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Abstract. We consider the problem of recurrent reachability over infi-
nite systems given by regular relations on words and trees, i.e, whether
a given regular set of states can be reached infinitely often from a given
initial state in the given transition system. Under the condition that
the transitive closure of the transition relation is regular, we show that
the problem is decidable, and the set of all initial states satisfying the
property is regular. Moreover, our algorithm constructs an automaton
for this set in polynomial time, assuming that a transducer of the tran-
sitive closure can be computed in poly-time. We then demonstrate that
transition systems generated by pushdown systems, regular ground tree
rewrite systems, and the well-known process algebra PA satisfy our con-
dition and transducers for their transitive closures can be computed in
poly-time. Our result also implies that model checking EF-logic extended
by recurrent reachability predicate (EGF) over such systems is decidable.

1 Introduction

Infinite-state systems play an important role in verification as they capture many
scenarios that cannot be adequately described by standard finite-state models.
For example, the behavior of parameterized systems needs to be checked regard-
less of the number of processes, and this is often most suitably represented by
an infinite-state system.

The most common verification problems for such systems can be abstracted
as reachability and recurrent reachability [3, 8, 2, 9]. Reachability asks if a given
state, or a state in a given set, can be reached from an initial state. Checking
these is essential for verifying safety of infinite-state systems, as we want to find
counterexamples to specifications saying that bad states cannot be reached. If we
have slightly weaker specifications saying that undesirable states can only appear
in some initial portion of each execution path, then counterexamples to those
are formalized as recurrent reachability, i.e. the existence of a witnessing path
that infinitely often goes through a given set of states. In the CTL* notation,
recurrent reachability for a set L is EGFL. Observe that although for finite
systems recurrent reachability is reducible to reachability, this is not the case for
infinite systems in general, e.g. lossy channel systems (see [1]).

To make the questions of model checking meaningful for infinite systems, they
need to have an effective finite representation. Often, the state space is described
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by regular word or tree languages, and transitions are given by regular word or
tree transducers: this is the general framework of regular model-checking [3, 2].
Without restrictions, this does not guarantee decidability even for the simplest
reachability properties. Hence, one normally restricts the class of transducers
so that their iterations would remain regular [7, 17]. Then such infinite-state
systems have an effective word-automatic or tree-automatic presentation [6, 5].
Some of the most well-known and most studied classes of such systems include
pushdown systems [15, 14, 22, 27], prefix-recognizable graphs [11, 24], ground tree
rewrite systems [13, 19], and the process algebra PA [4, 20, 22].

For such systems, reachability has been extensively studied [3, 17, 9, 23, 15,
16, 14, 27]. Much less is known about recurrent reachability. Unlike reachability,
it is not immediately seen to be decidable even under the assumption that the
transitive closure of the transition relation is representable by a regular trans-
ducer. One recent result [18, 19] showed that recurrent reachability is decidable
for infinite-state transition systems generated by ground tree rewrite systems.

Our main contributions are as follows. We look at arbitrary infinite-state
transition systems that have an automatic representation (either word-automatic
or tree-automatic) and that further satisfy the condition that the transitive
closure of its transition relation is regular. We then show the following:

1. For every regular language L, the set of all states that satisfy a recurrent
reachability property EGFL is also regular. This observation gives rise to
two flavors of the model-checking problem: the global problem is to construct
an automaton accepting the set of states satisfying EGFL, and the local
problem is to verify whether a given word/tree satisfies the property.

2. We give a generic poly-time algorithm that solves both model-checking prob-
lems for EGFL given the following as inputs: word/tree regular transducers
defining a transition relation and its transitive closure, and a nondeterminis-
tic word/tree automaton defining L. For positive answers, our algorithm also
constructs some witnessing infinite paths using Büchi word/tree automata as
finite representations. In particular, if the transducer defining the transitive
closure can itself be computed in poly-time, we obtain a poly-time algo-
rithm for checking recurrent reachability properties. One can also combine
our algorithm with the semi-algorithms for computing iterating transducers
developed in regular model checking (e.g. [2, 3, 7, 17]).

3. We then look at some particular examples of transition systems in which
the transitive closure of the transition relation is regular for which an iterat-
ing transducer is poly-time computable. As corollaries, we obtain poly-time
algorithms for recurrent reachability over pushdown systems, ground tree
rewrite systems, and PA-processes. These also imply that the extension of
the EF-logic [19, 23, 8] with the EGF operator remains decidable for all
those examples. For the first two examples, our results follow from known
results [15, 18, 19] proven using specialized methods for pushdown systems
and ground tree rewrite systems, although their methods do not show how
to compute witnessing paths, which are also of interests in verification. Our
results for PA-processes are new.



Recurrent Reachability Analysis in Regular Model Checking 3

Outline of the paper In Section 2, we recall some basic definitions. In Section 3 we
prove our results for transition systems that have word-automatic presentations,
and provide applications to pushdown systems. In Section 4 we prove results for
tree-automatic presentations, and provide applications to ground tree rewrite
systems and PA-processes. We conclude in Section 5 with future work.

2 Preliminaries

Transition systems Let AP = {P1, . . . , Pn} be a finite set of atomic proposi-
tions. A transition system over AP is

S = 〈S, →, λ〉,

where S is a set of states, →⊆ S ×S is a transition relation, and λ : AP → 2S is
a function defining which states satisfy any particular atomic proposition. The
set S is not required to be finite.

We write →+ (resp. →∗) to denote the transitive (resp. transitive-reflexive)
closure of →. If S′ ⊆ S, then pre∗(S′) (resp. post∗(S′)) denotes the set of states
s that can reach (resp. be reached from) some state in S′.

Recurrent reachability Given a transition system S = 〈S,→, λ〉 and a set
S′ ⊆ S, we write s →ω S′ iff there exists an infinite sequence {si}i∈N such
that s0 = s and si ∈ S′ and si−1 →+ si for all i > 0. By transitivity of →+,
every infinite subsequence of such a sequence {si}i∈N that starts with s0 is also
a witness for s →ω S′. We write Rec(S′) to denote the set of states s such that
s →ω S′. We will also write Rec(S′,→+) to emphasize the transitive binary
relation in use.

Words, Trees, and Automata We assume basic familiarity with automata
on finite and infinite words and trees (see [25, 12]). Fix a finite alphabet Σ. For
each finite word w = w1 . . . wn ∈ Σ∗, we write w[i, j], where 1 ≤ i ≤ j ≤ n, to
denote the segment wi . . . wj . Given an automaton A = (Σ, Q, δ, q0, F ), a run of
A on w is a function ρ : {0, . . . , n} → Q with ρ(0) = q0 that obeys δ. In this case,
the length ‖ρ‖ of ρ is n. The last state ρ(n) appearing in ρ is denoted by last(ρ);
the first state ρ(0) is denoted by first(ρ). We also define run segments to be runs
that do not necessarily start from q0. Given a run segment ρ′ : {0, . . . , m} → Q
such that first(ρ′) = last(ρ), we may concatenate ρ and ρ′ to obtain a new
run ρ ⊙ ρ′ : {0, . . . , n + m} → Q defined in the obvious way. We also use the
notation ρ[i, j] to denote the segment ρ(i) . . . ρ(j). A run on an ω-word w ∈ Σω

is a function ρ : N → Q with ρ(0) = q0 that obeys δ. We use abbreviations NWA
and NBWA for nondeterministic (Büchi) word automata.

Given a finite direction alphabet Υ , a tree domain is a non-empty prefix-
closed set D ⊆ Υ ∗. The empty word (denoted by ε) is referred to as the root.
Words u ∈ D so that no ui is in D are called leaves. A tree T is a pair (D, τ),
where D is a tree domain and τ is a node-labeling function mapping D to Σ.
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The tree T is said to be finite if D is finite; otherwise, it is said to be infinite.
The tree T is said to be complete if, whenever u ∈ D, if ui ∈ D for some i ∈ Υ ,
then uj ∈ D for all j ∈ Υ . If T is infinite, it is said to be full if D = Υ ∗. The set
of all finite trees over Υ and Σ is denoted by TreeΥ (Σ). If Υ = {1, 2}, we write
Tree2(Σ) for TreeΥ (Σ).

