
Weakly-Synchronized Ground Tree Rewriting

(with applications to verifying multithreaded programs)

Anthony Widjaja Lin

Oxford University Department of Computer Science

Abstract. Ground tree rewrite systems (GTRS) are a well-known tree-
extension of prefix-rewrite systems on words (a.k.a. pushdown systems),
where subtrees (instead of word prefixes) are rewritten. GTRS can model
programs with unbounded recursion depth and thread-spawning, wherein
the threads have a tree-shaped dependency graph. We consider the ex-
tension of GTRS with a finite (global) control unit for synchronizing
among the active threads, a.k.a. state-extended GTRS (sGTRS). Since
sGTRS is Turing-complete, we restrict the finite control unit to dags
possibly with self-loops, a.k.a. weakly-synchronized GTRS (wGTRS).
wGTRS can be regarded as a generalization of context-bounded analy-
sis of multipushdown systems with dynamic thread spawning. We show
that reachability, repeated reachability, and the complement of model
checking deterministic LTL over weakly-synchronized GTRS (wGTRS)
are NP-complete by a polynomial reduction to checking existential Pres-
burger formulas, for which highly optimized solvers are available.

1 Introduction

Pushdown systems (PDS) are a natural abstraction of sequential programs with
unbounded recursions. Their verification problems have been extensively studied
(e.g. see the survey [5]), many of which are not only decidable, but also relatively
tractable.

Apart from having function calls, real-world programs are often multi-
threaded. Given the rapidly increasing popularity of multi-core computers, mul-
tithreaded applications are only becoming increasingly more popular. Most pop-
ular programming languages (e.g. Java, Python, C++, C#) now have built-
in constructs to support multithreading, e.g., Fork/Join, parbegin-parend,
Parallel.For. Such constructs allow an unbounded number of threads at any
given time (due to thread-spawning). This motivates the study of verification
problems on extensions of pushdown systems with multithreading.

In this paper, we start with a well-known extension of PDS called ground
tree rewrite systems (GTRS), e.g., see [14]. Since PDS can be thought of as
prefix-rewrite systems (prefixes are rewritten based on a given set of rewrite
rules on words), GTRS can be construed as a tree-extension of PDS, wherein
subtrees (instead of prefixes) are rewritten based on a given set of rewrite rules
on ranked trees. Owing to the tree structure of GTRS, one can easily mimic the
effect of parbegin-parend and Parallel.For language constructs, whereby a

2 Anthony Widjaja Lin

parent thread spawns several child threads and waits for the return values of
computation of these child threads. This statement actually only holds so long
as there is no “shared” (global) variables, which permit synchronization between
the active (instead of waiting) threads.

A natural way to extend GTRS so as to allow synchronization via shared
variables between the active threads is to extend GTRS with a finite num-
ber of (global) control states. Such an extension is called state-extended GTRS
(sGTRS). Unlike GTRS, for which reachability and repeated reachability are
solvable in polynomial time, sGTRS can easily simulate multistack pushdown
automata for which most verification problems quickly become undecidable [19].

One way to extend GTRS with control states while staying within the realm
of decidability is to disallow cycles (other than self-loops) in the transition graph
of the control states of sGTRS. Such transition graphs of (with initial/accepting
states) are often called 1-weak automata [16]. The class of sGTRS which satis-
fies this restriction is called weakly-synchronized (or weakly-extended) GTRS,
which we abbreviate as wGTRS [21]. It is known [21] that reachability, repeated
reachability, and the complement of model checking deterministic fragment of
LTL (LTLdet) over wGTRS are all solvable in exponential time, but are NP-
hard. LTL model checking over GTRS is known to be undecidable (e.g. see [4,
11]). For GTRS, reachability and repeated reachability are in P (e.g. [14]).

What is the modeling power of wGTRS? Useful timing and event con-
straints can be embedded in 1-weak automata (e.g. see [9]). In addition, we shall
see later that wGTRS: (1) generalizes multipushdown systems with bounded con-
text switches [18] by allowing dynamic thread creation using parbegin-parend
or Parallel.For constructs, and (2) provides a natural underapproximation of
sGTRS, where global synchronizations take place for at most a given bound n
of times.

Contributions. The main contribution of this paper is a technique for showing
optimal complexity of model checking weakly-synchronized GTRS by a poly-
time reduction to satisfiability of existential Presburger formulas, which is NP-
complete and for which there are highly-optimized solvers. We firstly consider
the global reachability problem: given a wGTRS P over ranked alphabet Σ and
two tuples (s0,S), (t0, T) of control states of P and tree automata over Σ, decide
if there exists a path from some configuration (s0, T1) of P , where T1 ∈ L(S)
to some configuration (t0, T2) of P , where T2 ∈ L(T). We show in Section 4
that this problem is NP-complete by a reduction to satisfiability of existential
Presburger formulas.

We give several further applications of this upper bound in Section 5: (1)
another poly-time algorithm for global reachability for GTRS and (2) NP-
completeness for repeated reachability and the complement of LTLdet model
checking for wGTRS.

