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� Rapidly gaining popularity

� Multithreading supported by JAVA, Python, C++, C#

� Benefit: concurrent executions on multiple processors

� Main problem:

– Can be difficult to understand

– Standard testing and debugging insufficient
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parbegin/parend in action:

int* mergesort(int *array)

int *a1, *a2;

parbegin
a1 = mergesort(1st half of array);
a2 = mergesort(2nd half of array);

parend
return merge(a1,a2);
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Parallel.For in action:

bool b[50];

Parallel.For(0,49,i,=>)
{
b[i] = fun2(a[i]);

}

return
∧49

i=0 b[i];
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� Problem: verify multithreaded programs with
parbegin/parend and parallel.for constructs.

� Our approach:

– Design a formal model

– Design verification algorithms
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PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS
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� Pushdown systems (PDS): popular model for
sequential programs with function calls.

� Ground Tree Rewrite Systems (GTRS): extends
PDS & captures Parallel.For and
parbegin/parend constructs w/ no shared variables.

� State-extended GTRS (sGTRS): extends GTRS by
allowing shared variables. (Turing-complete!)

� Weakly-Synchronized GTRS (wGTRS): a good
decidable approximation of sGTRS.

PDS ⊆ GTRS ⊆ wGTRS ⊆ sGTRS
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Syntax:

Consists of a finite set of “rewrite” rules that look like

t1 t2
a

Semantics as a transition system:

Domain: set of all trees (over suitable ranked alphabet)
Transitions:

a

1 t2t
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GTRS rules for arrays of four ints:

� Dividing tasks, e.g.,

msort([1,5,10,3]) =⇒

msort([1,5,10,3])

msort([1,5]) msort([10,3])

� Merging, e.g.,
msort([1,5,10,3])

[1,5] [3,10]

=⇒ [1,3,5,10]
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msort([7,1]) msort([3,2])

msort([7]) msort([1]) [3] [2]
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msort([7,1,3,2])

msort([7,1]) [2,3]

msort([7]) msort([1])
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msort([7,1,3,2])

msort([7,1]) [2,3]

msort([7]) msort([1])

AND SO ON UNTIL ...
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[1,2,3,7]
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� Threads often communicate via shared variables

– e.g.: count++ on calling mergesort

� GTRS framework cannot capture this

� In general, need to extend GTRS with states
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Syntax:

Rewrite rules have control state components

(

p, t1

)

a
−→

(

q, t2

)

Semantics as a transition system:

Domain: {control states} × {all trees}
Transitions:

t2

q

t

a

1

p
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� sGTRS can simulate 2-stack automata (Turing-comp!)

� For decidability, restrict the underlying control graph:

– omit tree component of rewrite rules

� wGTRS: restrict to DAG with self-loops (a.k.a.
weak control unit)

p

s t

q

a

b

c

a

b d
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What good wGTRS for?

� Timing and event constraints among threads

� Captures sGTRS runs up to bounded # of syncs (many
concurrency bugs occur within ≤ 5 syncs)
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Theorem: Reachability for wGTRS is NP-complete.
Moreover, it can be efficiently reduced to existential
Presburger theory.

� Highly optimised solvers for existential Presburger
theory are available (e.g. Z3).

� Corollaries:

– Repeated reachability is NP-complete.

– Model checking a fragment of LTL is
coNP-complete.
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wGTRS Reachability

Instance: G
︸︷︷︸

wGTRS

,

(

p, t1

)

︸ ︷︷ ︸

start conf.

,

(

q, t2

)

︸ ︷︷ ︸

final conf.

Question:

(

p, t1

)

−→∗

(

q, t2

)

?
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Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)
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Overview of the reduction:

� Construct CFG “simulating” wGTRS (more behavior)

� Restrict CFG behavior to derivation trees satisfying
linear arithmetic constraints ψ on # occurrences of
terminals (Parikh image)

� Use PTIME algo from Verma et al.’06 computing
Parikh image of CFG as exist. Presburger formula ϕ

� wGTRS reachability instance is positive iff
〈N; +〉 |= ϕ ∧ ψ
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X
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CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.
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Required Constraint: Parikh image of word generated by
CFG corresponds to a subgraph of the control graph of
wGTRS, whose shape is chain possibly with self-loops.

p

s t

q

a

b

c

a

b d

Ts,pTp,tTt,t is good Ts,pTs,q is bad

Required constraint is a conjunction of linear arithmetic
expressions, e.g., #Ts,p > 0 → #Ts,q = 0
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� wGTRS provides good compromise between decidability
and modelling power

� wGTRS can be verified by fast reduction to existential
Presburger theory (and hence NP or coNP complete)



Conclusion

Introduction

The model

Our results

Conclusion

MFCS 2012 – 19 / 19

� wGTRS provides good compromise between decidability
and modelling power

� wGTRS can be verified by fast reduction to existential
Presburger theory (and hence NP or coNP complete)

THANKS FOR LISTENING!
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