A (top-down) tree automaton A = (Σ, Q, δ, q0, F ) over finite Σ-labeled trees
has a transition function δ : Q×Σ → 2Qm

, where m = |Υ |. For our constructions,
it will be most convenient to define runs on trees with virtual leaf nodes. We
define virt(T ) to be the (Σ∪⊥)-labeled Υ -tree (D′, τ ′) such that D′ := D∪{vi :
v ∈ D, i ∈ Υ} and if u ∈ D, then τ ′(u) := τ(u); if u /∈ D, then τ ′(u) = ⊥. Notice
that virt(T ) is complete. A run of A on T , i.e. a mapping ρ : D′ → Q, starts in
the initial state q0 and for each node u labeled a with children u1, . . . , um, we
have (ρ(u1), . . . , ρ(um)) ∈ δ(q, a). A run is accepting if ρ(u) ∈ F for each leaf
u ∈ D′.

We abbreviate nondeterministic tree automata as NTA, and write NBTA for
tree automata over full infinite trees with a Büchi acceptance condition (that
will be sufficient for our purposes). For all kinds of automata, L(A) stands for
the word or tree languages accepted by A. Also for all types of automata A, we
write Aq for A in which the initial state is set to q.

Transducers These will be given by letter-to-letter automata that accept bi-
nary (and, more generally, k-ary) relations over words and trees (cf. [6, 5]). We
start with words. Given two words w = w1 . . . wn and w′ = w′

1 . . . w′
m over the

alphabet Σ, we define a word w ⊗ w′ of length k = max{n, m} over alphabet
Σ⊥ × Σ⊥, where Σ⊥ = Σ ∪ {⊥} and ⊥/∈ Σ, as follows:

w ⊗ w′ =
»

a1

b1

–

. . .
»

ak

bk

–

, where ai =

{
wi i ≤ n

⊥ i > n,
and bi =

{
w′

i i ≤ m

⊥ i > m.

In other words, the shorter word is padded with ⊥’s, and the ith letter of w⊗w′ is
then the pair of the ith letters of padded w and w′. A letter-to-letter automaton
is simply an automaton over Σ⊥×Σ⊥, and a binary relation R over Σ∗ is regular
if the set {w ⊗ w′ : (w, w′) ∈ R} is accepted by a letter-to-letter automaton R.
We shall refer to such an automaton as a transducer over Σ∗, since it can be
alternatively viewed as mapping words w ∈ Σ∗ nondeterministically into words
w′ so that w ⊗ w′ is accepted by R.

Given two trees T1 = (D1, τ1) and T2 = (D2, τ2), we define T = T1 ⊗ T2 as
a tree over the labeling alphabet Σ2

⊥ similarly to the definition of w ⊗ w′. That
is, the domain of T is D1 ∪D2, and the labeling τ : D1 ∪D2 → Σ2

⊥ is defined as
τ(u) = (a1, a2) so that ai = τi(u) if u ∈ Di and ⊥ otherwise, for i = 1, 2.

As for words, a binary relation R over TreeΥ (Σ) is regular if there is a tree
automaton R over TreeΥ (Σ2

⊥) accepting the set {T1 ⊗ T2 | (T1, T2) ∈ R}. We
also view it as a transducer that nondeterministically assigns to a tree T1 any
tree T2 so that (T1, T2) ∈ R. If the binary relation R defined by a transducer R
is transitive, we shall refer to R itself as being transitive.
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Automatic transition systems In this paper, we deal with infinite transition
systems that can be finitely represented by word or tree automata. We say that
a transition system S = 〈S, →, λ〉 over AP is word-automatic if, for some finite
alphabet Σ, we have S = Σ∗, the relation → is a regular relation on S, and
each λ(Pi) is a regular subset of S. Likewise, a transition system S over AP is
tree-automatic if, for some Υ and Σ, we have S = TreeΥ (Σ), and all of → and
λ(Pi)’s are regular tree relations/languages over TreeΥ (Σ).

We measure the size of such a word- or tree-automatic transition system S
as the total size of the transducer for →, and the automata for S and λ(Pi), for
Pi ∈ AP. We shall assume that these are nondeterministic.

As mentioned already, pushdown systems and prefix-recognizable graphs are
examples of word-automatic infinite transition systems, while PA-processes and
graphs generated by ground tree rewrite systems are examples of tree-automatic
transition systems.

3 Recurrent reachability: the word case

We call a word-automatic transition system S = 〈S,→, λ〉 transitive if the re-
lation →+ is regular. As we shall see shortly, if S is transitive, then the set
Rec(L) is regular too, for an arbitrary regular language L. This gives rise to two
variants of the model-checking problem for recurrent reachability: in the global
model-checking problem, we are given S and a language L represented by an
NWA A, and we want to construct an NWA accepting Rec(L(A)). In the local
version, we also have a word w, and we must check whether w ∈ Rec(L(A)).
That is,

Global

model-checking:

Input: 1) A transitive word-automatic S
2) An NWA A

Output: A description of Rec(L(A))

Local

model-checking:

Input: 1) A transitive word-automatic S
2) An NWA A
3) a word w

Output: yes, if w →ω L(A)
no, otherwise

Throughout this section, we assume that the transition relation → of transi-
tive S is given by a transducer R, and that R+ is the transducer for →+ (which
exists by the transitivity assumption). We shall also use the transducer for →∗,
denoted by R∗. It can be obtained from R+ by letting it accept pairs w ⊗ w.

Theorem 1. Given a transitive word-automatic transition system S = 〈S,→, λ〉
and an NWA A, the set Rec(L(A)) of states w such that w →ω L(A) is regular.

Moreover, if the transducer R+ for →+ is computable in time t(|R|), then
one can compute an NWA recognizing Rec(L(A)) of size O(|R+|2×|A|) in time
t(|R|) + O(|R+|3 × |A|2).
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Corollary 2. Given a transitive word-automatic transition system S = 〈S,→
, λ〉 and an NWA A, such that the transducer R+ is poly-time computable, both
global and local model-checking for recurrent reachability are solvable in poly-
time.

As another corollary, consider the EF,EX-fragment of CTL, known as the
EF-logic [23, 27]. Its formulae over AP = {P1, . . . , Pn} are given by

ϕ, ϕ′ := ⊤ | Pi, i ≤ n | ϕ ∨ ϕ′ | ¬ϕ | EXϕ | EFϕ.

Each formula, evaluated over a transition system S = 〈S,→, λ〉, defines a set
[[ϕ]]S ⊆ S as follows:

(1) [[⊤]]S = S; (2) [[Pi]]S = λ(Pi);
(3) [[ϕ ∨ ϕ′]]S = [[ϕ]]S ∪ [[ϕ′]]S ; (4) [[¬ϕ]]S = S − [[ϕ]]S ;
(5) [[EXϕ]]S = {s | ∃s′ : s → s′ and s′ ∈ [[ϕ]]S};
(6) [[EFϕ]]S = {s | ∃s′ : s →∗ s′ and s′ ∈ [[ϕ]]S}.
If →∗ is given by a regular transducer, then [[ϕ]]S is clearly effectively reg-

ular [6], and so the model-checking problem for EF-logic is decidable. We now
extend this to the (EF+EGF)-logic, defined as the extension of EF-logic with
the formulae EGFϕ with the semantics

[[EGFϕ]]S = Rec([[ϕ]]S ,→+) = {s | s →ω [[ϕ]]S}.

Theorem 1 extends decidability to (EF+EGF)-logic:

Corollary 3. If S = 〈S,→, λ〉 is a transitive word-automatic transition sys-
tem such that the transducer R+ is computable, then for each formula ϕ of
(EF+EGF)-logic, the set [[ϕ]]S is regular, and an NWA defining [[ϕ]]S can be
effectively constructed.

We now prove Theorem 1. Throughout the proof, we let M stand for R+

and use unambiguous abbreviations such as Rec(A,M) for Rec(L(A), L(M)).
By definition, we have w ∈ Rec(A,M) iff there exists a sequence {si}i∈N of
words with s0 = w such that si−1 ⊗ si ∈ L(M) and si ∈ L(A) for all i > 0.
We now divide Rec(A,M) into two sets Rec1(A,M) and Rec2(A,M), where
Rec1(A,M) contains words with a witnessing infinite sequence {si}i∈N that sat-
isfies sj = sk for some j < k, and Rec2(A,M) contains words with a witnessing
infinite sequence {si}i∈N that satisfies sj 6= sk for all distinct j, k ∈ N. We shall
write Rec1 and Rec2 when the intended automata A and M are clear from the
context. Now notice that Rec(L(A)) = Rec1 ∪ Rec2. It is easy to construct an
NWA that recognizes Rec1. Observe that, for all word w, we have w ∈ Rec1 iff
there exists a word w′ such that w →∗ w′, w′ →+ w′, and w′ ∈ L(A). By taking
a product and then applying projection (e.g. see [6]), we can compute an NWA
A1 that recognizes Rec1 in time O(|R+|2 × |A||) with |A| = O(|R+|2 × |A|).

