
MFCS 2012 – 1 / 19

Weakly-Synchronized Ground Tree Rewriting
(with Applications to Verifying Multithreaded Programs)

Anthony Widjaja Lin

Oxford University Department of Computer Science



Introduction

⊲ Introduction

The model

Our results

Conclusion

MFCS 2012 – 2 / 19



Multithreaded programs

Introduction

The model

Our results

Conclusion

MFCS 2012 – 3 / 19

� Rapidly gaining popularity

� Multithreading supported by JAVA, Python, C++, C#

� Benefit: concurrent executions on multiple processors

� Main problem:

– Can be difficult to understand

– Standard testing and debugging insufficient



Parallel.For and parbegin/parend constructs

Introduction

The model

Our results

Conclusion

MFCS 2012 – 4 / 19

parbegin/parend in action:

int* mergesort(int *array)

int *a1, *a2;

parbegin
a1 = mergesort(1st half of array);
a2 = mergesort(2nd half of array);

parend
return merge(a1,a2);



Parallel.For and parbegin/parend constructs

Introduction

The model

Our results

Conclusion

MFCS 2012 – 4 / 19

Parallel.For in action:

bool b[50];

Parallel.For(0,49,i,=>)
{
b[i] = fun2(a[i]);

}

return
∧49

i=0 b[i];



Summary of the problem

Introduction

The model

Our results

Conclusion

MFCS 2012 – 5 / 19

� Problem: verify multithreaded programs with
parbegin/parend and parallel.for constructs.

� Our approach:

– Design a formal model

– Design verification algorithms



The model

Introduction

⊲ The model

Our results

Conclusion

MFCS 2012 – 6 / 19



Summary of the model

Introduction

The model

Our results

Conclusion

MFCS 2012 – 7 / 19

� Pushdown systems (PDS): popular model for
sequential programs with function calls.

PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS



Summary of the model

Introduction

The model

Our results

Conclusion

MFCS 2012 – 7 / 19

� Pushdown systems (PDS): popular model for
sequential programs with function calls.

� Ground Tree Rewrite Systems (GTRS): extends
PDS & captures Parallel.For and
parbegin/parend constructs w/ no shared variables.

PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS



Summary of the model

Introduction

The model

Our results

Conclusion

MFCS 2012 – 7 / 19

� Pushdown systems (PDS): popular model for
sequential programs with function calls.

� Ground Tree Rewrite Systems (GTRS): extends
PDS & captures Parallel.For and
parbegin/parend constructs w/ no shared variables.

� State-extended GTRS (sGTRS): extends GTRS by
allowing shared variables. (Turing-complete!)

PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS



Summary of the model

Introduction

The model

Our results

Conclusion

MFCS 2012 – 7 / 19

� Pushdown systems (PDS): popular model for
sequential programs with function calls.

� Ground Tree Rewrite Systems (GTRS): extends
PDS & captures Parallel.For and
parbegin/parend constructs w/ no shared variables.

� State-extended GTRS (sGTRS): extends GTRS by
allowing shared variables. (Turing-complete!)

� Weakly-Synchronized GTRS (wGTRS): a good
decidable approximation of sGTRS.

PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS



Ground Tree Rewrite Systems (GTRS)

Introduction

The model

Our results

Conclusion

MFCS 2012 – 8 / 19

Syntax:

Consists of a finite set of “rewrite” rules that look like

t1 t2
a

Semantics as a transition system:

Domain: set of all trees (over suitable ranked alphabet)
Transitions:

a

1 t2t



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 9 / 19

GTRS rules for arrays of four ints:

� Dividing tasks, e.g.,

msort([1,5,10,3]) =⇒

msort([1,5,10,3])

msort([1,5]) msort([10,3])

� Merging, e.g.,
msort([1,5,10,3])

[1,5] [3,10]

=⇒ [1,3,5,10]



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) msort([3]) msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) msort([3]) msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] msort([2])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] [2]



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] [2]



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) [2,3]

msort([7]) msort([1])



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

msort([7,1,3,2])

msort([7,1]) [2,3]

msort([7]) msort([1])

AND SO ON UNTIL ...



