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Abstract
Model checking is a fully-automatic formal verification method that has been ex-

tremely successful in validating and verifying safety-critical systems in the past three

decades. In the past fifteen years, there has been a lot of workin extending many

model checking algorithms over finite-state systems tofinitely representable infinite-

state systems. Unlike in the case of finite systems, decidability can easily become a

problem in the case of infinite-state model checking.

In this thesis, we presentgenericandspecifictechniques that can be used to derive

decidability with near-optimal computational complexityfor various model checking

problems over infinite-state systems. Generic techniques and specific techniques pri-

marily differ in the way in which a decidability result is derived. Generic techniques is

a “top-down” approach wherein we start with a Turing-powerful formalism for infinite-

state systems (in the sense of being able to generate the computation graphs of Turing

machines up to isomorphisms), and then impose semantic restrictions whereby the

desired model checking problem becomes decidable. In otherwords, to show that a

subclassof the infinite-state systems that is generated by this formalism is decidable

with respect to the model checking problem under consideration, we will simply have

to prove that this subclass satisfies the semantic restriction. On the other hand, spe-

cific techniques is a “bottom-up” approach in the sense that we restrict to a non-Turing

powerful formalism of infinite-state systemsat the outset. The main benefit of generic

techniques is that they can be used asalgorithmic metatheorems, i.e., they can give

unified proofs of decidability of various model checking problems over infinite-state

systems. Specific techniques are more flexible in the sense they can be used to derive

decidability or optimal complexity when generic techniques fail.

In the first part of the thesis, we adopt word/tree automatic transition systems as

a generic formalism of infinite-state systems. Such formalisms can be used to gener-

ate many interesting classes of infinite-state systems thathave been considered in the

literature, e.g., the computation graphs of counter systems, Turing machines, push-

down systems, prefix-recognizable systems, regular ground-tree rewrite systems, PA-

processes, order-2 collapsible pushdown systems. Although the generality of these

formalisms make most interesting model checking problems (even safety) undecid-

able, they are known to have nice closure and algorithmic properties. We use these

nice properties to obtain several algorithmic metatheorems over word/tree automatic

systems, e.g., for deriving decidability of various model checking problems including

recurrent reachability, and Linear Temporal Logic (LTL) with complex fairness con-
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straints. These algorithmic metatheorems can be used touniformlyprove decidability

with optimal (or near-optimal) complexity of various modelchecking problems over

many classes of infinite-state systems that have been considered in the literature. In

fact, many of these decidability/complexity results were not previously known in the

literature.

In the second part of the thesis, we study various model checking problems over

subclasses of counter systems that were already known to be decidable. In particu-

lar, we consider reversal-bounded counter systems (and their extensions with discrete

clocks), one-counter processes, and networks of one-counter processes. We shall de-

rive optimal complexity of various model checking problemsincluding: model check-

ing LTL, EF-logic, and first-order logic with reachability relations (and restrictions

thereof). In most cases, we obtain a single/double exponential reduction in the previ-

ously known upper bounds on the complexity of the problems.
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Chapter 1

Introduction

The past few decades saw an unprecendented growth rate of computers in scale and

functionality. This has resulted in a substantial growth incomplexity, which conse-

quently increases the likelihood of subtle errors. It is a truism that in this technological

era people have grown accustomed to systems that from time totime exhibit certain

faults. Although such faults are a mere nuisance for everyday systems (e.g. personal

desktops “hang”), they could be catastrophic for safety-critical or life-critical systems.

Furthermore, it is well-known that, even when the systems are not safety-critical or

life-critical, errors could still result in a substantial loss of money or productivity1.

Many examples of such system failures and their impacts are well-documented (e.g.

see [Cip95, CGP99, Gre09]).

For a long time, testing has been the standard technique for system validation.

Nowadays, testing is well-known to be insufficient to ensurethe correctness of a sys-

tem. This statement is even truer in the presence of concurrency in the system. To

ensure that a system is correct, formal methods are necessary. Model checking is a

fully-automaticformal verification method that has been extremely successful in val-

idating and verifiying safety-critical systems in the past three decades resulting in a

recent bestowal of ACM Turing Award to its pioneers. Looselyspeaking, in order

to check that a system satisfies a certain property, we first create anabstract modelS

(usually as a finite transition system) that captures how thesystem evolves, and express

the property as a formulaϕ is somelogical language(usually some temporal logic).

This reduces the initial problem to checking whetherS satisfiesϕ, which can then be

checked using standard model checking algorithms (e.g. see[CGP99, Sch02]).

1The 80/20 rule is a well-known rule of thumb stating that only20% of software development effort
is spent on writing codes, while the rest is primarily spent on debugging

1



Chapter 1. Introduction 2

Model checking primarily differs from other approaches in the literature of verifi-

cation (e.g.automated theorem provingandtraditional static analysis) in two aspects.

First of all, model checkers are meant to befully-automatic, i.e., can be used as a

blackbox. This is in contrast to automated theorem provers,which often require con-

siderable user interventions. This aspect of model checking perhaps explains the wide

adoption of model checking technologies by industries including NASA, Intel, IBM,

and Motorola. The other major difference of model checking is the use ofexpressive

specification language, e.g., temporal logics like LTL (Linear Temporal Logic), and

CTL (Computation Tree Logic). This is in contrast to traditional static analysis tech-

niques, which are fully-automatic but admit only very simple properties like safety and

liveness; see [DKW08] for a more detailed discussion. Nowadays model checking is

widely used for static analysis of programs (cf. [DKW08]).