Thus, it remains to construct the automaton A2 for Rec2. We shall first
compute a Büchi automaton B that recognizes an ω-word which represents the
witnessing infinite sequence for membership in Rec2. Once B is constructed, it is
easy to obtain A2 as we shall see later. The most obvious representation of the
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infinite sequence {si}i∈N is s0 ⊗ s1 ⊗ . . .. The problem with this representation
is that it requires an infinite alphabet, and possibly infinitely many copies of
the automata A and M to check whether si ∈ L(A) and si−1 →+ si for all
i > 0. Therefore, the first step towards solving the problem is to analyze the
infinite witnessing paths and to show that it is sufficient to consider only infinite
sequences of a special form. For the rest of this section, we let A = (Q1, δ1, q

1
0 , F1)

and M = R+ = (Q2, δ2, q
2
0 , F2).

Lemma 4. For every word w ∈ Σ∗, it is the case that w ∈ Rec2(A) iff there
exist two infinite sequences {αi}i∈N and {βi}i∈N of words over Σ such that

1. α0 = w and |αi| > 0 for all i > 0,
2. |αi| = |βi| for all i ∈ N,
3. there exists an infinite run r of A on β0β1 . . . such that, for all i ∈ N, the

automaton Aq accepts αi+1, where q = r(|β0 . . . βi|),
4. there exists an infinite run r′ of M on (β0 ⊗ β0)(β1 ⊗ β1) . . . such that, for

all i ∈ N, Mq accepts αi ⊗ βiαi+1 where q = r′(|β0 . . . βi−1|).

One direction of the lemma is easy: if 1)–4) hold, then from the infinite sequences
{αi}i≥0 and {βi}i≥0 we can form a new sequence {si}i≥0 with si := β0 . . . βi−1αi.
Condition (3) ensures that si ∈ L(A) for all i > 0, and condition (4) implies
that si →+ si+1 for all i ≥ 0. This implies that w ∈ Rec2(A) and thus proving
sufficiency in Lemma 4.

The idea of the proof of Theorem 1 is that the sequences {αi}i≥0 and {βi}i≥0

compactly represent a sequence {si}i≥0 witnessing w ∈ Rec2(A) . We shall later
construct a Büchi automaton that recognizes precisely all ω-words of the form

(α0 ⊗ β0)
»

#
#

–

(α1 ⊗ β1)
»

#
#

–

(α2 ⊗ β2)
»

#
#

–

. . . (∗)

such that the sequences {αi}i≥0 and {βi}i≥0 satisfy r.h.s. of Lemma 4. From such
an automaton B it is easy to obtain an automaton recognizing α0 = w ∈ Rec2.

Now we shall prove the other direction in Lemma 4: that the sequences
{αi}i≥0 and {βi}i≥0 exist under the assumption w ∈ Rec2(A). We will first
need to extend the definition of Rec2(N , T ) to allow not necessarily transitive
transducers T : w ∈ Rec2(N , T ) iff there exists a sequence {si}i≥0 of words such
that s0 = w, si 6= si′ for all distinct i, i′ ∈ N, si ∈ L(N ) for all i > 0, and
sj ⊗ sk ∈ L(T ) for all k > j ≥ 0.

Lemma 5. Suppose N and T are, respectively, an automaton and a transducer
over Σ. For every word w ∈ Σ∗, if w ∈ Rec2(N , T ), then there exists a word
w′w′′ such that

1. |w′| = |w| and |w′′| > 0,
2. w ⊗ w′w′′ ∈ L(T ),
3. there exist an accepting run r of N on w′w′′, and a run r′ of T on w′ ⊗ w′

such that w′′ ∈ Rec2(N
q1 , T q′

1), where q1 = r(|w|) and q′1 = r′(|w|).
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Proof. Suppose that w ∈ Rec2(N , T ). Then, there exists an infinite sequence
σ = {si}i∈N such that s0 = w, si 6= si′ for all distinct i, i′ ∈ N, and it is the
case that, for all i > 0, the word si is in L(N ) with accepting run ηi, and for
all distinct pair of indices i′ > i ≥ 0, we have si ⊗ si′ ∈ L(T ). As there are only
finitely many different words of length |w| but infinitely many different words in
σ, we may assume that |si| > |w| for all i ≥ 1; for, otherwise, we may simply
omit these words from σ. Now every word si, where i > 0, can be written as
si = uivi for some words ui, vi such that |ui| = |w| and |vi| > 0. As there are
only finitely many different words of length |w| and finitely many different runs
of N of length |w|, by pigeonhole principle there must exist k > 0 such that
uj = uk and ηj [0, |w|] = ηk[0, |w|] for infinitely many j > 0. Let w′ := uk and
η := ηk[0, |w|]. Therefore, we may discard all words si in σ with i ≥ 1 such that
ui 6= w′ or η is not a prefix of ηi. By renaming indices, call the resulting sequence
σ = {si}i∈N and, for all i ≥ 1, denote by ηi the accepting run of N on si that
has η as a prefix. Notice that σ is still a witness for w ∈ Rec2(N , T ). So, let
θj,k, where 0 ≤ j < k, be the accepting run of T on sj ⊗ sk. Let C be the finite
set of all runs of T on w′ ⊗ w′. Notice that it is not necessarily the case that
|C| = 1 as T is nondeterministic. Consider the edge-labeled undirected graph
G = (V, {Eu}u∈C) such that V = Z+ and

Eu = {{j, k} : 0 < j < k and u is a prefix of θj,k }.

Notice that {Eu}u∈C is a partition of {{j, k} : j 6= k, j, k > 0}, and so G is a
complete graph. By (infinite) Ramsey theorem, G has a monochromatic complete
infinite subgraph H = (V ′, Eu) for some u ∈ C. Set r′ := u. Notice that if V ′

contains the elements i1 < i2 < . . ., then θij ,ik
with k > j ≥ 1 has u as a

prefix. Therefore, we can discard all words si (i > 0) in σ such that i /∈ V ′

and by renaming indices call the resulting sequence σ = {si}i∈N. We also adjust
the sequence {ηi}i>0 of accepting runs by omitting the appropriate runs and
adjusting indices. We now set w′′ to be the unique word v such that s1 = w′v. It
is easy to see that (1) and (2) are satisfied. Setting r = η1, it is easy to check that
w′′ ∈ Rec2(N q1 , T q′

1) with witnessing sequence {ti}i>0, where ti is the unique
word such that si = w′ti for all i > 0. ⊓⊔

Now it is not difficult to inductively construct the desired sequences {αi}i≥0 and
{βi}i≥0 by using lemma 5 at every induction step. The gist of the proof is that
from the word w′w′′ given by lemma 5 at induction step k, we will set βk = w′,
αk+1 = w′′, and extend the partial runs r and r′ in lemma 4. Notice that we now
have w′′ ∈ Rec2(N q1 , T q′

1), which sets up the next induction step. See appendix
for a detailed argument. This completes the proof of lemma 4.

Now we construct a Büchi automaton B accepting ω-words of the form (∗),
where αi’s and βi’s are given by Lemma 4. We first give an informal description
of how to implement B. The automaton B will attempt to guess the runs r
and r′, while at the same time checking that the runs satisfy conditions 3–4 in
Lemma 4. To achieve this, B will run a copy of A and M, while simultaneously
also running a few other copies of A and M to check that the runs r and r′

guessed so far satisfy conditions 3) and 4) along the way. The automaton B
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consists of three components depicted as Boxes 1, 2, and 3 in Figure 1. The first

box is used for reading the prefix of the input before the first occurrence of
»

#
#

–

,

while the other boxes are used for reading the remaining suffix. Boxes 2–3 are
essentially identical, i.e., they have the same sets of states and essentially the
same transition functions. When B arrives in Box 2, it will read a single letter
in Σ2 and goes to Box 3 so as to make sure that |αi| > 0 for each i > 0. When

B is in Box 3, it will go to Box 2 upon reading the letter
»

#
#

–

. We will set all

states in Box 2 as the final states so as to make sure that infinitely many
»

#
#

–

is seen, i.e., the sequences {αi}i and {βi}i are both infinite, and each words αi

and βi are finite.