GTRS example: mergesort

Introduction

The model

Our results

Conclusion

MFCS 2012 – 10 / 19

[1,2,3,7]



State-extended GTRS (sGTRS)

Introduction

The model

Our results

Conclusion

MFCS 2012 – 11 / 19

� Threads often communicate via shared variables

– e.g.: count++ on calling mergesort

� GTRS framework cannot capture this

� In general, need to extend GTRS with states



State-extended GTRS (sGTRS)

Introduction

The model

Our results

Conclusion

MFCS 2012 – 11 / 19

Syntax:

Rewrite rules have control state components

(

p, t1

)

a
−→

(

q, t2

)

Semantics as a transition system:

Domain: {control states} × {all trees}
Transitions:

t2

q

t

a

1

p



Weakly-Synchronized GTRS (wGTRS)

Introduction

The model

Our results

Conclusion

MFCS 2012 – 12 / 19

� sGTRS can simulate 2-stack automata (Turing-comp!)

� For decidability, restrict the underlying control graph:

– omit tree component of rewrite rules

� wGTRS: restrict to DAG with self-loops (a.k.a.
weak control unit)

p

s t

q

a

b

c

a

b d



Weakly-Synchronized GTRS (wGTRS)

Introduction

The model

Our results

Conclusion

MFCS 2012 – 12 / 19

What good wGTRS for?

� Timing and event constraints among threads

� Captures sGTRS runs up to bounded # of syncs (many
concurrency bugs occur within ≤ 5 syncs)



Our results

Introduction

The model

⊲ Our results

Conclusion

MFCS 2012 – 13 / 19



Statements of main results

Introduction

The model

Our results

Conclusion

MFCS 2012 – 14 / 19

Theorem: Reachability for wGTRS is NP-complete.
Moreover, it can be efficiently reduced to existential
Presburger theory.

� Highly optimised solvers for existential Presburger
theory are available (e.g. Z3).

� Corollaries:

– Repeated reachability is NP-complete.

– Model checking a fragment of LTL is
coNP-complete.



Reducing to existential Presburger theory

Introduction

The model

Our results

Conclusion

MFCS 2012 – 15 / 19

wGTRS Reachability

Instance: G
︸︷︷︸

wGTRS

,

(

p, t1

)

︸ ︷︷ ︸

start conf.

,

(

q, t2

)

︸ ︷︷ ︸

final conf.

Question:

(

p, t1

)

−→∗

(

q, t2

)

?



Reducing to existential Presburger theory

Introduction

The model

Our results

Conclusion

MFCS 2012 – 15 / 19

Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)



Reducing to existential Presburger theory

Introduction

The model

Our results

Conclusion

MFCS 2012 – 15 / 19

Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)

� Restrict CFG behavior to derivation trees satisfying
linear arithmetic constraints ψ on # occurrences of
terminals (Parikh image)



Reducing to existential Presburger theory

Introduction

The model

Our results

Conclusion

MFCS 2012 – 15 / 19

Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)

� Restrict CFG behavior to derivation trees satisfying
linear arithmetic constraints ψ on # occurrences of
terminals (Parikh image)

� Use PTIME algo from Verma et al.’06 computing
Parikh image of CFG as exist. Presburger formula ϕ



Reducing to existential Presburger theory

Introduction

The model

Our results

Conclusion

MFCS 2012 – 15 / 19

Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)

� Restrict CFG behavior to derivation trees satisfying
linear arithmetic constraints ψ on # occurrences of
terminals (Parikh image)

� Use PTIME algo from Verma et al.’06 computing
Parikh image of CFG as exist. Presburger formula ϕ

� wGTRS reachability instance is positive iff
〈N; +〉 |= ϕ ∧ ψ



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)

The corresponding CFG derivation:
N

(p,X),
(

q,
X

Y Y

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)

The corresponding CFG derivation:
N

(p,X),
(

q,
X

Y Y

)

