S , where for each i ∈ k ,

ti = (
∑

S ′∈B,ψi ∈S ′ x=,S ′) − ri and ri = 1 if ψi ∈ S or ri = 0

otherwise;

(II) x=,S > 0 → ¬α (t1, . . . , tk , p̄) for every α ,ψ1, . . . ,ψk , S such

that ¬ 〈=〉α (y1, ...,yk ,p̄) (ψ1, . . . ,ψk) ∈ S , where for each i ∈ k,

ti = (
∑

S ′∈B,ψi ∈S ′ x=,S ′) − ri and ri = 1 if ψi ∈ S or ri = 0

otherwise;

(III) x=,S > 0 → α (t1, . . . , tk , p̄) for every α ,ψ1, . . . ,ψk , S such

that 〈,〉α (y1, ...,yk ,p̄) (ψ1, . . . ,ψk) ∈ S , where for each i ∈ k,

ti =
∑

S ′∈B,ψi ∈S ′ x,,S ′ ;

(IV) x=,S > 0 → ¬α (t1, . . . , tk , p̄) for every α ,ψ1, . . . ,ψk , S such

that ¬ 〈,〉α (y1, ...,yk ,p̄) (ψ1, . . . ,ψk) ∈ S , where for each i ∈ k,

ti =
∑

S ′∈B,ψi ∈S ′ x,,S ′ ;

Observe that S is still a singly-exponential-sized quanti�er-free

formula. A similar argument as shown in Lemma 6.1 still applies

to show that the reduction preserves the language.

Regardingmodel-checking, the samemodel-checking algorithm

as shown in Proposition 4.1 works for SDL+. To treat a subformula

of the form 〈=〉β (y1, ...,yk) (ψ1, . . . ,ψk), we �rst count, for each data

value d of w and j ∈ k , the number n j of positions of w having

data d and satisfying ψ j , and we then mark each position i with

data d as satisfying 〈=〉β (y1, ...,yk) (ψ1, . . . ,ψk) iff (n
′
1, . . . ,n

′
k
) |=

β , where n′j = n j − 1 if position i is marked as satisfying ψ , or

n′j = n j otherwise. Observe that this still takes polynomial time.

The treatment of 〈,〉 is similar.

On the other hand, it is easy to see that model-checking of pSDL

is NP-hard, by reduction from the satis�ability problem for exis-

tential Presburger formulas. Indeed, an existential Presburger for-

mula ∃p1, . . . ,pt φ (p1, . . . ,pt) (where φ is a quanti�er-free for-

mula) is satis�able iff the pSDL formula α (x,p1, . . . ,pt) with t

parameters p1, . . . ,pt is satis�able, where α is de�ned as (x =

x) ∧ φ (p1, . . . ,pt).

For the NP upper bound, suppose we are given a word w and

a pSDL+ formula φ. We �rst guess a function f : {1, . . . , |w |} →

MCS(φ), where MCS(φ) is the set of maximally consistent sets of

subformulas of φ, as de�ned in Section 6. We verify that the guess-

ing is consistent with the semantics of the logic:

(1) φ ∈ f (1);

(2) for every 1 ≤ i < |w | we have that f (i), f (i+1) are one-step

consistent (cf. §6);

(3) for every 1 ≤ i ≤ |w | we have that ¬lab(w)[i] < f (i).

Now we can instantiate non-parametric free variables of Pres-

burger formulas with their corresponding value:

• For every base subformula α (y, p̄) and position i , let γ iα (p̄)

be the result of replacing y with data(w)[i] in α .

• For every subformula ψ := 〈=〉β (y1, ...,yk ,p̄) (ψ1, . . . ,ψk)

and position i , let γ i
ψ
(p̄) be the result of replacing in

β (y1, . . . ,yk , p̄) each yℓ with the number of positions j , i

ofw such that data(w)[j] = data(w)[i] and ψℓ ∈ f (i).