In theory, real-world systems can almost always be modeled as finite transition

systems that areexplicitly represented (e.g. using adjacency lists). However, such a

naive approach is often impractical. One well-known problem with this approach is

the state-explosion problem, i.e., the number of configurations in the abstract model

grows exponentially in the number of certain parameters in the actual system. For

example, a distributed protocol withn processes could have at least exponentially

many possible configurations. One successful approach to deal with this problem

is calledsymbolic model checking[BCM+90, McM93], which is to develop model

checking algorithms onsymbolic representationsof the transition system. In the case

of [BCM+90, McM93], the symbolic representation is ordered binary decision dia-

grams (OBDDs). An intuitive explanation of the success of this approach is that many

real world systems exhibit a large amount of symmetry and therefore could besuc-

cinctly represented as OBDDs, on which efficient algorithms could bedeveloped.

In the past fifteen years, there has been a lot of work in extending the symbolic

model checking techniques to deal with symbolic representations of infinite-statetran-

sition systems. Although most real-world systems could be thought of as finite systems

(e.g. the size of hard disks and the number of processes of a distributed protocol are

finite in reality), it is often more suitable to model them as infinite-state systems. For

example, in the study of distributed algorithms [Lyn96], a distributed protocol is said

to satisfy a certain property (e.g. freedom from deadlock) if eachinstance of the proto-

col with n processes satisfies the property, i.e., not only for each value ofn up to (say)

1500, although this number could be reasonable for today’s standard. This is arguably

also the reason why abstract models of computation such as Turing machines (with
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an infinite tape) and Minsky’s counter machines (with the ability to store unbounded

integer values) are used as formal definitions of the intuitive notions of algorithms. We

shall now mention a few possible sources of infinity in theabstractionsof real-world

systems:

1. Data structures: stacks (e.g. for modeling recursions),queues (e.g. for modeling

communication channels), arrays and heaps.

2. Numeric data types: integers, reals, etc.

3. Discrete or real-valued clocks.

4. Concurrency: unbounded number of processes.

Most of these sources of infinity can easily result in Turing-powerful models of com-

putation (in the sense of being able to generate the computation graphs of Turing ma-

chines up to isomorphisms). Despite this, researchers haveobtained promising results

in this direction that are both interesting from both practical and theoretical points of

view.

Approaches to infinite-state model checking that have been considered in the lit-

erature can often be (somewhat loosely) classified into two categories: “generic” and

“specific”. Genericapproaches usually adopt powerful symbolic representations of

infinite-state systems (i.e., those that can capture Turing-powerful models of computa-

tion such as Turing machines or counter machines) and develop partial techniques for

solving model checking problems over such systems. These partial techniques might

turn out to be complete (i.e. yield decidability) in cases when certain restrictions are

imposed. In contrast,specificapproaches avoid undecidability by always restricting to

non-Turing-powerful formalismsat the outset. Nonetheless, this doesnot necessarily

mean that positive results obtained in this way are always restrictive. In this thesis,

we shall present generic techniques and specific techniquesfor obtaining decidabil-

ity with optimal (or near-optimal) computational complexity of various infinite-state

model checking problems.

The rest of this section is organized as follows. In Section 1.1 and Section 1.2,

we shall review some results in the literature of infinite-state model checking that have

been obtained using specific and generic approaches, respectively. In Section 1.3, we

will discuss the contributions of this thesis. Finally, in Section 1.4 we will outline how

the thesis is organized.
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1.1 Specific approaches

Finding classes of infinite-state systems with decidable model checking tasks is by far

the most popular approach in infinite-state model checking.This perhaps explains the

plethora of decidability results that have been obtained ininfinite-state model checking.

We shall now review some of the major decidability/complexity results in the area.

One of the earliest decidability results in infinite-state model checking that per-

mits an expressive specification language is arguably Muller and Schupp’s result that

model checking monadic second-order logic (MSO) overpushdown systems(i.e. the

transition graphs of pushdown automata) is decidable [MS85]. Pushdown systems

are relevant in verification since they are known to be good abstractions for sequen-

tial programs with unbounded recursions. On the other hand,there exists a fixed

pushdown system (i.e. the infinite binary tree) with a nonelementary2 complexity

of MSO model checking [Sto74]. This is in contrast to the problem of reachabil-

ity over pushdown systems, which is easily reducible to theP-complete problem of

nonemptiness of languages of pushdown automata. This motivated researchers to find

logics that are weaker than MSO, but are still sufficiently expressive for verification

purposes, i.e., they should be able to express reachabilityand possibly also some live-

ness properties3. Temporal/modal logics turn out to have much better complexity over

pushdown systems. Walukiewicz [Wal96, Wal01] was the first to identify that model

checking (modal)µ-calculus over pushdown systems isEXP-complete. This specifi-

cation language is subsumed by MSO, but turns out to be as powerful as MSO for

expressing bisimulation-invariant properties [JW96], which include most properties of

interests in verification. Linear Temporal Logic (LTL) was then proved to haveEXP-

complete model checking complexity over pushdown systems [BEM97]. In contrast

to µ-calculus, model checking LTL was shown to be solvable inP for a fixed formula,

which is appealing since LTL specifications are quite small in practice. The complex-

ity for other temporal logics including CTL (Computation Tree Logic),EF-logic, and

Propositional Dynamic Logic (PDL) have also been identifiedto be withinEXP (cf.

[BEM97, GL06, Wal00]).

Many of the results for pushdown systems have by now been extended to more

expressive classes of infinite-state systems, which we shall mention next. First, the de-

cidability of MSO has been extended by Caucal [Cau96, Cau03]to prefix-recognizable

2This means that the time complexity cannot be bounded from above byk-fold exponential functions
for every fixedk > 1.