→ N
(p,X),

(

q,
X

X X

) N(

q,
X

X X

)

,

(

q,
X

Y Y

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)

The corresponding CFG derivation:
N

(p,X),
(

q,
X

Y Y

)

→ N
(p,X),

(

q,
X

X X

) N(

q,
X

X X

)

,

(

q,
X

Y Y

)

→ Tp,q N(

q,
X

X X

)

,

(

q,
X

Y Y

)



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)

The corresponding CFG derivation:
N

(p,X),
(

q,
X

Y Y

)

→ N
(p,X),

(

q,
X

X X

) N(

q,
X

X X

)

,

(

q,
X

Y Y

)

→ Tp,q N(

q,
X

X X

)

,

(

q,
X

Y Y

)

→ Tp,q N(q,X),(q,Y ) N(q,X),(q,Y )



Simulation of wGTRS by CFG

Introduction

The model

Our results

Conclusion

MFCS 2012 – 16 / 19

(p,X) −→

(

q,
X

X X

)

, (q,X) −→ (q, Y )

A run of this wGTRS:

(p,X) →

(

q,
X

X X

)

→

(

q,
X

Y X

)

→

(

q,
X

Y Y

)

The corresponding CFG derivation:
N

(p,X),
(

q,
X

Y Y

)

→ N
(p,X),

(

q,
X

X X

) N(

q,
X

X X

)

,

(

q,
X

Y Y

)

→ Tp,q N(

q,
X

X X

)

,

(

q,
X

Y Y

)

→ Tp,q N(q,X),(q,Y ) N(q,X),(q,Y )

→ Tp,q Tq,q Tq,q



Restricting CFG behavior via Presburger constraints

Introduction

The model

Our results

Conclusion

MFCS 2012 – 17 / 19

Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.



Restricting CFG behavior via Presburger constraints

Introduction

The model

Our results

Conclusion

MFCS 2012 – 17 / 19

Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.

p

s t

q

a

b

c

a

b d



Restricting CFG behavior via Presburger constraints

Introduction

The model

Our results

Conclusion

MFCS 2012 – 17 / 19

Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.

p

s t

q

a

b

c

a

b d

Ts,pTp,tTt,t is good



Restricting CFG behavior via Presburger constraints

Introduction

The model

Our results

Conclusion

MFCS 2012 – 17 / 19

Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.

p

s t

q

a

b

c

a

b d

Ts,pTp,tTt,t is good Ts,pTs,q is bad



Restricting CFG behavior via Presburger constraints

Introduction

The model

Our results

Conclusion

MFCS 2012 – 17 / 19

Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.

p

s t

q

a

b

c

a

b d

Ts,pTp,tTt,t is good Ts,pTs,q is bad

Required constraint is a conjunction of linear arithmetic
expressions, e.g., #Ts,p > 0 → #Ts,q = 0



Conclusion

Introduction

The model

Our results

⊲ Conclusion

MFCS 2012 – 18 / 19



Conclusion

Introduction

The model

Our results

Conclusion

MFCS 2012 – 19 / 19

� wGTRS provides good compromise between decidability
and modelling power

� wGTRS can be verified by fast reduction to existential
Presburger theory (and hence NP or coNP complete)



Conclusion

Introduction

The model

Our results

Conclusion

MFCS 2012 – 19 / 19

� wGTRS provides good compromise between decidability
and modelling power

� wGTRS can be verified by fast reduction to existential
Presburger theory (and hence NP or coNP complete)

THANKS FOR LISTENING!


	Introduction
	Multithreaded programs
	Parallel.For and parbegin/parend constructs
	Summary of the problem

	The model
	Summary of the model
	Ground Tree Rewrite Systems (GTRS)
	GTRS example: mergesort
	GTRS example: mergesort
	State-extended GTRS (sGTRS)
	Weakly-Synchronized GTRS (wGTRS)

	Our results
	Statements of main results
	Reducing to existential Presburger theory
	Simulation of wGTRS by CFG
	Restricting CFG behavior via Presburger constraints

	Conclusion
	Conclusion