• For every subformula ψ := 〈,〉β (y1, ...,yk ,p̄) (ψ1, . . . ,ψk)

and position i , let γ i
ψ
(p̄) be the result of replacing in

β (y1, . . . ,yk , p̄) each yℓ with the number of positions j , i

ofw such that data(w)[j] , data(w)[i] and ψℓ ∈ f (i).

Let Ψ be the set of all γ i
ψ
(p̄) formulas (for every 1 ≤ i ≤ |w | and

ψ ∈ f (i) of the form above) and all the formulas ¬γ i
ψ
(p̄) (for every

LICS ’22, August 2–5, 2022, Haifa, Israel Figueira and Lin

1 ≤ i ≤ |w | and ¬ψ ∈ f (i)). Observe that Ψ is of polynomial

size. Finally, we check that the quanti�er-free Presburger formula
∧

Ψ(p̄) is satis�able, which is in NP. �

8 CONCLUSIONS

In this paper, we have introduced parametric semilinear data logic

(pSDL), which allows di�erent types of arithmetic reasoning (con-

straints on data values, letter/length counting, data counting, and

aggregation) on data words. We have provided decidability and

a thorough complexity analysis of the satis�ability problem for

the logic, and shown that it can express many interesting prop-

erties that cannot be expressed in existing decidable formalisms

on data words, potentially leading to interesting applications (e.g.,

on querying log �les and veri�cation of array-manipulating pro-

grams). Our proof introduces also the automata counterpart of

pSDL called parameteric semilinear data automata (pSDA), which

subsume known models like Parikh automata [23], symbolic au-

tomata [14], and nondeterministic looping word automata with in-

teger linear arithmetic [18]. We have derived decidability and com-

plexity of emptiness for pSDA, which are of independent interests.

We would like to conclude with several open problems. Firstly,

the complexity gap between 2-NEXP and NEXP of pSDL should be

�lled. At the moment, we can only bridge this gap when pSDL is

restricted to SDLMNF, which subsumes the modal logic fragment

of FO2 (<,+1,∼). Similarly, the complexity gap for SDA and pSDA

should be �lled (e.g. betweenNPNP and NEXP). This, in turn, raises

interesting open questions on the complexity of existential Pres-

burger Arithmetic with unary counting quanti�ers and star, which

(to the best of our knowledge) is not yet studied in the literature.

Secondly, can we adapt pSDL to other in�nite domains and other

decidable theories, e.g., real linear arithmetic? The answer is far

from obvious: our proof exploits heavy machinery on Presburger

Arithmetic and semilinear sets, which include closure under star

[21, 34] and closure under unary counting quanti�ers [38], which

does not hold in every decidable quanti�er-free theories. Thirdly,

we believe that it is highly crucial to understand further the rela-

tionships among existing models over data words, as well as array

theories, with respect to their expressive power. We conjecture,

among others, that our logic (or maybe a slight variant thereof)

subsumes Array Folds Logic [12]. Finally, it would be interesting

to investigate if the idea of using parameters could further be ex-

ploited in other logic/automata models over data words. For exam-

ple, can one still extend two-variable logics [6, 39] with parameters

while preserving decidability of satis�ability?

ACKNOWLEDGMENTS

We are extremely grateful to the anonymous reviewers for their

valuable comments. We would also like to thank Christoph Haase,

Rupak Majumdar, Alessio Mansutti, and Philipp Rümmer for pro-

ductive discussions. Diego Figueira is partially supported by ANR

QUID, grant ANR-18-CE40-0031. Anthony Lin was supported by

the ERC Starting Grant 759969 (AV-SMP) and a Max-Planck Soci-

ety Fellowship.