In the sequel, when deriving upper bounds, we allow infinitely many rewrite
rules in the input (w)GTRS compactly represented by means of tree automata.

Other related work. There are two other approaches to extend pushdown
systems with dynamic thread spawning. Process rewrite systems hierarchy pro-

Weakly-Synchronized Ground Tree Rewriting 3

posed by Mayr [17]. Some classes of systems in this hierarchy (including PA and
PAD processes) are intimately connected to GTRS [11]. Another approach was
considered by Bouajjani et al. [3] in their work on networks of pushdown systems
(called CPDN).

The authors of [13] studied the extension of process rewrite systems and
other classes in the hierarchy with 1-weak finite control unit. They showed that
decidability can still be retained for reachability, among others. Decidability and
undecidability of fragments of LTL have also been fully classified [4]. The tech-
niques considered in this paper can be easily adapted to show that reachability,
repeated reachability for weakly extended PA and PAD are NP-complete, while
LTLdet model checking for weakly extended PA and PAD are coNP-complete.

Context-bounded model checking over multipushdown systems was first stud-
ied in [18] and is shown to be NP-complete for multipushdown systems. Various
extensions have been proposed including phase-bounds [22], ordered multi-stack
machines [1], bounded languages [8, 10], dynamic thread creation [2], and more
general approach [15]. The work of [2] considers a different style of multithread-
ing than what we consider in this paper. The difference is akin to the difference
between GTRS and CPDN, which are unexplored. We leave it as future work to
explore the connections.

2 Preliminaries

General notations For two given natural numbers i ≤ j, we define [i, j] =
{i, i+ 1, . . . , j}. Define [k] = [0, k]. Given a function f : S1 → S2 and a subset
S′
1 ⊆ S1, the notation f|S′

1

is used to denote the restriction of f to the domain

S′
1. Vectors v over a set S are simply elements of Sk for some positive integer
k. An example is when S = N, which gives us vectors of naturals. In the sequel,
vectors are also thought of as a function v : I → S, where I is some nonempty
finite index set. Vectors in the standard sense use I = [1, k] for some positive
integer k. When comparing two vectors of naturals u,v over the same index
set I, we use the component-wise ordering. We write u ≤ v iff, for each i ∈ I,
u(i) ≤ v(i). This partial ordering ≤ is well-known to be well-founded.

Transition systems Let ACT be a finite set of action symbols. A transition sys-
tem over ACT is a tuple S = 〈S, {→a}a∈ACT〉, where S is a set of configurations,
and →a ⊆ S × S is a binary relation over S. We use → to denote the rela-
tion

(
⋃

a∈ACT
→a

)

. The notation →+ (resp. →∗) is used to denote the transitive
(resp. transitive-reflexive) closure of →. Given two sets S1, S2 ⊆ S of configu-
rations, we write S1 →+ S2 if s1 →+ s2 for some s1 ∈ S1 and s2 ∈ S2. The
notations S1 →∗ S2 and S1 → S2 are defined likewise. We say that a sequence
s1 → · · · → sn is a path (or run) in S (or in →). Given two paths π1 : s1 →∗ s2
and π2 : s2 →∗ s3 in →, we may concatenate them to obtain π1 ⊙ π2 (by glu-
ing together s2). Given a subset S′ ⊆ S, denote by Rec

→(S′) to be the set of
elements s0 ∈ S for which there exists an infinite path s0 → s1 → · · · visiting
S′ infinitely often, i.e., sj ∈ S′ for infinitely many j ∈ N. A transition system
S = 〈S, {→a}a∈ACT〉 is said to be 1-weak if each path s1 → · · · → sn in S with

4 Anthony Widjaja Lin

s1 = sn satisfies si = si+1 for all i ∈ [1, n− 1]. In other words, every cycle in S

is a self-loop.

Word languages and Parikh images An alphabet Σ is a finite set of symbols.
We use standard notations from word language theory (e.g. [12]). Given a word
w ∈ Σ∗ and a ∈ Σ, we use |w|a to denote the number of occurrences of a in
w (e.g. |abaa|a = 3). The Parikh image of w, denoted by P(w), is the integral
vector v : Σ → N such that v(a) = |w|a. Given a language L ⊆ Σ∗, its Parikh
image is P(L) = {P(w) : w ∈ L}.

Tree automata and languages A ranked alphabet is a nonempty finite set of
symbols Σ equipped with a rank function rank : Σ → N. When the context is
clear, a ranked alphabet will simply be referred to as an alphabet. Let rank(Σ)
denote max{rank(a) : a ∈ Σ}. A tree domain D is a nonempty finite subset of
N

∗ satisfying (1) prefix closure, i.e., if vi ∈ D with v ∈ N
∗ and i ∈ N, then v ∈ D,

(2) younger-sibling closure, i.e., if vi ∈ D with v ∈ N
∗ and i ∈ N, then vj ∈ D for

each natural number j < i. Standard terminologies (e.g. nodes, parents, children,
ancestors, descendants) will be used. A tree over a ranked alphabet Σ is a pair
T = (D,λ), where D is a tree domain and the node-labeling λ is a function
mapping D to Σ such that, for each node v ∈ D, the number of children of v in
D equals the rank rank(λ(v)) of the node label of v. Write Tree(Σ) for the set
of all trees over Σ. In the sequel, we also use the standard term representations
of trees (cf. [6]).