3In this sense,Hennesy-Miler logic(or modal logics of actions) does not fall within this category
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systems, which can be understood as pushdown systems with infinitelymany rewrite

rules compactly represented by means of regular languages.The complexity of modal

and temporal logics have also been identified for prefix-recognizable systems [Cac02,

GL06, KPV02]. For example, overµ-calculus the problem remainEXP-complete

[Cac02, KPV02]. Over LTL, the problem remainsEXP-complete, but theEXP lower

bound still holds for a fixed formula [KPV02]. Interestingly, it was only shown recently

[Göl08] that reachability over prefix-recognizable systems is alreadyEXP-hard. Cau-

cal [Cau02] also gave another extension of the MSO decidability of prefix-recognizable

systems to a hierarchy of infinite graphs, which are known asCaucal hierarchy. As has

been shown in [CW03], this hierarchy of graphs is intimatelyconnected to a formalism

calledhigher-order pushdown automata[Mas76], which extend pushdown automata

by “stack-of-stacks” structures. Some results on model checking higher-order push-

down systems are also known, e.g., model checkingµ-calculus isn-EXP complete for

order-n higher-order pushdown systems [Cac03, CW07]. Similar results on related for-

malisms like higher-order recursion schemes and collapsible higher-order pushdown

automata, which are suitable abstractions for higher-order programs with unbounded

recursions, are also known (cf. [Ong06, HMOS08]).

So far, we have only discussed abstract models of sequentialprograms. We now

discuss models of concurrent programs.Petri nets— initially proposed by Carl Adam

Petri — are one of the first well-known models forpurely concurrent programs with

interesting decidability results. Roughly speaking, theyare a subclass of Minsky’s

counter machines with only one state that cannot test whether a counter value is zero.

Reachability for Petri nets is known to be solvable in non-primitive recursive time

[May84], but is only known to beEXPSPACE-hard [Lip76]. On the other hand,

branching-time model checking over Petri nets is known to beundecidable [Esp97a]

even overEF-logic, which is probably the simplest standard branching-time logic with

a reachability operator. Despite this, LTL model checking is decidable, but has been

shown to be as hard as reachability for Petri nets [Esp94]. Interestingly, when only

infinite runs are considered, the complexity of the problem is EXPSPACE-complete

[Hab97]. Many subclasses of Petri nets with better decidability/complexity are known.

We shall mentioncommunication-free Petri nets(a.k.a. basic parallel processes),

which are simply Petri nets whose transitions depend only onthe value of a single

counter. Communication-free Petri nets are known to haveNP-complete reachability

problem [Esp97b] andPSPACE-completeEF-logic model checking problem [May98].

We refer the reader to the survey [Esp96] and the thesis [May98] for more results and
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discussions on Petri nets and their subclasses.

The expressive power of Petri nets and pushdown automata as graph generators

are known to be incomparable up to bisimulation (cf. [BCMS01, Mol96]). Intu-

itively, this is because pushdown systems can only model sequential programs, while

Petri nets only purely concurrent programs. Some research has been made into com-

bining them to obtain a model that is both sequential and concurrent. We shall first

mentionPA-processes(cf. [BW90, BCMS01, Mol96]), which are obtained by blend-

ing one-state pushdown automata and communication-free Petri nets. PA-processes

are known to have decidableEF-logic model checking andNP-complete reachabil-

ity [May98, LS02], but undecidable LTL model checking [BH96]. It is also known

that they can be used to model parallel programs with unbounded recursions and un-

bounded parallelism [BW90, EP00]. The first complete generalization of pushdown

automata and Petri nets was given by Mayr [May98], which he calls Process Rewrite

Systems (PRS). Despite its generality, PRS is still known to have decidable reachability

problem [May98].

Another way of incorporating some concurrency into pushdown systems is to con-

sider rewrite rules over ranked trees instead of words. Thisapproach yields a class

of infinite-state systems that is calledground tree rewrite systems(cf. [CDG+07]). It

has been shown that ground tree rewrite systems have polynomial-time reachability

[CDGV94, Löd03] and decidable model checking with respectto first-order logic with

reachability operators [DT90]. Löding [Löd03] was the first to show that some inter-

esting liveness properties could be also decided for groundtree rewrite systems. In par-

ticular, he showed that the problem of checking the existence of an infinite path from a

given treeT which visits a given setL(A) infinitely often, whereL(A) is the language

of a tree automatonA , is decidable in polynomial time. Such a liveness property is of-

ten referred to asrecurrent reachabilityandrepeated reachability(e.g. see [BBF+01]).

In order to emphasize the expressive “target” setL(A), we shall also address the prop-

erty as recurrent reachability withregular fairness constraint. These positive results

also extend toregular ground tree rewrite systems[DT90, Löd03, Löd06], which are

extensions of ground tree rewrite systems with infinitely many rules compactly repre-

sented by means of tree automata (i.e. similar to prefix-recognizable systems). Despite

this, it can be shown that model checking logics like LTL and CTL is undecidable over

ground tree rewrite systems.

So far, we have discussed some results on systems with two sources of infinity, i.e.,

stacks (or generalizations thereof) and concurrency. Whatabout numeric data types
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like integers? Unfortunately, adding numeric data types easily result in undecidability,

e.g., consider Minsky’s 2-counter machines. As we saw earlier, decidability can be

retained if we do not allow zero tests yielding the model called Petri nets. However,

this is not satisfactory since programs naturally perform arithmetic expressions, the

simplest of which already require zero test. Let us now discuss some restrictions on

counter machines that still allow test for zero but still have some interesting decidabil-

ity results. Firstly, if we restrict the number of counters to one, we obtain 1-counter

machines, which can be thought of as pushdown automata with one stack symbol plus a

non-removable stack-bottom symbol. In this way, 1-countersystems inherit the decid-

ability results from pushdown systems, e.g., model checking MSO. It turns out, though,

that 1-counter systems have better computational complexity. For example, LTL andµ-

calculus model checking over 1-counter systems were shown to bePSPACE-complete

[Dem06, Ser06], in contrast to pushdown systems which areEXP-complete. ForEF-

logic, the complexity is known to be inPSPACE [Wal00] andDP-hard [JKMS04].