REFERENCES
[1] Eric Allender and Klaus W. Wagner. 1993. Counting Hierarchies: Polynomial

Time and Constant Depth Circuits. In Current Trends in Theoretical Computer

Science - Essays and Tutorials, Grzegorz Rozenberg and Arto Salomaa (Eds.).
World Scienti�c Series in Computer Science, Vol. 40. World Scienti�c, 469–483.
https://doi.org/10.1142/9789812794499_0035

[2] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algorithmic ver-
i�cation of single-pass list-processing programs. In Annual Symposium on Prin-
ciples of Programming Languages (POPL), Thomas Ball and Mooly Sagiv (Eds.).
ACM Press, 599–610. https://doi.org/10.1145/1926385.1926454

[3] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algorithmic ver-
i�cation of single-pass list-processing programs. In Annual Symposium on Prin-
ciples of Programming Languages (POPL), Thomas Ball and Mooly Sagiv (Eds.).
ACM, 599–610. https://doi.org/10.1145/1926385.1926454

[4] Michael Benedikt, Clemens Ley, and Gabriele Puppis. 2010. What You Must
Remember When Processing Data Words. In Proceedings of the Alberto Mendel-
zon International Workshop on Foundations of Data Management (AMW) (CEUR
Workshop Proceedings, Vol. 619), AlbertoH. F. Laender and LaksV. S. Lakshmanan
(Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-619/paper11.pdf

[5] Henrik Björklund and Thomas Schwentick. 2010. On notions of regularity
for data languages. Theoretical Computer Science 411, 4-5 (2010), 702–715.
https://doi.org/10.1016/j.tcs.2009.10.009

[6] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segou�n. 2011. Two-variable logic on data words. ACM Transactions on Compu-
tational Logic 12, 4 (2011), 27:1–27:26. https://doi.org/10.1145/1970398.1970403

[7] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. 2014. Automata the-
ory in nominal sets. Logical Methods in Computer Science (LMCS) 10, 3 (2014).
https://doi.org/10.2168/LMCS-10(3:4)2014

[8] Mikolaj Bojańczyk and Rafal Stefanski. 2020. Single-Use Automata and
Transducers for In�nite Alphabets. In International Colloquium on Au-
tomata, Languages and Programming (ICALP) (Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 168), Artur Czumaj, Anuj Dawar,
and Emanuela Merelli (Eds.). Leibniz-Zentrum für Informatik, 113:1–113:14.
https://doi.org/10.4230/LIPIcs.ICALP.2020.113

[9] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable
About Arrays?. In International Conference on Veri�cation, Model Checking, and
Abstract Interpretation (VMCAI) (LNCS, Vol. 3855), E. Allen Emerson and Kedar S.
Namjoshi (Eds.). Springer, 427–442. https://doi.org/10.1007/11609773_28

[10] Yu-FangChen, Ondrej Lengál, Tony Tan, and ZhilinWu. 2017. Register automata
with linear arithmetic. InAnnual Symposium on Logic in Computer Science (LICS).
IEEE Computer Society Press, 1–12. https://doi.org/10.1109/LICS.2017.8005111

[11] Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachability in Vec-
tor Addition Systems is Ackermann-complete. CoRR abs/2104.13866 (2021).
arXiv:2104.13866 https://arxiv.org/abs/2104.13866

[12] Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. 2016. Array
Folds Logic. In International Conference on Computer Aided Veri�cation (CAV).
230–248.

[13] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. 2019.
Symbolic Register Automata. In International Conference on Computer Aided Ver-
i�cation (CAV) (LNCS, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer,
3–21. https://doi.org/10.1007/978-3-030-25540-4_1

[14] Loris D’Antoni andMargus Veanes. 2017. The Power of Symbolic Automata and
Transducers. In International Conference on Computer Aided Veri�cation (CAV).
47–67. https://doi.org/10.1007/978-3-319-63387-9_3

[15] Stéphane Demri and Ranko Lazić. 2009. LTL with the freeze quanti�er and regis-
ter automata. ACM Transactions on Computational Logic 10, 3 (2009), 16:1–16:30.
https://doi.org/10.1145/1507244.1507246