A (bottom-up) nondeterministic tree-automaton (NTA) over a ranked alpha-
bet Σ is a tuple A = 〈Q,∆, F 〉, where Q is a finite nonempty set of states, ∆ is

a finite set of rules of the form (q1, . . . , qr)
a
→֒ q, where a ∈ Σ, r = rank(a), and

q, q1, . . . , qr ∈ Q, and F ⊆ Q is a set of final states. A rule of the form ()
a
→֒ q

is also written as
a
→֒ q. For a state q ∈ Q, the notation Aq is used to denote

the NTA 〈Q,∆, {q}〉. A run of A on a tree T = (D,λ) is a mapping ρ from D

to Q such that, for each node v ∈ D (with label a = λ(v)) with its all children

v1, . . . , vr, it is the case that (λ(v1), . . . , λ(vr))
a
→֒ λ(v) is a transition in ∆. For

a subset Q′ ⊆ Q, the run is said to be accepting if ρ(ǫ) ∈ F . The NTA is said to
accept T if it has an accepting run on T . The language L(A) of A is the set of
trees which are accepted by A. A language L is said to be regular if there exists
an NTA accepting L.

A context tree with (context) variables x1, . . . , xn is a tree T = (D,λ) over the
alphabet Σ∪{x1, . . . , xn}, where Σ∩{x1, . . . , xn} = ∅ and for each i = 1, . . . , n,
it is the case that rank(xi) = 0 and there exists a unique context node ui with
λ(ui) = xi. In the sequel, we will often denote such a context tree as T [x1, . . . , xn]
and, by convention, assume that u1, . . . , un appear in an inorder tree traversal
ordering. Given trees T1 = (D1, λ1), . . . , Tn = (Dn, λn) over Σ, we use the
notation T [T1, . . . , Tn] to denote the tree (D′, λ′) obtained by filling each hole
xi by Ti, i.e., D

′ = D ∪
⋃n

i=1 ui · Di and λ′(uiv) = λi(v) for each i = 1, . . . , n
and v ∈ Di. Given a tree T , if T = C[t] for some context tree C[x] and a tree t,
then t is called a subtree of T .

Weakly-Synchronized Ground Tree Rewriting 5

Notation for Context-free Grammars. A context-free grammar (CFG) over
an alphabet Σ is a tuple G = (Nt, Tt, Rules, Start), where Nt is a finite set of
nonterminals, Tt = Σ is a finite set terminals, Rules is a finite set of production
rules of the form X → α where X ∈ Nt and α ∈ (Nt ∪ Tt)∗, and Start ∈ Nt is
the start nonterminal. In the sequel, for each X ∈ Nt, we use the notation GX to
denote the CFG (Nt, Tt, Rules, X). We denote by L(G) the language of words
generated by G.

Existential Presburger formulas Existential Presburger formulas are for-
mulas in the existential fragment of Presburger arithmetic, i.e., first-order the-
ory over 〈N,+〉. If ϕ(x) is a formula with the vector x of free variables, where
x : I → {x1, . . . , xm} is a vector with some index set I, and v : I → N is a
vector over natural numbers, we write 〈N,+〉 |= ϕ(v) if ϕ is a true formula in
〈N,+〉 under the interpretation that maps each variable x(i) to v(i). A formula
ϕ(x) is said to be satisfiable in 〈N,+〉 if there exists v such that 〈N,+〉 |= ϕ(v).
It is well-known that deciding satisfiability over 〈N,+〉 is NP-complete [20], for
which there are highly optimized solvers (e.g. Z3 [7]).

3 Weakly extended ground tree rewrite systems

A state-extended ground tree rewrite systems (sGTRS) over a finite set ACT of
action symbols is a tuple P = 〈Q,Σ,∆〉, where Q is a nonempty finite set of
control states, Σ is a ranked alphabet, and ∆ is a finite set of rules of the form

(q1,A1)
α
→֒ (q2,A2), where q1, q2 ∈ Q, α ∈ ACT, and A1,A2 are NTA over Σ. A

configuration of P is a tuple (q, T), where q ∈ Q and T ∈ Tree(Σ). Let Conf(P)
denote the set of configurations of P . The transition system generated by P is
SP = 〈Conf(P), {→a}a∈ACT〉, where (q1, T1) →α (q2, T2) iff there exist a context

tree T [x], a rule (q1,A1)
α
→֒ (q2,A2) in ∆, and trees t1 ∈ L(A1) and t2 ∈ L(A2)

such that T1 = T [t1] and T2 = T [t2]. We define →P to be the union of all →a,
where a ranges over ACT.