Another well-known decidable restrictions of counter machines arereversal-bounded

counter machines, which were initially proposed by Ibarra [Iba78]. These aresimply

counter machines each of whose counters can change from a non-decreasing mode to

a non-increasing mode (or vice versa) for a fixedr number of times. Reachability was

initially shown by Gurari and Ibarra [GI81] to be solvable inPSPACE, and later was

shown in [HR87] to be preciselyNP-complete whenr is given in unary andNEXP-

complete whenr is given in binary. Furthermore, when the number of reversals and the

number of counters are fixed in advance, the problem is solvable in polynomial time

[GI81]. Certain liveness problems like recurrent reachability have also been shown to

be decidable [DIP01] for reversal-bounded counter systemswith one free counter.

Results that combine infinite data structures with numeric data types are also avail-

able. We shall only mention the result on reversal-bounded counter systems with a

pushdown stack and finitely many discrete clocks [DIB+00]. This class of systems

generalizes pushdown systems, reversal-bounded counter systems, and discrete timed

systems [AD94] simultaneously. Despite this, it was shown in [DIB+00] that interest-

ing safety properties are still decidable. It was an open question in [DIP01] whether

interesting liveness properties are also decidable for this model.

There are also other classes of systems with interesting decidability results for

model checking that we have not mentioned. These include lossy channel systems

[ACJT96] and probabilistic infinite-state systems including probabilistic pushdown

systems (cf. [KEM06]), which we will not further encounter in the thesis.
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1.2 Generic approaches

We have hitherto mentioned only models of computations thatarenotTuring-powerful.

However, these are not the only models that were intensivelystudied in infinite-state

model checking communities. Many formalisms that are capable of generating the

configuration graphs of Turing machines or Minsky’s countermachines have also been

studied. These include rational transition systems [Mor00, BG09], automatic andω-

automatic structures [Blu99, BG04], tree-automatic structures [Blu99, BLN07], and

Presburger-definable systems (cf. [Boi99, BFLP08, FL02]).Since even reachability

is already undecidable over such systems, most results concerning verification over

such systems have a semi-algorithmic flavor. In particular,we mention the work

on regular model checking, which aims to develop practical semi-algorithmic tech-

niques for computing a symbolic representation (e.g. usingregular languages) of the

reachability sets or reachability relations of such systems. The reader is referred to

[AJNS04, Bou01, Boi99, BLW03, BJNT00, BHV04, KMM+01, Nil05] for more

details. Many of the semi-algorithms given in this literature, however, do not come

with a completeness criterion, i.e., a criterion on the input systems whereby the semi-

algorithms will certainly terminate with a correct answer.In other words, the per-

formance of many of these semi-algorithms is only evaluatedexperimentally. In the

case when completeness criteria are given, they are often unnatural and do not subsume

commonly consideredsubclassesof systems with decidable model checking problems.

Recently, there have been several successful attempts to provide semi-algorithms

with natural criteria for completeness. In particular, we shall mention the work [LS05a,

BFLS05], which provide semi-algorithms based on the “acceleration techniques” of

[CJ98, FL02, Boi03] for computing symbolic representations of reachability sets or

reachability relations over linear counter systems (a subset of Presburger-definable sys-

tems). They show that their algorithms terminate with a correct answer iff the input

systems areflattable, i.e., they can be turned into aflat counter system [CJ98]. Many

interesting subclasses of counter systems have been shown to satisfy this property, e.g.,

2-dimensional vector addition systems with states [LS04],reversal-bounded counter

systems [LS05a], and other subclasses of Petri nets [LS05a]. Thus, this approach

yields asinglesemi-algorithm that is guaranteed to solve the reachability problems for

these subclasses of counter systems, instead of one dedicated algorithm for each sub-

class. Furthermore, the general procedures turn out to be simpler than the specialized

algorithms (e.g. reachability for 2-dim vector addition systems was shown to be de-
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cidable in [HP79] with a rather difficult technique). These semi-algorithms have also

been implemented in FAST [BFLP08] with impressive experimental results.

The results of [LS05a, BFLS05] can naturally be viewed asalgorithmic metathe-

orems, as was suggested by the authors. More precisely, to prove whether a subclass

of linear counter systems has decidable reachability, it suffices to show that they are

flattable. In this sense, other results in the verification literature can also be clas-

sified as algorithmic metatheorems. In particular, we shallmention the works of

[Fin87, Fin90, ACJT96, FS01] onwell-structured transition systemsand the works of

[Sem84, Wal02, CW98] on operations on transition systems that preserve decidability

of monadic second-order logic. In the case of finite-state model checking, algorithmic

metatheorems are also used extensively to obtain good algorithmic bounds for evalu-

ating logical formulas [FG06].

1.3 Contributions

The main contributions of this thesis are new generic and specific techniques for

infinite-state model checking.

Our generic approach to infinite-state model checking adopts word/tree automatic

transition systems [BG04] as generic frameworks. Althoughreachability is already

undecidable, word/tree automatic transition systems are known to satisfy some nice

closure/algorithmic properties, e.g., closure under boolean combinations and automata

projections [Hod83]. Using these properties, we will provevarious algorithmic metathe-

orems for showing decidability of model checking over word/tree automatic transition

systems with optimal (or near-optimal) complexity. More importantly, we will show

that many previously known or unknown decidability/complexity can be obtained in a

uniformway using our metatheorems.

Thus far only algorithmic metatheorems for safety properties are available in the

literature [LS05a, BFLS05]. We complement these results byproviding algorithmic

metatheorems for liveness. Our most basic algorithmic metatheorem concerns a partic-

ular liveness property over the expressive class of word/tree automatic systems called

recurrent reachability checking with regular fairness constraints. Such a property is

important since certain logic model checking (e.g. LTL) canbe reduced to it. In partic-

ular, we show that, for any subclassC of word/tree automatic systems for which there

exists an algorithmM computing a word/tree automatic presentation of the reacha-

bility relation of a given system inC , we may decide recurrent reachability by first
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computing the reachability relation of the given system andthen perform some extra

polynomial-time computation. This metatheorem will then be extended to recurrent

reachability withmultiple regular fairness constraints (a.k.a.generalized B̈uchi con-

ditions). Roughly speaking, this problem asks whether there existsan infinite path

from a given configuration (i.e. a finite word or a finite tree) visiting each of the given

regular setsL(A1), . . . ,L(An) infinitely often (simultaneous visits are not required).