Box 3

»

#
#

– »

a
b

–

»

#
#

–

Box 1 Box 2

Fig. 1. A bird’s eye view of the Büchi automaton B

More formally, the automaton B = (Σ2 ∪ {
»

#
#

–

}, Q, δ, q0, F ) is defined as

follows. We set Q := (Q1×Q2×Q2)⊎ (Q1×Q2×Q1×Q2×Q2×{1, 2}), where
Q1 × Q2 ×Q2 are the states in box #1, and Q1 ×Q2 × Q1 ×Q2 × Q2 × {i} are
states in box #(i+1). The initial state is q0 := (q1

0 , q2
0 , q

2
0). The first and the last

components in each state are meant for guessing the infinite runs r and r′. The
second component of each state in box #1 is used for guessing a prefix of the
accepting run of M on α0⊗β0α1. The automaton B will finish this guessing when
it reaches box #3 upon the completion of parsing α1⊗β1. When B is presently in
box #2 or #3 and reading αi⊗βi, where i > 0, the third and fourth components
of the states are used for checking that β0 . . . βi−1αi ∈ L(A) and β0 . . . βi−2αi−1⊗
β0 . . . βi−1αi ∈ L(M), respectively. At the same time, the second component will
be checking that β0 . . . βi−1αi ⊗ β0 . . . βiαi+1 ∈ L(M), which will be completed
in the next iteration. We now formally define the transition function. We set

δ((q, q′, q′′),
»

a
b

–

) :=





δ1(q, b) × δ2(q
′,

»

a
b

–

) × δ2(q
′′,

»

b
b

–

) , if a, b 6= #

(q, q′′, q, q′, q′′, 1) , if a = b = #
∅ , otherwise.

and, when B is in a state in Q1 × Q2 × Q1 × Q2 × Q2 × {i}, where i = 1, 2, we
define

δ((q1, q2, q
′
1, q

′
2, q

′′
2 , i),

»

a
b

–

) := δ1(q1, b) × δ2(q2,
»

a
b

–

) × δ1(q
′
1, a) ×

δ2(q
′
2,

»

⊥
a

–

) × δ2(q
′′
2 ,

»

b
b

–

) × {2}
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if a, b 6= #. If q′1 ∈ F1, and q′2 ∈ F2, then we set

δ((q1, q2, q
′
1, q

′
2, q

′′
2 , 2),

»

#
#

–

) = (q1, q
′′
2 , q1, q2, q

′′
2 , 1).

Finally, the set of final states are F := Q1 ×Q2 ×Q1 ×Q2 ×Q2 ×{1}. It is easy
to see that B, as claimed, recognizes exactly ω-words of the word of the form (∗)
such that the sequences {αi}i∈N and {βi}i∈N satisfy the conditions in Lemma 4.

Now, from B we can easily compute the automaton A2 = (Q′, Σ, δ′, q′0, F
′)

that recognizes Rec2. Roughly speaking, the automaton A2 will accept the set of
finite words α0 such that there exist two sequences {αi}i>0 and {βi}i≥0 such that
the ω-word (∗) is accepted by B. Therefore, we will set the new set of states Q′

to be Q1 ×Q2×Q2, i.e., the first component of B in Fig. 1. We apply projection
operation on the transition function δ of B to obtain δ′. More formally, if a ∈ Σ,
we set

δ′((q1, q2, q
′
2), a) =

∨

b∈Σ

δ((q1, q2, q
′
2),

»

a
b

–

).

Finally, the new set F ′ of final states will those states in Q′ from which B

can accept some ω-words of the form
»

#
#

–

w for some ω-word w. For this, we

can apply the standard algorithm for testing nonemptiness for Büchi automata,
which takes linear time. Theorem 1 is now immediate. 2

Application: Pushdown systems We shall use the definition of [10, 11, 22],
which subsumes a more common definition of [15, 14, 27] based on configurations
of pushdown automata and transitions between them. A pushdown system over
the alphabet Σ is given by a finite set ∆ of rules of the form u → v where
u, v ∈ Σ∗. Let Dom(∆) denote the set of words u for which there is a rule u → v
in ∆. Then ∆ generates a relation →∆ over Σ∗ as follows: (w, w′) ∈ R∆ iff there
exist x, u, v ∈ Σ∗ such that w = xu, w′ = xv, and u → v is a rule in ∆. We thus
compute recurrent reachability over pushdown systems 〈Σ∗, →∆, λ〉.

The binary relation →∆ is regular, and can be given by a transducer R∆

whose size is linear in ‖∆‖ (where ‖∆‖ is the sum of the lengths of each word in
∆). Caucal [10] proved that, for each pushdown system ∆, the relation →∗

∆ is
a poly-time-computable rational transduction1. Later in [11] he noted that the
given transducer is also regular. For completeness, we sketch how his construction
gives a regular transducer R∗

∆ for →∗
∆ in poly-time. Recall the following well-

known proposition, which is proven using the standard “saturation” construction
(e.g. see [8, 14, 10]).

Proposition 6. Given a pushdown system ∆ and a nondeterministic automa-
ton A, one can compute two automata Apre∗ and Apost∗ for pre∗(L(A)) and
post∗(L(A)) in poly-time.

In fact, the algorithm given in [14] computes the automata in cubic time, and
the sizes of Apre∗ and Apost∗ are at most quadratic in |A|. To construct R∗

∆

using this proposition, we shall need the following easy lemma.

1 Rational transducers are strictly more powerful than regular transducers.



Recurrent Reachability Analysis in Regular Model Checking 11

Lemma 7 ([10]). Given a pushdown system ∆ and two words u, v ∈ Σ∗, then
u →∗

∆ v iff there exist words x, y, z ∈ Σ∗ and word w ∈ Dom(∆)∪ {ε} such that
u = xy, v = xz, y →∗

∆ w, and w →∗
∆ z.

Now constructing R∗
∆ is easy. First, we use Proposition 6 to compute the au-

tomata Aw
pre∗ and Aw

post∗ that recognize pre∗(w) and post∗(w) for every w ∈
Dom(∆) ∪ {ε}. Then, on input u ⊗ v, the transducer guesses a word w ∈
Dom(∆) ∪ {ε} and a position at which the prefix x in Lemma 7 ends, and
then simultaneously runs the automata Aw

pre∗ and Aw
post∗ to verify that the top

part y and the bottom part z of the remaining input word (preceding the ⊥
symbol) satisfy y ∈ L(Aw

pre∗) and z ∈ L(Aw
post∗). We thus obtain a transducer

R∗ of size O(‖∆‖2). By taking a product, we compute a transducer R+ of size
O(‖∆‖3) in poly-time. Therefore, Theorem 1 implies the following.

Theorem 8. Both global and local model-checking for recurrent reachability over
pushdown systems are solvable in poly-time.

That is, for a pushdown system ∆ and a nondeterministic automaton A
over an alphabet Σ, one can compute in polynomial time an NWA recognizing
Rec(L(A),→+

∆).

4 Recurrent reachability: the tree case

Recall that in a tree-automatic transition system S = (S,→, λ), the relation →
and the sets λ(Pi)’s are given as tree automata. As in the word case, such a
transition system is said to be transitive if the relation →+ is regular. We now
extend our results from Section 3 to transitive tree-automatic transition systems.

Theorem 9. Given an NTA A and a transitive tree-automatic transition system
S = 〈S,→, λ〉, the set Rec(L(A)) of states T ∈ S such that T →ω L(A) is
regular. Moreover, if the transducer R+ for →+ is computable in time t(|R|),
then one can compute an NTA recognizing Rec(L(A)) of size O(|R+|2 × |A|) in
time t(|R|) + O(|R+|6 × |A|4).

As in the word case, this implies two corollaries:

Corollary 10. If S is transitive and tree-automatic and R+ is poly-time com-
putable, then both global and local model-checking for recurrent reachability are
solvable in poly-time.

Corollary 11. If S = 〈S,→, λ〉 is a transitive tree-automatic transition sys-
tem such that the transducer R+ is computable, then for each formula ϕ of
(EF+EGF)-logic, the set [[ϕ]]S is regular, and an NTA defining [[ϕ]]S can be ef-
fectively constructed.