The underlying control graph of P = 〈Q,Σ,∆〉 is the finite transition system

S = 〈Q, {→a}a∈ACT〉, where q1 →a q2 iff (q1,A1)
a
→֒ (q2,A2) is a rule in ∆. We

say that P is a weakly-synchronized (or weakly-extended) ground tree rewrite sys-
tems (wGTRS) if its underlying control graph is 1-weak. In the case of wGTRS,
we often denote edge relation of this underlying control graph as ≺. We say
that P is a ground tree rewrite systems (GTRS) if its underlying control graph
is 〈{q}, {→a}a∈ACT〉, where q →a q, for each a ∈ ACT. In this case, a GTRS
P = 〈Q,Σ,∆〉 is also written as 〈Σ,∆〉 (or simply ∆) for simplicity. If each
letter in Σ is of rank ≤ 1, P is also called a pushdown system (PDS).

Remark: “Ground tree rewrite systems” are often defined in a rather restrictive
form, wherein each NTA A in the rewrite rule is explicitly given as a tree t ∈
Tree(Σ) representing the singleton set {t}. Our definition of GTRS coincides
with what is commonly referred to as “regular GTRS”. See [14].

Notation: In the sequel, given s ∈ Q and an NTA A over Σ, we shall use the
notation (s,L(A)) to mean {s} × L(A).

6 Anthony Widjaja Lin

We define the (global) reachability problem for sGTRSs as follows: given two
NTAs A1,A2 over the ranked alphabet Σ, an sGTRS P = 〈Q,Σ,∆〉, and two
states q1, q2 ∈ Q, decide if (q1,L(A1)) →∗

P (q2,L(A2)). When we restrict the
input sGTRSs to wGTRSs (resp. GTRSs), we call the resulting subproblems to
be global reachability problem for wGTRSs (resp. GTRSs).

An intuitive example Modeling sequential programs as PDS is standard (e.g.
see [17]): the stack is used to record program points (function names and values
of local variables), while the finite control is used to record the return values
from the previous function call. Modeling with (s)GTRS is similar except that
the tree structure can model multithreading.

Consider a program with two functions called fun1 and fun2 (among others).
The function fun2, which we leave unspecified, inputs and outputs a boolean
value. The function fun1 is defined in as follows:

bool b[5]; Par.For(0,4,i,=>){b[i] = fun2(a[i])}; return
4
∧

i=0

b[i];

In this example, we assume that the boolean array a is given as input to fun1 and
has size 5. This program simply executes the assignment b[i] = fun2(a[i])

in parallel for each i ∈ [0, 4], and afterwards outputs the boolean value obtained
by taking the conjunction of all the boolean variables b[i].

Assuming there is no global variables, the above program can be easily mod-
eled as a GTRS. For example, a GTRS model may contain the following rules:
(1) 〈fun1, s 2, a〉 → 〈fun1, s 3, a〉(〈fun2, s 1, a[0]〉, . . . , 〈fun2, s 1, a[4]〉), reflect-
ing the Par.For step (s i means step i), and (2) for all j1, . . . , j4 ∈ {0, 1},

〈fun1, s 3, a〉(j1, . . . , j4) →
∧4

i=0 ji, reflecting the return step of fun1.
With the existence of global (shared) variables, the above GTRS does not

suffice because after rule of type (1) has been applied, the five subthreads can no
longer communicate in this GTRS. Communication in general can be captured
by sGTRS by embedding synchronization in the finite control. wGTRS actually
suffices provided that the vector of values of the shared variables can change
only for a bounded number of times.

Modeling power of wGTRS wGTRS can be used to underapproximate
sGTRS. Intuitively, given an sGTRS P and a “depth” parameter d ∈ N, a
wGTRS Pd is constructed in polynomial time that underapproximates P up to
d switches of control states. We can also show that context-bounded analysis
of multipushdown systems [18] can be efficiently reduced to analyzing wGTRS.
Both are shown in the full version.

4 Reachability

Theorem 1. Global reachability for wGTRS is NP-complete. In fact, it is poly-
time reducible to satisfiability of existential Presburger formulas.

NP-hardness follows from the proof of Proposition 5.4.6 in [21] (by a reduction
from hamiltonian path problem). We now show the upper bound. The idea of the

Weakly-Synchronized Ground Tree Rewriting 7

reduction to satisfiability of existential Presburger formulas is as follows: first
construct a CFG G which “overapproximates” the given wGTRS P ; the behavior
of G is then limited by adding an extra existential Presburger constraint ψ. Since
there is a linear-time algorithm [24] for computing the Parikh image of L(P) as
existential Presburger formulas Ψ , the desired formula will be Ψ ∧ ψ.