Together with the known results on algorithms for computingreachability relations

for specific classes of infinite-state systems, our metatheorems can be applied to uni-

formly derive decidability of recurrent reachability overpushdown systems, prefix-

recognizable systems, (regular) ground-tree rewrite systems, PA-processes, order-2

collapsible pushdown systems, PA-processes, reversal-bounded counter systems (and

extensions thereof), and some subclasses of Petri nets including 2-dim vector addition

systems. For many of these classes of infinite-state systems, we manage to obtain op-

timal complexity. Many of these decidability/complexity results were not previously

known in the literature. For example, Löding [Löd06] asked whether his result on

the decidability of recurrent reachability with a single regular fairness constraint over

ground tree rewrite systems could be extended to multiple regular fairness constraints,

which we answer positively using the techniques in this thesis.

Building on our algorithmic metatheorems for recurrent reachability, we provide

algorithmic metatheorems forlogic model checkingover word/tree automatic systems.

In particular, we consider the LTL (or fragments thereof) model checking problems

with multiple regular fairness constraints. Fairness constraints are standard ways of

eliminating executions that do not represent actual paths in the real-world systems,

i.e., “spurious” executions that are introduced by abstractions (cf. [BBF+01]). Reg-

ular languages give powerful ways of expressing fairness, which cannot be expressed

in LTL alone. Our results are as follows. To begin with, we show that if we ad-

ditionally require the subclassC of word/tree automatic systems to beclosed under

products with finite systems, then we obtain decidability of the full LTL model check-

ing with multiple regular fairness constraints. We will usethis algorithmic metatheo-

rem for uniformly deriving decidability with optimal (or near-optimal complexity) of

LTL model checking with multiple regular fairness constraints over pushdown systems,

prefix-recognizable systems, and extensions of reversal-bounded counter systems with

discrete clocks and one free counter. The condition of closure under products with

finite systems turns out to be rather restrictive. For this reason, we provide a weaken-

ing of this condition, which we callclosure under taking subsystems. This condition
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is rather weak and is satisfied by virtually every class of infinite-state systems. Our

second algorithmic metatheorem is that ifC satisfies this condition together with the

condition for recurrent reachability, we have decidability of the fragments LTL(Fs,Gs)

and LTLdet overC with multiple regular fairness constraints. These fragments of LTL

are sufficiently powerful to express many interesting safety/liveness constraints. More

importantly, we use this algorithmic metatheorem to give new decidability/complexity

results over many of the classes of infinite-state systems.

Additionally, we build on top of our algorithmic metatheorems for recurrent reach-

ability to obtain algorithmic metatheorems for extensionsof first-order logic with

reachability and recurrent reachability operators (possibly enriched with path con-

straints). Similarly, we can apply these metatheorems for deriving decidability results

over classes of infinite-state systems that have been considered in the literature.

Generic approaches are not without limitations. In particular, when we consider

subclasses of counter systems (e.g. one-counter systems and reversal-bounded counter

systems), our generic approaches cannot immediately derive optimal complexity. We

address this problem by providing new techniques that are designed specifically for

these classes of systems.

First of all, we will develop techniques to compute Parikh images of nondetermin-

istic finite state automata (as semilinear sets) in a more efficient way. This technique

can then be used to derive an optimal complexity for LTL modelchecking with mul-

tiple regular fairness constraints over reversal-boundedcounter systems with discrete

clocks. We will also provide a kind of fixed-parameter tractability result for model

checkingEF-logic over reversal-bounded counter systems. These results were not pre-

viously known.

Finally, we will consider the problem of model checkingEF-logic and first-order

logic with reachability over one-counter processes and networks of one-counter pro-

cesses with no bounds on the number of reversals. As we will show later, these classes

of systems form a natural subclass of programs with multipleinteger variables and

simple synchronizations between the variables. To prove optimal complexity for these

model checking problems, we will first introduce new subclasses of Presburger arith-

metic and prove that they have good complexity (all belowPSPACE). The optimal

complexities of the model checking problems are then derived by polynomial reduc-

tions to the membership problems for these subclasses of Presburger arithmetic.
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1.4 Organizations

The thesis is organized as follows. We shall first recall necessary preliminaries in

Chapter 2. The contents after Chapter 2 are divided into three parts:

1. Part I contains generic techniques for infinite-state model checking. In partic-

ular, we shall review basic results on word/tree automatic transition systems in

Chapter 3. In Chapter 4, we will prove algorithmic metatheorems for recurrent

reachability properties and their extensions over word/tree automatic systems. In

Chapter 5, we will extend the algorithms from Chapter 4 to logic model check-

ing. We will use these metatheorems in the corresponding chapter to derive

some known or previously unknown decidability/complexityresults in infinite-

state model checking. In Chapter 6, we will study more applications of our

algorithmic metatheorems.

2. Part II contains specific techniques. In particular, we will deal with model check-

ing problems over reversal-bounded counter systems and their extensions in

Chapter 7. In Chapter 8, we will study model checking problems over one-

counter processes. Finally, we will consider model checking problems over net-

works of one-counter processes in Chapter 9.

3. Part III contains a summary of the results in the thesis andfuture work.

As a convention, we shall use� to end remarks, and♣ (resp. 2) to end examples

(resp. proofs).