The proof follows the same basic steps as the proof of Theorem 1: we first show
that it is sufficient to consider only infinite witnessing sequences that have a rep-
resentation as an infinite tree over a finite labeling alphabet; we then construct
a tree automaton (over infinite trees) with a Büchi acceptance condition that



12 Anthony Widjaja To and Leonid Libkin

recognizes such sequences; and from such an automaton we construct a NTA
for Rec(L(A)) by applying projection and checking nonemptiness for Büchi tree
automata. As checking nonemptiness for Büchi tree automata is quadratic [26]
instead of linear as in the word case, the degree of the polynomials in Theorem
9 doubles. While all steps are similar to those in the word case, there are many
technical differences; in particular in the coding of an infinite sequence by a
single infinite tree. See appendix for details of the proof.

Application: Ground tree rewrite systems Ground tree rewrite systems
have been intensely studied in the rewriting, automata, and verification com-
munities [13, 12, 18, 19]. We now show that a result by Löding [19] on poly-time
model-checking for recurrent reachability and decidability of model checking
(EF+EGF)-logic over such systems, which was proved with a specialized method
for RGTRSs, can be obtained as a corollary of Theorem 9.

A ground tree rewrite system (GTRS) over Σ-labeled Υ -trees is a finite set
∆ of transformation rules of the form t → t′ where t, t′ ∈ TreeΥ (Σ). If we
permit rules of the form L → L′, where L and L′ are tree languages given by
some NTAs, then we call ∆ a regular ground tree rewrite system (RGTRS).
Obviously, RGTRSs generalize GTRSs. We define ‖∆‖ as the sum of the sizes
of automata in ∆. The RGTRS ∆ also generates a binary relation →∆ over
TreeΥ (Σ): For a tree T and a node u in it, let Tu be the subtree of T rooted at
u. Given two trees T and T ′, we let T →∆ T ′ iff there exists a node u in T and
a rule L → L′ in ∆ such that Tu ∈ L and T ′ = T [t′/u] for some t′ ∈ L′, where
T [t′/u] is the tree obtained from T by replacing the node u by the tree t′.

Given ∆, it is easy to compute a tree transducer R∆ for →∆ in time O(‖∆‖);
it guesses a node u in the input tree T ⊗ T ′ and a rule in ∆ to apply at u in T
to obtain T ′. The following has been proven in [13] and [12, chapter 3].

Proposition 12. Given a RGTRS ∆, the transitive closure relation →+
∆ is reg-

ular, and a transducer defining it can be computed in time polynomial in |R∆|.

In fact, the proof for the above proposition constructs “ground tree transducers”,
which are a subclass of the notion of transducers we are considering in this paper
(e.g. see [12, chapter 3]).

Combining this proposition with corollaries 10 and 11, we obtain:

Corollary 13. (Löding [19]) Both global and local model checking for recurrent
reachability over RGTRSs are solvable in poly-time. Model checking (EF+EGF)-
logic over RGTRSs with regular atomic predicates is decidable.

Application: PA-processes PA [4, 22] is a well-known process algebra allow-
ing sequential and parallel compositions, but no communication. It generalizes
basic parallel processes (BPP), and context-free processes (BPA), but is incom-
parable to pushdown processes and Petri nets (e.g. see [22]). PA has found ap-
plications in the interprocedural dataflow analysis of parallel programs [16].
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We review the basic definitions, following the presentation of [20]: we initially
distinguish terms that are equivalent up to simplification laws. The definition of
PA usually includes transition labels, which we omit to simplify our presentation
(however, the results easily hold when we incorporate transition labels). Fix
a finite set Var = {X, Y, Z, . . .} of process variables. Process terms over Var,
denoted by FVar, are generated by the grammar:

t, t′ := 0 | X, X ∈ Var | t.t′ | t‖t′

where 0 denotes a “nil” process, and t.t′ and t‖t′ are sequential and parallel
compositions, resp. Process terms can be viewed as Σ-labeled binary trees, where
Σ = Var∪{0, ‖, ·}. In particular, inner nodes are always labeled by ‘.’ or ‘‖’, while
leaves are labeled by elements in Var∪{0}. A PA declaration over FVar is a finite
set ∆ of rewrite rules of the form X → t, where X ∈ Var, and t ∈ FVar. We set
Dom(∆) = {X : (X → t) ∈ ∆, for some t ∈ FV ar}, and Var∅ = Var − Dom(∆).
The set ∆ generates a transition relation →∆ on process terms defined by:

t1 → t′1
t1‖t2 → t′1‖t2

t1 → t′1
t1.t2 → t′1.t2 X → t

(X → t) ∈ ∆

t2 → t′2
t1‖t2 → t1‖t′2

t2 → t′2
t1.t2 → t1.t

′
2

t1 ∈ IsNil

Here IsNil is the set of “terminated” process terms, i.e., those in which all
variables are in Var∅. It is easy to see that there is a regular transducer R∆ over
process terms for →∆, whose size is linear in the size ‖∆‖ of ∆. It is defined in
in the same way as for GTRSs, except that when it guesses a leaf node at which
a rule is applied, it must further ensure that v has no ‘.’-labeled ancestor u such
that v is a descendant u1 and that Tu0 is not a terminated process term.

Theorem 14 ([20, 21, 16]). Given a PA declaration ∆ and a NTA A describ-
ing a set of process terms over Var, the sets pre∗(L(A)) and post∗(L(A)) are
regular, for which NTAs can be computed in time O(‖∆‖ × |A|), and one can
construct a regular transducer R+ for →+ in poly-time2.

We consider only languages and atomic propositions that are interpreted
as regular subsets of FV ar. This poses no problem as FV ar is easily seen a
regular subset of Tree2(Σ) and no tree t ∈ FV ar is related by → to a tree
t′ ∈ Tree2(Σ)−FV ar. From Theorem 14 and Corollaries 10 and 11, we obtain:

Theorem 15. Both global and local model checking for recurrent reachability
over PA are solvable in poly-time. Model checking (EF+EGF)-logic over PA is
decidable.

In the study of PA processes, it is common to use a structural equivalence on
process terms. We now extend our results to PA modulo structural equivalence.

2 Lugiez and Schnoebelen first proved this in [20] for a more general notion of trans-
ducers, but later in [21] realized that regular transducers suffice.
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Let ≡ be the smallest equivalence relation on FV ar that satisfies the following:

t.0 ≡ t 0.t ≡ t t‖0 ≡ t t‖t′ ≡ t′‖t
(t‖t′)‖t′′ ≡ t‖(t′‖t′′) (t.t′).t′′ ≡ t.(t′.t′′)

We let [t]≡ stand for the equivalence class of t and [L]≡ for
⋃

t∈L[t]≡. We write
L/ ≡ for {[t]≡| t ∈ L}. It was shown in [20] that, for each t ∈ FV ar, [t]≡ is a
regular tree language, although the set [L]≡ need not be regular even for regular
L. Given a PA declaration ∆, the equivalence ≡ generates a transition relation
[t]≡ ⇒ [u]≡ over FVar/ ≡ which holds iff there exist t′ ∈ [t]≡ and u′ ∈ [u]≡ such
that t′ → u′. We need the following result:

Lemma 16 ([20]). The relation ≡ is bisimulation: for all t, t′, u ∈ FV ar, if
t ≡ t′ and t → u, then there exists u′ ∈ FV ar such that t′ → u′ and u ≡ u′.

Now it is not hard to show that, for every NTA A, the set Rec(L(A)) is
closed under ≡, if L(A) is closed under ≡. This also implies that Rec(L(A)) =
[Rec(L(A))]≡ = {t : t ∈ Rec(L(A)/ ≡,⇒+)}. In the following, we consider only
languages that are closed under ≡.

Theorem 17. Given an NTA A such that L(A) is closed under ≡ and a process
term t ∈ FV ar, it is possible to decide whether [t]≡ ⇒ω L(A)/ ≡ in PTIME.

Since Rec(L(A)) = [Rec(L(A))]≡, we need only compute an NTA for Rec(L(A))
and test whether t ∈ Rec(L(A)). These can be done in PTIME by theorem 15.