[16] Stéphane Demri and Ranko Lazic. 2009. LTL with the freeze quanti�er and regis-
ter automata. ACM Transactions on Computational Logic 10, 3 (2009), 16:1–16:30.
https://doi.org/10.1145/1507244.1507246

[17] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. 2002. First-Order Logic
with Two Variables and Unary Temporal Logic. Inf. Comput. 179, 2 (2002), 279–
295. https://doi.org/10.1006/inco.2001.2953

[18] Rachel Faran and Orna Kupferman. 2020. On Synthesis of Speci�cations with
Arithmetic. In International Conference on Current Trends in Theory and Prac-
tice of Informatics (SOFSEM) (LNCS, Vol. 12011), Alexander Chatzigeorgiou, Ric-
cardo Dondi, Herodotos Herodotou, Christos A. Kapoutsis, Yannis Manolopou-
los, George A. Papadopoulos, and Florian Sikora (Eds.). Springer, 161–173.
https://doi.org/10.1007/978-3-030-38919-2_14

[19] Seymour Ginsburg and Edwin H. Spanier. 1966. Semigroups, Presburger formu-
las, and languages. Paci�c J. Math. 16, 2 (1966), 285–296.

[20] Christoph Haase. 2018. A survival guide to presburger arithmetic. ACM SIGLOG
News 5, 3 (2018), 67–82. https://dl.acm.org/citation.cfm?id=3242964

[21] Christoph Haase and Georg Zetzsche. 2019. Presburger arithmetic with stars,
rational subsets of graph groups, and nested zero tests. In Annual Sympo-
sium on Logic in Computer Science (LICS). IEEE Computer Society Press, 1–14.
https://doi.org/10.1109/LICS.2019.8785850

[22] Michael Kaminski and Nissim Francez. 1994. Finite-Memory Au-
tomata. Theoretical Computer Science 134, 2 (1994), 329–363.
https://doi.org/10.1016/0304-3975(94)90242-9

https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
http://ceur-ws.org/Vol-619/paper11.pdf
https://doi.org/10.1016/j.tcs.2009.10.009
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.1007/11609773_28
https://doi.org/10.1109/LICS.2017.8005111
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2104.13866
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1007/978-3-030-38919-2_14
https://dl.acm.org/citation.cfm?id=3242964
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1016/0304-3975(94)90242-9

Reasoning on Data Words over Numeric Domains LICS ’22, August 2–5, 2022, Haifa, Israel

[23] Felix Klaedtke and Harald Rueß. 2003. Monadic Second-Order Logics with Car-
dinalities. In International Colloquium on Automata, Languages and Program-
ming (ICALP) (Lecture Notes in Computer Science, Vol. 2719). Springer, 681–696.
https://doi.org/10.1007/3-540-45061-0_54

[24] S. Rao Kosaraju. 1982. Decidability of Reachability in Vector Addition Systems
(Preliminary Version). In Symposium on Theory of Computing (STOC), Harry R.
Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber
(Eds.). ACM, 267–281. https://doi.org/10.1145/800070.802201

[25] Dexter C. Kozen. 2006. Theory of Computation. Springer.
[26] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures. Springer.
[27] Jean-Luc Lambert. 1992. A Structure to Decide Reachability in Petri Nets. Theor.

Comput. Sci. 99, 1 (1992), 79–104. https://doi.org/10.1016/0304-3975(92)90173-D
[28] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not

Primitive Recursive. CoRR abs/2104.12695 (2021). arXiv:2104.12695
https://arxiv.org/abs/2104.12695

[29] Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reachabil-
ity Problem. In Symposium on Theory of Computing (STOC). ACM, 238–246.
https://doi.org/10.1145/800076.802477

[30] Ernst W. Mayr. 1984. An Algorithm for the General Petri Net Reachability Prob-
lem. SIAM J. Comput. 13, 3 (1984), 441–460. https://doi.org/10.1137/0213029