Chapter 2

Preliminaries

In this chapter, we shall fix some notations that will be used in the sequel, and review

basic definitions and results from automata theory, complexity theory, and logic. The

reader is assumed to have basic familiarity with these subjects. This chapter is orga-

nized as follows. In Section 2.1, we fix some general mathematical notations that we

shall use throughout the thesis. Automata theory is perhapsthe most important tool in

the thesis. We shall review necessary preliminaries from automata theory in Section

2.2. In Section 2.3, we review standard definitions and results from computability and

complexity theory. Most mathematical structures that we will encounter in the sequel

can be formalized as transition systems or logical structures over some vocabularies.

We shall review them in Section 2.4. Finally, Section 2.5 reviews the logics and prop-

erties that we will deal with in the sequel.

2.1 General notations

Most mathematical notations and terminologies that we use in this thesis are fairly

standard. For the sake of completeness, we shall mention some of these in this section.

Some notations from set theory We use standard notations for set operations: union

(∪) , intersection (∩), set difference (\), Cartesian product (×), and power set (e.g. 2S

for a given setS). Givenn setsS1, . . . ,Sn, their product∏n
i=1Si is the set{(s1, . . . ,sn) :

∀i ∈ [1,n](si ∈ Si)}. If S1 = · · ·= Sn, then this set is also writtenSn
1. Denote byω the

least infinite ordinal.

13
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Sets of numbers and vector spaces Let N be the set of nonnegative integers. As

usual, we useR, andZ to denote, respectively, the set of real numbers, and the set

of integers. We also often use such notations asR≥0 and Z>0, which in this case

mean the set of nonnegative real numbers and the set of positive integers, respectively.

Given two integersi < j, we use interval notations of the form[i, j] to denote the

set{i, i + 1, . . . , j} of integers (instead of reals), which is more standard in computer

science. Similarly, we shall use notations like(i, j] to mean the set[i, j] but excluding

extreme points (in this casei). Logarithm notations used in this thesis has base 2.

When we fix some vector spaceRk, we use0 to denote the element(0, . . . ,0) in R
k.

We shall also denote by{ei}ki=1 the standard basis forRk, whereei denotes the vector

with all-zero entries except for theith.

Partial orders Recall that a partial order� on a setS is well-foundedif there does

not exist a strictly decreasing infinite sequences1 ≻ s2 ≻ . . . of elements fromS. An

elements of S is said to be�-minimal, if all s′ ∈ Swith s′ � s satisfiess= s′.

In the sequel, we shall reserve� for the component-wise partial order onN
k, i.e.,

(a1, . . . ,ak) � (b1, . . . ,bk) iff ai ≤ bi for all i ∈ {1, . . . ,k}. Dickson’s lemma [Dic13]

states that� is well-founded.

Asymptotic notations We use the following standard asymptotic notations, espe-

cially when measuring the computational complexity of a problem: big-ohO(), small-

oho(), and big omegaΩ().

Arithmetic on 2Z
k

First, we extend standard arithmetic operations (addition, sub-

straction, and multiplication) to tuples in a component-wise manner. These can be

further extended to sets of tuples as follows. Given two setsS1,S2⊆ Z
k, we define the

operation⊙ ∈ {+,−, ·} on them as follows:S1⊙S2 := {v1⊙ v2 : v1 ∈ S1,v2 ∈ S2}.
For n ∈ N andS2 ⊆ N, we shall also writen⊙S2 to mean{n}⊙S2. An arithmetic

progressionis any set of numbers of the forma+b ·N for somea,b∈N. The number

a (resp.b) is said to be theoffset(resp. theperiod) of a+bN.

2.2 Automata theory

In this section, we shall review some basic definitions and results from automata theory.

In particular, we will look at finite-state automata on finitewords, finite trees,ω-words,
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andω-trees. We will also briefly recall pushdown automata and context-free gram-

mars used as generators of languages of finite words. Finally, we will look at Parikh’s

Theorem, which relates the sets of letter-counts of languages recognized by regular

languages and context-free languages (on finite words) and semilinear sets. For a more

thorough treatment of the subject, the reader is referred to[Koz97, Sip97, Tho96].

2.2.1 Automata over finite words

Languages over finite words

An alphabetΣ is simply a finite nonempty set ofletters. We say thatΣ is k-ary if

|Σ| = k. A word (or string) overΣ is a finite sequencew = a1 . . .an whereai ∈ Σ for

each 1≤ i≤ nandn∈N. If n= 0, thenw is the uniqueempty wordε. For 1≤ i≤ j ≤ n,

we writew[i, j] to refer to the wordaiai+1 . . .a j . The wordw[i, j] is a subwordof w.

Note also thatw[i, i] refers to theith letterai in w. For convenience, we shall also use

w[i] for w[i, i]. Given two wordsu = a1 . . .an andv = b1 . . .bm, theconcatenation u.v

of u andv is the new worda1 . . .an+m, wherean+i := bi for each 1≤ i ≤m (e.g. the

concatentation ofabawith bbb is ababbb). Note thatε is the unique word satisfying

ε.u= u.ε = u for each wordu overΣ. For convenience, we shall often writeuv instead

of u.v in the sequel. Given a numbern∈ N, we definewn as the concatenation ofw

with itself n times (e.g. forw = ab, we havew0 = ε, w1 = w, w2 = abab). A word

w = a1 . . .an haslength|w|= n. Note that|ε|= 0. For a given lettera∈ Σ, we denote

by |w|a the number of occurrences of the lettera in w (e.g. |aaba|a = 3). We denote

by Σ∗ (resp. Σ+) the set of all words (resp. nonempty words) overΣ. In the sequel,

when we omit mention ofΣ when referring to these notions, we tacitly assume some

underlying alphabetΣ.