We now provide the details of the reduction. We are given a wGTRS P =
〈Q,Σ,∆〉 over the action alphabet ACT, and two tuples (s0,S) and (t0, T) of
states s0, t0 ∈ Q and NTA S, T over Σ representing, respectively, a set {(s0, T) :
T ∈ L(S)} of start configurations and a set {(t0, T) : T ∈ L(T)} of target
configurations. Denote by SP = 〈Conf(P), {→a}a∈ACT〉 the transition system
generated by P . The task is to decide whether (s0,L(S)) →

∗ (t0,L(T)).
Denote the a-labeled edge relation of the underlying control graph G of P

by ≺a, and the transitive closure (resp. transitive-reflexive closure) of ≺ :=
⋃

a∈ACT
≺a by ≺+ (resp. ≺∗). Since G is a DAG possibly with self-loops, it

follows that ≺+ is antisymmetric, i.e., if s1 ≺+ s2 and s2 ≺+ s1, then s1 = s2.
Without loss of generality, we assume that: (1) s0 ≺∗ t0 (for, otherwise, we
immediately have (s0,L(S)) 6→∗ (t0,L(T))), and (2) each state s ∈ Q satisfy
s0 ≺∗ s ≺∗ t0 (for all T, T ′ ∈ Tree(Σ), i.e., each path (s0, T) →∗ (t0, T

′) cannot
go via configurations of the form (s, T ′′) with either s0 6≺∗ s or s 6≺∗ t0).

We now define the CFG G = (Nt, Tt, Rules, Start). In the following, we
use the notation M (possibly with a subscript) to range over the NTAs S,
T , or NTAs appearing in ∆. The notation qM (possibly with a subscript) will
be used to denote a state in the NTA M. The notation qMF will be used to
denote a final state of M. The starting nonterminal Start ∈ Nt is marked. Add
the rule Start → X(s0,qSF),(t0,qTF), for each qSF and each qTF . The nonterminal
X(s0,qSF),(t0,qTF) is initially unmarked. We then repeat the following two rules
until all elements of Nt have been marked. If X(s,qM1),(t,qM2) ∈ Nt is unmarked,
then mark X(s,qM1),(t,qM2) and apply the following rules:

(Rule I) For all transitions (qM1
1 , . . . , qM1

r)
a
→֒ qM1 and (qM2

1 , . . . , qM2
r)

a
→֒

qM2 in M1 and M2, respectively, add the rule

X(s,qM1),(t,qM2) → X
(s,q

M1
1),(t,q

M2
1)

· · ·X
(s,q

M1
r),(t,q

M2
r)

to Rules and add each X
(s,q

M1
i),(t,q

M2
i)

on the r.h.s. of the rule to Nt un-

marked (if not already a member of Nt).

(Rule II) For each wGTRS rule r = (s′,A)
α
→֒ (t′,B) with s ≺∗ s′ ≺ t′ ≺∗ t,

and each qAF and each qBF , add the rule

X(s,qM1),(t,qM2) → α(s′, t′)X(s,qM1),(s′,qA
F
)X(t′,qB

F
),(t,qM2)

to Rules, add X(s,qM1),(s′,qA
F
) and X(t′,qB

F
),(t,qM2) to Nt unmarked (if not

already a member of Nt), and add (s′, t′) and each letter in α ∈ ACT
∗ to Tt.

Observe that s ≺+ t for each X(s,qM1),(t,qM2) ∈ Nt is an in-
variant throughout the above procedure. Termination of this proce-
dure is immediate since (1) Nt ⊆

⋃

M1,M2
{X(s,qM1),(t,qM2) : s ≺+

8 Anthony Widjaja Lin

t, and for each i = 1, 2, qMi is a state of Mi} and the size of the set on the
r.h.s. is at most |Q|2 × (total number of NTA states in P)2, and (2) the r.h.s.
of each production rule is a word of length at most max{rank(Σ), 4}.

Let m := |Tt|. We use the linear-time algorithm from [24] on the input G to
produce an existential Presburger formula Ψ(x), where x : Tt → {x1, . . . , xm},
capturing the Parikh image of L(G), i.e., for each v : Tt → N, we have v ∈
P(L(G)) iff 〈N,+〉 |= Ψ(v). We also write x(s, t) to mean x((s, t)), if (s, t) ∈ Tt.

We now define several constraints as quantifier-free Presburger formulas:

– Dom :=
∧

s≺t,s6=t x(s, t) ≤ 1. This “domain” formula asserts that advancing
from control state s to its strict successor t can take place at most once.

– Out≤1 :=
∧

s≺t1,s≺t2,distinct(s,t1,t2)
(x(s, t1) = 1 → x(s, t2) = 0). This for-

mula asserts that from control state s, the system can only advance to at
most one of its successors.

– NoIncomp :=
∧

s:s0≺+s≺+t0

(

Invs →
∧

s′:s′ 6=s,s6≺+s′,s′ 6≺+s ¬Invs′

)

, where

Invt is a shorthand for the formula
∨

s≺t x(s, t) = 1 ∨
∨

t≺s x(t, s) = 1.
Intuitively, if a control state s is involved in a path, then no control states
that are incomparable to s (with respect to ≺+) can be involved in this path.

– if s0 = t0, then Init := ⊤, and if s0 6= t0, then Init :=
∨

s0≺t,s0 6=t x(s0, t) =
1. This formula states that the system must advance from the initial state.

– Progress :=
∧

t∈Q,s0≺+t≺+t0,distinct(s0,t,t0)
(

∨

s≺t,s6=t x(s, t) = 1 →
∨

t≺t′,t6=t′ x(t, t
′) = 1

)

. This formula states that the

system must advance from a control state it is in to one of its successors.