We now move to model checking (EF+EGF)-logic over PA modulo ≡. Sup-
pose S = 〈S,→, λ〉 is a transition system generated by some PA-declaration
and that each λ(P ) is closed under ≡. In fact, the standard atomic propositions
for PA-processes include sets of process terms of the form [t]≡ and action-based
predicates, i.e., sets of all terms t in which some transitions in ∆ can be applied
(and these are obviously closed under ≡ and of size O(‖∆‖)). Now Lemma 16
implies that [[ϕ]]S is closed under ≡ for (EF+EGF)-formulae ϕ, and we obtain:

Theorem 18. The problem of model checking for (EF+EGF)-logic over PA
modulo ≡ is decidable whenever all atomic propositions are closed under ≡.

5 Future work

We mention some possible future work. We would like to further study algorith-
mic improvements of our general technique, e.g., in its current form it gives a
polynomial of degree higher than the specialized technique of [19] for RGTRSs.
We would also like to investigate stronger but nonrestrictive conditions that
ensure decidability of stronger logics (e.g. CTL*) within our framework; it is
easy to show that our current condition is insufficient. Finally, we would like
to study when our technique could generate elementary complexity algorithms
for (EF+EGF)-logic, or just EF-logic alone. This problem is still open even for
PA-processes and GTRSs [19, 23].
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18. C. Löding. Model-checking infinite systems generated by ground tree rewriting. In

FoSSaCS’02, pages 280–294.
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APPENDIX

A Lemma 5 implies necessity in Lemma 4

We now complete the proof of necessity in lemma 4 by inductively constructing
the desired sequences {αi}i≥0 and {βi}i≥0 by using lemma 5 at every induction
step. In the following, a sequence {ηi}i≥0 of run segments of A is said to be good
if η0(0) = q1

0 and last(ηi) = first(ηi+1) for i ∈ N. In other words, the sequence
of run segments is good if it starts with the initial state of A and two consecutive
run segments can be concatenated. The same notion can similarly be defined for
sequences of run segments of M.

Claim. There exist two sequences {αi}i≥0 and {βi}i≥0 of words, a good sequence
{ηi}i≥0 of run segments of A, and a good sequence {θi}i≥0 of run segments of
M such that α0 = w, η0 = q1

0 , θ0 = q2
0 , and for all k ∈ N:

1. for all 0 < i ≤ k, |αi| > 0,
2. for all 0 ≤ i < k, |βi| = |αi|,
3. for all 0 ≤ i ≤ k, ri := η0 ⊙ . . . ⊙ ηi is a run of A on β0 . . . βi−1,
4. for all 0 ≤ i ≤ k, r′i := θ0⊙. . .⊙θi is a run of M on (β0⊗β0) . . . (βi−1⊗βi−1),
5. for all 0 < i ≤ k, Aqi accepts αi, where qi = last(ri),
6. for all 0 ≤ i < k, Mq′

i accepts αi ⊗ βiαi+1, where q′i = last(r′i),

7. for all 0 ≤ i ≤ k, αi ∈ Rec2(Aqi ,Mq′

i), where qi = last(ri) and q′i = last(r′i).

Observe that this claim immediately implies Lemma 4 as we may simply define
r = η0 ⊙ η1⊙ . . . and r′ = θ0 ⊙ θ1⊙ . . .. To prove this claim, we shall define these
four sequences inductively. For each k ∈ N, we shall define four partial sequences
{αi}0≤i≤k, {βi}0≤i<k, {ηi}0≤i≤k, and {θi}0≤i≤k satisfying the conditions in the
claim. We shall first deal with the base case k = 0. We define α0 = w, η0 = q1

0 ,
and θ0 = q2

0 . It is easy to see that statements (1),(2),(5), and (6) are vacuous.
Statements (3)–(4) are also true because q1

0 (resp. q2
0) is a run of A (resp. M)

on ε. Statement (7) is true by assumption that w ∈ Rec2(A,M). Assume now
that k > 0 and the four partial sequences have been defined satisfying the seven
conditions in the claim for all natural numbers up to k. We shall now extend
these partial sequences by defining αk+1, βk, ηk+1, and θk. By induction, we
have αk ∈ Rec2(A

qk ,Mq′

k) and so Lemma 5 gives us a word w′w′′. We may
set βk = w′ and αk+1 = w′′. It is immediate that condition (1) and (2) are
satisfied. We define ηk+1 to be the prefix of length |w′| of the run r of Aqk on
w′w′′ given by Lemma 5. We define θk to be the run r′ of Mqk of length |w′|
given by Lemma 5. It is easy to see now that condition (3)–(5) hold whenever
i = k + 1 and condition (6) hold whenever i = k. Lemma 5 also implies that

αk+1 ∈ Rec2(Aqk+1 ,Mq′

k+1), where qk+1 := last(rk+1) and q′k+1 := last(r′k+1).
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Finally, conditions (3)–(7) hold for other smaller values of i by induction. This
completes our proof for the claim and therefore the proof of Lemma 4.

B Proofs from Section 4

We will first fix some definitions and notations that we will use in the proof of
theorem 9. For a tree T = (D, τ) and a nonempty D′ ⊆ D, we define T|D′ to
be the tree T whose domain is restricted to D′. We write T ′ � T iff T ′ is the
“prefix” of T , i.e. the domain of T ′ is contained in the domain of T , and the
labeling of T and T ′ coincide on the domain of T ′.

Next we need some definitions about contexts. A context tree with variables
x1, . . . , xn is a (Σ ∪{x1, . . . , xn})-labeled Υ -tree T ′ = (D′, τ ′) such that for each
i = 1, . . . , n, there is exactly one node ui ∈ D′ with τ ′(ui) = xi; furthermore, ui

is a leaf node in T . The leaf nodes u1, . . . , un are also called context leaves. To
emphasize which variables are in T ′, we write T ′[x1, . . . , xn] for T ′. Whenever
n = 0, T ′ is just a normal tree (a.k.a. ground tree). Given ground trees t1, . . . , tn,
the tree T ′[t1/x1, . . . , tn/xn] is the ground tree obtained by replacing all context
leaves u1, . . . , un by the ground trees t1, . . . , tn, respectively. We also define T ′⊗

T ′ just as we defined the operator ⊗ for ground trees, but we replace the label
»

xi

xi

–

by xi. Given an NTA A′ over Σ-labeled Υ -trees, we want to extend the notion
of runs of A′ = (Σ′, Q′, δ′, q′0, F

′) to context trees. We first define virt(T ′) to be
the (Σ⊥ ∪ {x1, . . . , xn})-labeled tree T ′′ = (D′′, τ ′′) such that D′′ := D′ ∪ {vj :
v ∈ D′ − {u1, . . . , un}, j ∈ Υ} and, if u ∈ D′, we set τ ′′(u) := τ ′(u); if u /∈ D′,
then τ ′′(u) := ⊥. A run of A′ on T ′ is a mapping ρ : D′′ → Q′ that is defined in
the same way as for ground trees. The run r is said to be potentially accepting
if ρ(u) ∈ F for each leaf u ∈ D′′ − {u1, . . . , un}. In other words, potentially
accepting runs might become accepting after we replace the context leaves with
some ground trees. For a context tree T ′ = (D′, τ ′) and a tree T = (D, τ), we
write T ′ � T if D′ ⊆ D and τ ′(u) = τ(u) whenever u ∈ D′ and u is not a
context leaf. A tree T = (D, τ) is said to be unranked if its direction alphabet is
Z+, and for each u ∈ D there is n ∈ N such that uj ∈ D for all 1 ≤ j ≤ n and
u(j + 1) /∈ D. Notice that unranked trees are finitely branching.

We now prove theorem 9. To simplify notations, we shall make an assumption
that Υ = {1, 2}. This is not necessary for the proof and it is easy to adapt the
proof to the case when Υ is any finite nonempty direction alphabet. For the rest of
this section, we write A = (Q1, δ1, q

1
0 , q

1
F ) and M = R+ = (Q2, δ2, q

2
0 , q

2
F ). As our

automata are nondeterministic, we may assume without loss of generality that
there are no transitions from q1

F and q2
F in the automata A and M, respectively.