A language(overΣ) is any subsetL ⊆ Σ∗. We shall define a number of useful op-

erations on languages. Standard set operations such as union (∪), intersection (∩), and

complement (\) — also known asboolean operations— can be applied to languages

as usual. For a languageL , we useL to denote the complementΣ∗ \L of L . Given

two languagesL andL ′ overΣ, we define theirconcatentation

L .L ′ := {uv : u∈ L ,v∈ L ′}.

As before, we will mostly use the notationLL ′ instead ofL .L ′. For eachn∈ N, we
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defineLn andL≤n to be the languages defined as follows

Ln := {u1 . . .un : u1, . . . ,un ∈ L}

L≤n :=
n

[

i=0

L i.

Finally, we define theKleene starof L to be the language

L∗ :=
[

i∈N

L i .

Regular languages and regular expressions

We now recall the notion of regular languages, along with regular expressions as their

standard finite representations. We begin by recalling the syntax ofregular expressions

eover an alphabetΣ using the standard Backus-Naur Form:

e,e′ ::= ε | a (a∈ Σ) | e+e′ | e.e′ | e∗.

The three operators here are union (+), concatenation (.), and Kleene star (∗). The

languageL(e) generatedby a regular expressionecan be defined by induction:

• L(ε) := ε.

• L(a) := {a} for eacha∈ Σ.

• L(e+e′) := L(e)∪L(e′).

• L(e.e′) := L(e).L(e′).

• L(e∗) := L(e)∗.

Let us now define some syntactic sugar. We shall allow the expressionΣ with the

obvious meaningL(Σ) = Σ. When the meaning is clear, we shall also writeee′ instead

of e.e′ for two given regular expressionseande′. An example of a regular expression is

(ab)∗+a∗, which describes the set of all words that are of the form(ab)n or an for some

n∈N. To minimize the use of brackets ‘(’ and ’)’, we assign an operator precedence in

the following order (highest to lowest): ‘*’, ‘.’, and then ‘+’. Furthermore, observe that

both of the operators ‘+’ and ‘.’ are associative:L(e+(e′+ e′′)) = L((e+ e′)+ e′′)

andL(e.(e′.e′′)) = L((e.e′).e′′). Therefore, we will write(ab)∗+ b∗+ a∗ instead of

((ab)∗+b∗)+a∗. Regular languages(overΣ) are those languages that are generated

by some regular expressions (overΣ). We now state a standard result about regular

languages (e.g. see [Koz97] for a proof).
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Proposition 2.2.1 Regular languages are effectively closed under union, intersection,

complementation, composition, and Kleene star.

Finite automata

We now recall the notions of finite automata. Anondeterministic word automaton

(NWA)over an alphabetΣ is a tupleA = (Σ,Q,δ,Q0,F) where

• Q is a finite set ofstates,

• Q0⊆Q is a set ofinitial states,

• F ⊆Q is a set offinal states, and

• δ⊆Q×Σ×Q is atransition relation.

We shall useStates(A) to denote the setQ of states ofA . As usual, we shall also treat

the transition relationδ as a transition functionδ f : Q×Σ→ 2Q such thatq′ ∈ δ f (q,a)

iff (q,a,q′) ∈ δ. If |Q0| = 1 and|δ(q,a)| ≤ 1 for eachq∈ Q anda∈ Σ, then we say

thatA is determinsitic. In this case,A is a DWA (deterministic word automaton). A

pathπ in A from q∈ Q to q′ ∈ Q is simply an interleaving sequencep0a1p1 . . .ampm

of states inQ and letters inΣ such thatpi+1 = δ(pi ,ai+1) for eachi ∈ [0,m). It is said

to be arun if p0 ∈ Q0. We shall also useL(π) to denote thepath labels a1 . . .am,

and say thatπ is a path on (input) a1 . . .am. For convenience, we shall sometimes

omit the path labels fromπ, and simply refer to it as a pathπ = p0 . . . pm on the word

a1 . . .am. In addition, the pathπ has length|π| = m, and we letfirst(π) := p0 (resp.

last(π) := pm) denote the initial (resp. end) state in the pathπ. For 1≤ i ≤ j ≤m, we

shall use the notationπ[i, j] (resp. π(i)) to denote the pathpiai+1pi+1 . . .a j p j (resp.

nodepi). Given two pathsπ = p0a1 . . . pm andπ′ = pmam+1 . . . pn (with m≤ n), we let

π⊙π′ denote the concatenated pathp0a1 . . . pmam+1 . . . pn. A path that ends in some

final stateq∈ F is said to beaccepting. The NWAA is said toacceptthe wordw∈ Σ∗

from q if there exists an accepting path ofA onw from q. When we sayA accepts the

word w without mention of the stateq, we tacitly assume thatq is the initial state of

A . The languageL(A) acceptedby A is simply the set of words overΣ accepted by

Σ. As usual, for clarity we may define a finite automaton by drawing an edge-labeled

directed graph whose nodes (resp. arcs) define the states (resp. transitions) of the

automaton. In the sequel, we use filled circles to denote finalstates, while the initial

state is defined by drawing a source-less incoming arc to a node. For example, the

languageL((ab)∗+a∗) is accepted by the automaton in Figure 2.1.
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Figure 2.1: An NWA recognizing the language L((ab)∗+a∗).

Remark 2.2.1 Recall that our definition of NWAs allow more than one initialstates.

This is done only for convenience since we may easily construct an equivalent NWA

with only one initial state by adding one extra state. In the sequel, we shall of-

ten assume that an NWA has only one stateq0 and write(Σ,Q,δ,q0,F) instead of

(Σ,Q,δ,{q0},F). �

Complexity measure

For the purpose of complexity analysis, we shall define complexity measures for au-

tomata and regular expressions.

We start with regular expressions. The size‖e‖ of a regular expression can be

defined inductively as follows:

1. for eacha∈ Σ, ‖a‖ := 1,

2. ‖e+e′‖ := ‖e‖+‖e′‖+1,

3. ‖e.e′‖ := ‖e‖+‖e′‖+1, and

4. ‖e∗‖ := ‖e‖+1.