In the sequel, we let ϕ1 denote the formula Dom∧Out≤1 ∧NoIncomp, and ϕ2

denote the formula Init∧Progress. The desired existential Presburger formula
is ϕ := Ψ∧ϕ1∧ϕ2. Correctness of the reduction follows from the following lemma.

Lemma 2 (Correctness of Reduction). For each w ∈ ACT
∗, (s0,L(S)) →v

(t0,L(T)) for some v ∈ ACT
∗ with P(v) = P(w) iff there exists v : Tt → N such

that v(a) = |w|a for each a ∈ ACT and 〈N,+〉 |= ϕ(v).

It is not hard to show that the reduction takes polynomial time; more precisely,
O(|Q|3+(rank(Σ)×N)) time, where N := (|Q|2×N2

max)× (M2
max+ |∆|), Nmax

be the maximum number of automata states in any given NTA appearing in P
or S or T , and Mmax be the maximum number of automata transitions in any
given NTA in P or S or T . The analysis is given in the full version.

Remark: Adding a “counting constraint” on the path as an existential Presburger
formula is easy. Such a counting constraint is simply an existential Presburger
formula ψ(x′), where x′ = x|ACT . In this case, the desired formula is simply ϕ∧ψ.

Correctness: Proof of Lemma 2 The proofs for both directions of Lemma
2 are done by induction. However, in both cases, we will have to strengthen
the statements; for, otherwise, the induction hypothesis will not get us off the
ground. To this end, we will define a slight variant of the transition system SP

generated by P (which we call S′
P).

Weakly-Synchronized Ground Tree Rewriting 9

Let S′
P be the transition system obtained by adding to SP each ǫ-transition

(s, T) →ǫ (t, T), for each T ∈ Tree(Σ) and s ≺+ t. Given a path

π = (p0, T0) →a1 · · · →an
(pn, Tn)

in S
′
P and w = a1 · · ·an, we define χ(π) to be the vector v : Tt → N such that

(1) if a ∈ ACT, then v(a) = |w|a, and (2) if a = (s, t) with s ≺ t, then v(a) is
the number of indices i ∈ [1, n] with (pi−1, pi) = (s, t) and ai 6= ǫ.

Lemma 3. For all X(s,qM1),(t,qM2) ∈ Nt, if w ∈ L(G
X

(s,qM1),(t,qM2)) with

〈N,+〉 |= ϕ1(P(w)), then there exists a path π : (s,L(MqM1

1)) →v (t,L(MqM2

2))
in S

′
P with χ(π) = P(w).

It is not hard to see that Lemma 3 implies the direction (⇐) of Lemma 2. A
proof can be found in the full version.

Proof (of Lemma 3). As we previously saw, we have s ≺+ t for each
X(s,qM1),(t,qM2) ∈ Nt. The proof is by induction on the length of derivations
of the word w from X(s,qM1),(t,qM2).

The base case is when X(s,qM1),(t,qM2) → ǫ, which is a production rule gener-

ated by Rule I. This means that there exists a ∈ Σ such that
a
→֒ qM1 and

a
→֒ qM2

are transitions of M1 and M2, respectively, and thus a ∈ L(MqM1

1)∩L(MqM2

2).
Since s ≺+ t, it follows that (s, a) →ǫ (t, a) is path π in S

′
P . It is also easy to

see that P(ǫ) = χ(π) = 0, and that 〈N,+〉 |= ϕ1(0).
We now proceed to the induction cases. There are two cases. We only consider

the first case; the second case is considered in the full version.
The first induction case is when the first production rule applied in the

derivation of w from X(p1,q
M1),(p2,q

M2) (with p1 = s and p2 = t) is

X(p1,qM1),(p2,qM2) → α(p3, p4)X(p1,qM1),(p3,qM3)X(p4,qM4),(p2,qM2)

where qM3 and qM4 are final states ofM3 andM4, respectively. This production

rule is generated by Rule II, which means that there exists a rule r = (p3,M3)
α
→֒

(p4,M4) with p1 ≺∗ p3 ≺ p4 ≺∗ p2 in P . We may also write w as α(p3, p4)w1w2,

where w1 ∈ L(G
X

(p1 ,qM1),(p3,qM3)) and w2 ∈ L(G
X

(p4,qM4),(p2,qM2)). Furthermore,
since 〈N,+〉 |= ϕ1(P(w)) and P(w1),P(w2) ≤ P(w), it follows that 〈N,+〉 |=
ϕ1(P(wi)) for each i = 1, 2. By induction, there exist paths π1 : (p1, T1) →∗

(p3, T3) and π2 : (p4, T4) →∗ (p2, T2) in S
′
P such that Ti ∈ L(MqMi

i), for each
i ∈ [1, 4], and χ(πj) = P(wj), for each j = 1, 2. By applying the rule r above,
we also see that π3 : (p3, T3) →α (p4, T4) is a transition in SP . Therefore,
π := π1 ⊙ π3 ⊙ π2 is a path from (p1, T1) to (p2, T2) in S

′
P . We have χ(π) =

∑3
i=1 χ(πi) = P(w1) + P(w2) + P(α(p3, p4)) = P(w). This completes the proof

for the second induction case. ⊓⊔

It remains to prove the direction (⇒) of Lemma 2. To this end, we need the
following lemma.