By definition, for every tree T , we have T ∈ Rec(A) iff there exists an infinite
sequence {Ti}i∈N of such that T0 = T , Ti−1 →+ Ti and Ti ∈ L(A) for all
i > 0. As in the case of words, we shall prove that it is sufficient to consider
only infinite sequences of trees of a special form that can be recognized by a
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Büchi tree automaton B, after which constructing the desired automaton A′ for
Rec(A) is easy. Unlike in the word case, we shall not treat separately trees with
looping and non-looping witnessing sequences. We shall now prove an analogue
of lemma 4. For the rest of the section, we shall need the following definition.
For any context tree T ′[x1, . . . , xn] = (D′, τ ′) and a tree T = (D, τ), we write
T ′[x1, . . . , xn] ⊑ T (or just T ′ ⊑ T ) if, whenever u1, . . . , un are leaf nodes in T ′

labeled by x1, . . . , xn, respectively, it is the case that

– ui = viri for some ri ∈ Υ and vi ∈ D ∩ D′

– for 1 ≤ i ≤ n, we have ui /∈ D and D′ − {u1, . . . , un} ⊆ D.

In other words, T ′ ⊑ T iff all the nodes in T ′ are in T except for the context
leaves. In the word case, an analogous notion that we used in the previous section
is the relation between words w′ and w such that |w′| = |w|. The use of equality
as opposed to the inequality ‘≤’ is owing to the looping and the non-looping
case that we considered separately.

Lemma 19. For every tree T , it is the case that T ∈ Rec(A) iff there exists
a Γ -labeled unranked tree T = (DT, τT), where Γ := {(t ⊗ t′[x1, . . . , xr], q, q

′) :
q ∈ Q1, q

′ ∈ Q2, r ∈ N, t is a tree, t′ is a context tree, and t′ ⊑ t}, and τT(u) =
(αu ⊗ βu[x1, . . . , xru

], qu, q′u) for all u ∈ DT, such that the following conditions
hold:

1. τT(ε) = (T ⊗ βε[x1, . . . , xrε
], q1

0 , q
2
0) for some context tree βε[x1, . . . , xrε

] and
some rε ∈ N such that βε ⊑ αε,

2. for all u ∈ DT we have
(a) the number of children of u is the same as ru,
(b) αu ⊗ βu[αu1, . . . , αuru

] ∈ L(Mq′

u),
(c) if v1, . . . , vru

are the nodes of βu labeled by x1, . . . , xru
respectively, then

there exist an accepting run ρu of Aqu on βu[αu1, . . . , αuru
] and a po-

tentially accepting run ρ′u of Mq′

u on βu ⊗ βu such that, for each i =
1, . . . , ru, it is the case that qui = ρu(vi) and q′ui = ρ′u(vi).

Notice that, if we restrict the value of r in the definition of Γ in lemma 19
to be at most 1, we obtain a lemma for the word case, which is similar to
lemma 4. Observe that the tree T might be finite in which case each leaf node
is labeled by some (t ⊗ t′[x1, . . . , xr], q, q

′) ∈ Γ with r = 0. It is also possible
that some (or all) branches are infinite. We shall first show that lemma 19 is
sufficient. For this, we shall construct a witnessing sequence {Ti}i≥0 out of the
the tree T. We shall inductively define {Ti}i≥0 together with a sequence {Ci}i≥0

of context trees as follows. We set T0 := αε = T , C0 := x, T1 := βε[α1, . . . , αrε
],

and C1 := βε[x
ε
1, . . . , x

ε
rε

]. Suppose that Ci with i ≥ 1 has been defined to be
the context tree T ′[xu1

1 , . . . , xu1
ru1

, . . . , xun

1 , . . . , xun
run

] for some nodes u1, . . . , un

in T of the same height, where n ∈ N and ru1
, . . . , run

∈ N. We define Ci+1
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to be T ′[σ], where σ replaces x
uj

k by βujk[x
ujk
1 , . . . , x

ujk
ruj k ]. Similarly, we define

Ti+1 to be T ′[σ], where σ replaces x
uj

k by αujk. Notice that if Ci is ground,
then Ti+1 = Ti and Ci+1 = Ci. By induction, the sequence {Ti}i≥0 together
with {Ci}i≥0 have been defined. It is not difficult to prove by induction that
Ti ∈ L(A) and Ti−1 ⊗ Ti ∈ L(M) for all i ∈ Z+. Therefore, we conclude that
T ∈ Rec(A).

We shall now prove the converse. As we did for the word case, we first extend
the definition of Rec(N , T ) in the same way to allow not necessarily transitive
transducers T . We need the following intermediate lemma.

Lemma 20. Suppose N and T are, respectively, an automaton and a transducer
over Σ. For every tree T = (D, τ), if T ∈ Rec(N , T ), then one of the following
is true:

1. there exists a tree T ′ = (D′, τ ′) such that D′ ⊆ D, T ′ ∈ L(N ), (T, T ′) ∈
L(T ), and (T ′, T ′) ∈ L(T ).

2. There exist a context tree T ′[x1, . . . , xn] = (D′, τ ′) and trees t1, . . . , tn such
that
(a) T ′ ⊑ T ,
(b) (T, T ′[t1, . . . , tn]) ∈ L(T ),
(c) there exist an accepting run r = (Dr, τr) of N on T ′[t1, . . . , tn] and

a potentially accepting run r′ = (Dr′ , τr′) of T on T ′ ⊗ T ′ such that,
whenever 1 ≤ i ≤ n, it is the case that ti ∈ Rec(N qi , T q′

i) where qi =
τr(ui) and q′i = τr′(ui).

Proof. Suppose that T = (D, τ) ∈ Rec(N , T ), but statement (1) on RHS is
false. Then, there exists an infinite sequence σ = {Ti}i∈N of trees such that
T0 = T , Tj 6= Tk for all distinct indices j, k, and it is the case that, for all
i > 0, Ti ∈ L(N ) with accepting run ηi = (Dηi

, τηi
), and for all distinct pair

of indices 0 ≤ i < i′, Ti ⊗ Ti′ ∈ L(T ). Now, for every tree Ti, where i > 0,
there exists a unique context tree Ci[x1, . . . , xni

] = (Di, τi), for some ni ∈ N,
such that Ci ⊑ T , and Ti = Ci[t

i
1, . . . , t

i
ni

] for some (ground) trees ti1, . . . , t
i
ni

.
Let H = {Ci[x1, . . . , xni

] : i > 0}. For infinitely many i > 0, it is the case that
ni > 0, i.e., there exists a node in Ti that is not in T ; for, otherwise, there are
infinitely many indices i such that Di ⊆ D where Ti = (Di, τi) and, since there
are only finitely many different such trees, pigeonhole principle tells us that one
of these trees must repeat in σ, which contradicts our assumption that statement
(1) is false. On the other hand, it is easy to see that the number of nodes in any
context tree Ci in H is bounded by |Υ | × |D|. Therefore, the set H is finite and
so is the number of different potentially accepting runs of N on context trees
in H . So, if we define η′

i := (ηi)|D, i.e., the part of the run tree ηi restricted to
the domain D of T , then by pigeonhole principle there exists k > 0 such that
Ck[x1, . . . , xnk

] = Cj [x1, . . . , xnj
] and ηk = ηj for infinitely many indices js. Let

n := nk, T ′[x1, . . . , xn] := Ck[x1, . . . , xn], and η′ = η′
k. We remove all elements
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Ti (i > 0) from σ such that Ci 6= T ′ or η′
i 6= η′ and, by renaming indices, call

the resulting sequence σ = {Ti}i∈N where T0 = T . The same is done for the
sequence {ηi} of runs so that ηi is an accepting run N on Ti (i ≥ 1) such that
η′ � ηi. Notice that σ is still a witness for T ∈ Rec(N , T ). Now let θ(j, k),
where 0 ≤ j < k, be an accepting run of T on Tj ⊗ Tk. Let C be the finite
set of all potentially accepting runs of T on T ′ ⊗ T ′. The set C is nonempty as
T ′ ⊗ T ′ � Tj ⊗ Tk and Tj ⊗ Tk ∈ L(T ). Consider the edge-labeled undirected
graph G = (V, {Eρ})ρ∈C such that V = Z+ and

Eρ := {{j, k} : 0 < j < k and ρ � θ(j, k) }.