[31] FrankNeven, Thomas Schwentick, and Victor Vianu. 2004. Finite state machines
for strings over in�nite alphabets. ACM Transactions on Computational Logic 5,
3 (2004), 403–435. https://doi.org/10.1145/1013560.1013562

[32] Rohit Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966), 570–581.
https://doi.org/10.1145/321356.321364

[33] Rohit Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966), 570–581.
https://doi.org/10.1145/321356.321364

[34] Ruzica Piskac and Viktor Kunčak. 2008. Linear Arithmetic with
Stars. In International Conference on Computer Aided Veri�cation
(CAV) (Lecture Notes in Computer Science, Vol. 5123). Springer, 268–280.

https://doi.org/10.1007/978-3-540-70545-1_25
[35] Mojżesz Presburger and Dale Jabcquette. 1991. On the completeness of a certain

system of arithmetic of whole numbers in which addition occurs as the only
operation. History and Philosophy of Logic 12, 2 (1991), 225–233.

[36] Bruno Scarpellini. 1984. Complexity of subcases of Presburger arithmetic. Trans.
Amer. Math. Soc. 284, 1 (1984), 203–218.

[37] Marcus Schaefer and ChristopherUmans. 2002. Completeness in the polynomial-
time hierarchy: A compendium. SIGACT News (2002).

[38] Nicole Schweikardt. 2005. Arithmetic, �rst-order logic, and counting quan-
ti�ers. ACM Transactions on Computational Logic 6, 3 (2005), 634–671.
https://doi.org/10.1145/1071596.1071602

[39] Thomas Schwentick and Thomas Zeume. 2012. Two-Variable Logic with Two
Order Relations. Logical Methods in Computer Science (LMCS) 8, 1 (2012).
https://doi.org/10.2168/LMCS-8(1:15)2012

[40] Seinosuke Toda. 1991. PP is as Hard as the Polynomial-Time Hierarchy. SIAM
Journal on computing 20, 5 (1991), 865–877. https://doi.org/10.1137/0220053

[41] Jacobo Torán. 1991. Complexity Classes De�ned by Counting Quanti�ers. J.
ACM 38, 3 (1991), 753–774. https://doi.org/10.1145/116825.116858

[42] Peter van Emde Boas. 1997. The convenience of tilings. Complexity, Logic, and
Recursion Theory (1997), 331–363.

[43] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. 2005. On the Com-
plexity of Equational Horn Clauses. In International Conference on Automated
Deduction (CADE) (Lecture Notes in Computer Science, Vol. 3632). Springer, 337–
352. https://doi.org/10.1007/11532231_25

[44] Klaus W. Wagner. 1987. More Complicated Questions About Maxima and Min-
ima, and Some Closures of NP. Theoretical Computer Science 51 (1987), 53–80.
https://doi.org/10.1016/0304-3975(87)90049-1

[45] Kevin Woods. 2015. Presburger Arithmetic, Rational Generating Functions,
and quasi-polynomials. Journal of Symbolic Logic 80, 2 (2015), 433–449.
https://doi.org/10.1017/jsl.2015.4

https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://arxiv.org/abs/2104.12695
https://arxiv.org/abs/2104.12695
https://doi.org/10.1145/800076.802477
https://doi.org/10.1137/0213029
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/978-3-540-70545-1_25
https://doi.org/10.1145/1071596.1071602
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.1137/0220053
https://doi.org/10.1145/116825.116858
https://doi.org/10.1007/11532231_25
https://doi.org/10.1016/0304-3975(87)90049-1
https://doi.org/10.1017/jsl.2015.4

	Abstract
	1 Introduction
	2 pSDL: examples and applications
	3 Preliminaries
	4 Semilinear Data Logic
	5 Semilinear Data Automata
	5.1 Definition
	5.2 The Emptiness Problem for SDA

	6 Satisfiability of SDL
	7 Extensions
	7.1 Adding parameters
	7.2 SDL with k-ary modalities

	8 Conclusions
	Acknowledgments
	References