10 Anthony Widjaja Lin

Lemma 4. For all X(s,qM1),(t,qM2) ∈ Nt, if there exists a path π :

(s,L(MqM1

1)) →v (t,L(MqM2

2)) in S
′
P , then there exists w ∈ Tt

∗ with P(w) =

χ(π) such that w ∈ L(G
X

(s,qM1),(t,qM2)).

To show the direction (⇒) of Lemma 2, first observe that each path π :
(s0,L(S)) →v (t0,L(T)) in SP is also a path in S

′
P . By Lemma 4, there exists a

word w ∈ L(G) with χ(π) = P(w). Let v := P(w). It follows that 〈N,+〉 |= Ψ(v).
It suffices to show that 〈N,+〉 |= ϕ1(v) ∧ ϕ2(v). If s0 = t0, it is easy to see that
〈N,+〉 |= ϕ1(v)∧ϕ2(v). Therefore, assume that s0 6= t0. In this case, we take the
projection of π on to its first component (i.e. control states), say, p0, . . . , pk such
that p0 = s and pk = t. By removing duplicates, we may assume that p0, . . . , pk
are pairwise distinct control states. This means that for all distinct p, p′ ∈ Q, we
have v(p, p′) = 1 iff p = pi−1 and pi for some i ∈ [1, k]. Since p0, . . . , pk is a path
in the underlying graph of P , it is easy to check now that 〈N,+〉 |= ϕ1(v)∧ϕ2(v)
by exhausting all the five subconjuncts in the formula ϕ1 ∧ ϕ2.

We now prove Lemma 4. To this end, we need the following technical lemma
about path decompositions for wGTRS.

Lemma 5. For each path π : (p, T1) →v (q, T2) in S
′
P , there exists a context

tree C[x1, . . . , xn] for some n ∈ N such that:

1. T1 = C[t1, . . . , tn] for some trees t1, . . . , tn ∈ Tree(Σ),
2. T2 = C[t′1, . . . , t

′
n] for some trees t′1, . . . , t

′
n ∈ Tree(Σ),

3. for each i ∈ [1, n], there exists a path πi : (p, ti) →∗ (p1i , t
1
i) →αi

(p2i , t
2
i) →

∗

(q, t′i) in S
′
P for some rewrite rule (p1i ,Ai)

αi

→֒ (p2i ,Bi) in P such that t1i ∈
L(Ai) and t

2
i ∈ L(Bi).

4. χ(π) =
∑n

i=1 χ(πi).

It is not hard to see that Lemma 5 implies Lemma 4. The proof is done by induc-
tion on χ(π) (with componentwise ordering ≤). The above path decomposition
lemma is used to prove the inductive case. The proof is not hard but tedious,
and so is relegated into the full version. For space reasons, we also relegate the
proof of Lemma 5 into the full version.

5 Applications

A polynomial-time algorithm for GTRS reachability The reduction from
the previous section can be easily modified to give another polynomial-time
algorithm for GTRS global reachability. Given the GTRS P and two tuples
(s0,S) and (t0, T) of control states and NTAs, consider the CFG G and formula
ϕ = Ψ ∧ϕ1 ∧ϕ2 produced by the reduction. Observe that, in the case of GTRS,
we have ϕ1∧ϕ2 ≡ ⊤. Therefore, Lemma 2 implies that (s0,L(S)) →∗

P (t0,L(T))
iff Ψ is a satisfiable Presburger formula iff L(G) 6= ∅. Therefore, we have reduced
global GTRS reachability to language emptiness of CFG, which is solvable in
polynomial time. This gives us another proof of the following proposition.

Weakly-Synchronized Ground Tree Rewriting 11

Proposition 6. GTRS global reachability is solvable in polynomial-time.

Repeated reachability Repeated reachability for sGTRS is the following prob-
lem: given an sGTRS P = 〈Q,Σ,∆〉, an initial set (s0,L(S)) of configurations
of P given as (s0,S), a final set C of target configurations of P given as a func-
tion mapping a control state p ∈ Q to an NTA Ap over Σ (here, C consists
of configurations of the form (p, T) for some p ∈ Q and T ∈ L(Ap)), decide
whether (s0,L(S)) ∩Rec

→P (C) 6= ∅. As for reachability problem, this problem
is undecidable.

Theorem 7. Repeated reachability for wGTRS is NP-complete. In fact, it is
poly-time reducible to satisfiablity of existential Presburger formulas.