Notice that {Eu}u∈C is a partition of {{j, k} : j 6= k ∈ Z+}, and so G is a
complete graph. By (infinite) Ramsey theorem, G has a monochromatic complete
infinite subgraph H = (V ′, Eρ) for some ρ ∈ C. Set r′ := ρ. Notice that if V ′

contains the elements j1 < j2 < . . . then r′ � θ(jk, jk′) for all k′ > k ≥ 1. We
now remove all Ti (i ≥ 1) in σ with i /∈ V ′ and, again, rename indices. Notice
that σ is still a witness for T ∈ Rec(N , T ). Recall that for each i ≥ 1, we have
Ti = T ′[t1i , . . . , t

n
i ] for some ground trees t1i , . . . , t

n
i . Set r := η1 and tk := tk1 for

each k = 1, . . . , n. Letting σk = {tki }i≥1 for each k = 1, . . . , n, it is easy now to

check that tk ∈ Rec(N qk , T q′

k) with witnessing sequence σk, where qk = τr(uk)
and q′k = τr′(uk) if uk is the leaf node of T ′ labeled by xk. So, condition (2c)
holds. That (2b) holds is also immediate. As we already saw that T ′ ⊑ T , the
lemma is proven. ⊓⊔

In the same way we used lemma 5 to complete the proof of necessity in lemma
4, we can now finish off the proof of necessity in lemma 19 by constructing the
tree T inductively and adding nodes of height n at step n ∈ N by using lemma
20. Therefore, the proof of lemma 19 is complete.

We now construct the Büchi automaton B. For any tree T = (D, τ), we write

T̂ for the tree T with root marked by the new symbol #, i.e., T̂ := (1D, τ̂ )
with τ̂ (ε) := # and, whenever u ∈ D, τ̂(1u) := τ(u). Given an unranked tree
T = (DT, τT) satisfying conditions in lemma 19 on the right, we can inductively
define a Ω-labeled Υ -tree Hv for every v ∈ DT, where Ω := Σ2

⊥ ∪ {#}. We set

Hv := (αv⊗βv)[Ĥv1, . . . , Ĥvrv
]. Note that Hv might be infinite for some v ∈ DT.

If Hv = (D, τ), we also denote by full(Hv) the full infinite tree (Υ ∗, τ ′) such that

if u ∈ D, then τ ′(u) := τ(u); if u /∈ D, then τ ′(u) := ⊥ where ⊥ :=
»

⊥
⊥

–

. In other

words, the tree full(T ) is the tree T made full by padding finite branches by ⊥.

Our Büchi tree automaton B accepts precisely all Ω-labeled full infinite binary
tree full(Hε), where Hε is generated by some unranked tree T satisfying lemma
19. Constructing a Büchi tree automaton B = (Ω, Q, δ, q0, F ) is now easy. The
construction is very similar to the word case. We define

Q := (Q1 × Q2 × Q2) ⊎ (Q1 × Q2 × Q1 × Q2 × Q2),

where ⊎ means disjoint union. The start state is q0 := (q1
0 , q2

0 , q
2
0). The states

in (Q1 × Q2 × Q2) are meant to handle the cases when no # has thus far been
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seen by B. On the other hand, when B is in Q1 × Q2 × Q1 × Q2 × Q2, at least
one # has been seen. We now formally define the transition function δ. We first
define how B behaves when it is in Q1 × Q2 × Q2. Suppose that q1 ∈ Q1, and
q2, q

′
2 ∈ Q2. For all a, b ∈ Σ, we set

δ((q1, q2, q
′
2),

»

a
b

–

) :=





((qL1, qL2, q
′
L2), (qR1, qR2, q

′
R2)) |

(qL1, qR1) ∈ δ1(q1, b),

(qL2, qR2) ∈ δ2(q2,
»

a
b

–

),

(q′L2, q
′
R2) ∈ δ2(q

′
2,

»

b
b

–

)





.

For all a ∈ Σ, we set

δ((q1
F , q2, q

2
F ),

»

a
⊥

–

) := {((q1
F , qL2, q

2
F ), (q1

F , qR2, q
2
F )) : (qL2, qR2) ∈ δ2(q2,

»

a
⊥

–

)}

and we set

δ((q1
F , q2

F , q2
F ), ⊥) := {((q1

F , q2
F , q2

F ), (q1
F , q2

F , q2
F ))}.

Recall that there are no transitions from q1
F (resp. q2

F ) in the automaton A

(resp. M) and so, for all a, b ∈ Σ, we have δ((q1, q2, q
′
2),

»

a
b

–

) = ∅ if at least

one of the following holds: q1 = q1
F , q2 = q2

F , or q′2 = q2
F . Likewise, we have

δ((q1
F , q2

F , q2
F ),

»

a
⊥

–

) = ∅ unless a = ⊥. Finally, if q1 6= q1
F and q2, q

′
2 6= q2

F , we

then set

δ((q1, q2, q
′
2), #) := ((q1, q

′
2, q1, q2, q

′
2), (q

1
F , q2

F , q2
F )).

Notice that the state sent to the right child is (q1
F , q2

F , q2
F ) as the right child of

every #-labeled node in full(Hε) is ⊥-labeled.

We now proceed with our definition of δ when B is in Q1 ×Q2 ×Q1 ×Q2 ×Q2.
Suppose that q1, q

′
1 ∈ Q1 and q2, q

′
2, q

′′
2 ∈ Q2. For all a, b ∈ Σ, we define

δ
(
(q1, q2, q

′
1, q

′
2, q

′′
2 ),

»

a
b

–)

as





(
(qL1, qL2, q

′
L1, q

′
L2, q

′′
L2), (qR1, qR2, q

′
R1, q

′
R2, q

′′
R2)

)

∣∣∣∣∣∣∣∣∣∣∣∣

(qL1, qR1) ∈ δ1(q1, b),

(qL2, qR2) ∈ δ2(q2,
»

a
b

–

),

(q′L1, q
′
R1) ∈ δ1(q

′
1, a),

(q′L2, q
′
R2) ∈ δ2(q

′
2,

»

⊥
a

–

),

(q′′L2, q
′′
R2) ∈ δ2(q

′′
2 ,

»

b
b

–

)





We also define

δ
(
(q1

F , q2, q
′
1, q

′
2, q

2
F ),

»

a
⊥

–)
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as





(
(q1

F , qL2, q
′
L1, q

′
L2, q

2
F )), (q1

F , qR2, q
′
R1, q

′
R2, q

2
F )

)
∣∣∣∣∣∣∣

(qL2, qR2) ∈ δ2(q2,
»

a
⊥

–

),

(q′L1, q
′
R1) ∈ δ1(q

′
1, a),

(q′L2, q
′
R2) ∈ δ2(q

′
2,

»

⊥
a

–

)





We set δ((q1
F , q2

F , q1
F , q2

F , q2
F ), ⊥) := (q1

F , q2
F , q1

F , q2
F , q2

F ). Finally, if q1 6= q1
F and

q2, q
′′
2 6= q2

F , then δ((q1, q2, q
1
F , q2

F , q′′2 ), #) := (q1, q
′′
2 , q1, q2, q

′′
2 ). In this case, no-

tice that δ((q1, q2, q
1
F , q2

F , q′′2 ), l) = ∅ unless l = #.

We now set

F :=
{(q1

F , q2
F , q2

F ), (q1
F , q2

F , q1
F , q2

F , q2
F )}⋃

{(q1, q2, q
1
F , q2

F , q′′2 ) : q1 6= q1
F and q2, q

′′
2 6= q2

F }

It is easy to see that B recognizes precisely all trees full(Hε), where Hε is gen-
erated by some unranked tree T satisfying lemma 19. We now show how to
construct the automaton A′ = (Σ, Q′, δ′, q′0, F

′) that recognizes Rec(A) out of
B. The intuitive idea is similar to the word case: given a tree T , the automa-
ton A′ guesses a tree full(Hε), where Hε is generated by an unranked tree
T = (DT, τT) satisfying lemma 19 such that τT(ε) = (T ⊗ βε[x1, . . . , xrε

], q1
0 , q

2
0)

for some context tree βε[x1, . . . , xrε
]. More formally, we set Q′ := (Q1×Q2×Q2)

and q′0 = (q1
0 , q2

0 , q
2
0). The transition function is defined as follows:

δ′((q1, q2, q
′
2), a) =

∨

b∈Σ⊥

δ((q1, q2, q
′
2),

»

a
b

–

).

Finally, we set

F ′ :=

{(q1
F , q2

F , q2
F )}

∪ {(q1, q2, q
′
2) ∈ Q1 × Q2 × Q2 |

B(q1,q2,q′

2) accepts some Ω-labeled binary tree of the form T̂}

Observe that F ′ can be computed by using the algorithm for checking emptiness
for Büchi tree automata, which runs in quadratic time O(|B|2) = O(|A|4×|M|6)
(e.g. see [26]). Theorem 9 is now immediate.