NP-hardness follows from the proof of Proposition 5.4.6 in [21] (by a reduction
from hamiltonian path problem). To obtain the upper bound for this theorem,
we reduce this problem to satisfiability of existential Presburger formulas in
polynomial time. To this end, for each p ∈ Q, we define Pp to be GTRS obtained
by restricting P to control state p, i.e., Pp = 〈{p}, Σ,∆p〉, where ∆p consists of
all rules in ∆ of the form (p,A) →a (p,B). We first use Löding’s result [14] that
an NTA A′

p representing Rec
→Pp ((p,L(Ap))) is computable in time polynomial

in ‖Ap‖ + ‖Pp‖, for each p ∈ Q. It follows that (s0,L(S)) ∩ Rec
→P (C) 6= ∅

iff, for some p ∈ Q, (s0,L(S)) →∗
P (p,L(A′

p)). Applying our poly-time reduction
from the previous section for the problem instance (s0,L(S)) →∗

P (p,L(A′
p)), for

each p, and existentially quantifying all free variables, we obtained existential
Presburger sentences ϕp such that (s0,L(S)) →∗

P (p,L(A′
p)) iff 〈N,+〉 |= ϕp. It

immediately follows that (s0,L(S))∩Rec
→P (C) 6= ∅ iff 〈N,+〉 |=

∨

q∈Q ϕp. This
shows that the desired existential Presburger sentence is

∨

q∈Q ϕp.

Model checking deterministic LTL over wGTRS Deterministic LTL
(LTLdet) over ACT is the fragment of LTL with the following syntax:

ϕ, ϕ′ := p | Xϕ | ϕ ∧ ϕ′ | (p ∧ ϕ) ∨ (¬p ∧ ϕ′) |(p ∧ ϕ)Op(¬p ∧ ϕ′)

where p ranges over boolean combinations of ACT, and Op ranges over {U,W}.
The semantics [[ϕ]] ⊆ ACT

ω of an LTL formula ϕ can be defined in the same
way as for LTL, which is standard (e.g. see [23]). Given a transition system
S = 〈S, {→a}a∈ACT〉 over ACT, we write [[ϕ]]S to denote the set of configurations
s0 ∈ S from which all infinite paths π : s0 →a1 s1 →a2 · · · in S satisfy a1a2 . . . ∈
[[ϕ]]. The problem of model checking deterministic LTL for sGTRS is defined as
follows: given an LTLdet formula ψ and a sGTRS P = 〈Q,Σ,∆〉 over the same
set ACT of action symbols, and an initial set of configurations (s0,L(S)) of P
represented as the tuple (s0,S) of control state s0 ∈ Q and NTA S over Σ,
decide if (s0,L(S)) ⊆ [[ψ]]S.

Theorem 8. LTLdet model checking over wGTRS is coNP-complete. In fact, it
is poly-time reducible to non-satisfiablity of existential Presburger formulas.

coNP-hardness for the problem is known [21]. For space reasons, we relegate the
proof for the upper bound into the full version.

Acknowledgment. I thank Matthew Hague and anonymous reviewers for their
helpful feedback. I am grateful to EPSRC (EP/H026878/1) for their support.

12 Anthony Widjaja Lin

References

1. M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata
is 2ETIME-complete. In DLT, pages 121–133, 2008.

2. M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent
programs with dynamic creation of threads. LMCS, 7(4), 2011.

3. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In CONCUR, pages 473–487, 2005.

4. L. Bozzelli, M. Kret́ınský, V. Rehák, and J. Strejcek. On decidability of LTL model
checking for process rewrite systems. Acta Inf., 46(1):1–28, 2009.

5. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures.
In Handbook of process algebra, pages 545–623. Elsevier, North-Holland, 2001.

6. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications, 2007.

7. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

8. J. Esparza and P. Ganty. Complexity of pattern-based verification for multi-
threaded programs. In POPL, pages 499–510, 2011.

9. K. Fisler. Toward diagrammability and efficiency in event-sequence languages. Int.
J. Softw. Tools Technol. Transf., 8(4):431–447, Aug. 2006.

10. P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. Formal

Methods in System Design, 40(2):206–231, 2012.
11. S. Göller and A. W. Lin. Refining the process rewrite systems hierarchy via ground

tree rewrite systems. In CONCUR, pages 543–558, 2011.
12. D. C. Kozen. Automata and Computability. Springer, 2007.
13. M. Kret́ınský, V. Rehák, and J. Strejcek. Extended process rewrite systems: Ex-

pressiveness and reachability. In CONCUR, pages 355–370, 2004.
14. C. Löding. Infinite Graphs Generated by Tree Rewriting. PhD thesis, RWTH

Aachen, 2003.
15. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL,

pages 283–294, 2011.
16. M. Maidl. The common fragment of CTL and LTL. In FOCS, pages 643–652,

2000.
17. R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-

State Systems. PhD thesis, TU-Munich, 1998.
18. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.

In TACAS, pages 93–107, 2005.
19. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-

able. ACM Trans. Program. Lang. Syst., 22(2):416–430, Mar. 2000.
20. B. Scarpellini. Complexity of subcases of presburger arithmetic. Trans. of AMS,

284(1):203–218, 1984.
21. A. W. To. Model Checking Infinite-State Systems: Generic and Specific Approaches.

PhD thesis, LFCS, School of Informatics, University of Edinburgh, 2010.
22. S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive

languages. In LICS, pages 161–170, 2007.
23. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). In LICS, pages 332–344, 1986.
24. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn

clauses. In CADE, pages 337–352, 2005.