In other words,‖e‖ is the number of nodes in the parse tree ofe. Observe that the

number of bits needed to write an expressione is at mostO(‖e‖× log|Σ|).
We now define computational complexity measures for NWAs. Given an NWA

A = (Σ,Q,δ,Q0,F), the easiest, but less precise, measure can be obtained by mea-

suring the number|Q| of states and the size|Σ| of the alphabet separately. Such a

measure is reasonable since all other parameters ofA are polynomial in|Q| and |Σ|,
e.g.,|δ| ≤ |Q|2×|Σ|. On the other hand, when a more accurate analysis is desired,we

shall instead use the following measure. Let‖A‖ be the number of pairs(q,q′) such

that(q,a,q′) ∈ δ for somea∈ Σ. In other words,‖A‖ denotes the number of different
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unlabeledtransitions inδ. Then, assuming that each state inQ occurs inδ at least

once (by easily removing isolated states in linear time), each parameter inA can be

expressedlinearly in ‖A‖ and |Σ|. For example, the number|Q| of states is at most

‖A‖, and the number of transitions in|δ| is at most‖A‖×|Σ|. Moreoever, the number

of bits needed to write down the automaton is at mostO(‖A‖ log‖A‖×|Σ| log|Σ|). In

the sequel, we call‖A‖ the(unlabeled transition) sizeof the NWAA . When we intend

to measure the number of states as the complexity measure, weshall be explicit about

this.

Some basic results

We now state several basic results from automata theory overfinite words. We first

start with a standard result concerning the equivalence of regular expressions and finite

automata (e.g. see [Koz97] for a proof).

Proposition 2.2.2 Given a languageL overΣ, the following statements are effectively

equivalent:

(1) L is generated by a regular expression.

(2) L is accepted by an NWA.

(3) L is accepted by a DWA.

Furthermore, there is a linear-time translation from (1) to(2).

All the translations in the proposition above run in timeat mostexponential in the size

of the input (e.g. see [Koz97]). It turns out thateverytranslation from (2) to (3) could

be exponential in the worst case even over unary alphabet [Chr86]. In particular, there

exists a class{An}n∈Z>0 of NWAs An with n states over the alphabet{a} whose small-

est equivalent DWA require at least 2Ω(
√

nlogn) states. When the alphabet contains at

least two letters, the lower bound can be improved to 2n (e.g. see [Var95]). In addi-

tion, the lower bound of 2Ω(
√

nlogn) holds also for translations from (1) to (3) even over

unary alphabet since NWAs and regular expressions are polynomially equivalent over

unary alphabet [Chr86, Mar02, To09b]. Furthermore, there also exists an exponential

lower bound for translations from (3) to (1) even over alphabet of size four [GN08].

In the sequel, we will meet several complex constructions over NWAs, many of

which can be understood in terms of simpler constructions over NWAs such as boolean

operations. Therefore, we next state basic results on computing NWAs recognizing
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boolean combinations of languages of the given NWAs (see [Koz97, Var95] for more

details).

Proposition 2.2.3 Given NWAsA andB over the alphabetΣ:

(1) we can compute in time O(|Σ|× (‖A‖+‖B‖)) an NWA of size‖A‖+‖B‖ rec-

ognizing the languageL(A)∪L(B),

(2) we can compute in time O(|Σ|× (‖A‖×‖B‖)) an NWA of size‖A‖×‖B‖ rec-

ognizing the languageL(A)∩L(B), and

(3) if n = |States(A)|, we can compute in exponential time a DWA with2n states

recognizing the languageL(A).

Proof. We shall describe only the first and the second constructions. The third is

done by the standard subset construction (e.g. see [Koz97, Var95]), which we will

not encounter in this thesis. Therefore, suppose thatA = (Σ,QA ,δA ,QA
0 ,FA) and

B = (Σ,QB ,δB ,QB
0 ,FB). Without loss of generality, we assume thatQA ∩QB = /0.

Let us start with the construction for (1). Define the NWAT = (Σ,Q,δ,Q0,F) as

follows:

• Q := QA ∪QB .

• Q0 := QA
0 ∪QB

0 .

• δ := δA ∪δB .

• F := FA ∪FB .

It is easy to see thatL(T ) = L(A)∪L(B) and that‖T ‖= ‖A‖+‖B‖. The construc-

tion can also be easily implemented in timeO(|Σ|× (‖A‖+‖B‖)).
We now describe the construction for (2), which is also knownasproduct construc-

tion. Define the NWAT = (Σ,Q,δ,Q0,F) as follows:

• Q := QA ×QB .

• Q0 := QA
0 ×QB

0 .

• δ((q,q′),a) := δA(q,a)×δB(q′,b) for all q∈QA , q′ ∈QB , anda∈ Σ.

• F := FA ×FB .
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Intuitively, the automatonT simulates bothA andB on the given input wordsimul-

taneously. It is not hard to see thatL(T ) = L(A)∩L(B) and‖A‖ = ‖A‖× ‖B‖.
Furthermore, this construction can be easily implemented in timeO(|Σ|×‖A‖×‖B‖).
2

We now state the following basic result on checking languageemptiness and mem-

bership for NWAs. The proof of the following proposition canbe done by using a

simple reachability algorithm (e.g. see [Var95]).

Proposition 2.2.4 Checking whether the language recognized by a given NWAA is

empty can be done in time O(‖A‖× |Σ|). Consequently, checking whether a word

w∈ Σ∗ is a member ofL(A) is solvable in time O(|w|×‖A‖×|Σ|).

Star-free regular languages

Star-free regular languages form an important subclass of the class of regular lan-

guages. They are precisely the languages over the alphabetΣ generatedstar-free regu-

lar expressionsoverΣ, which are defined by the following grammars:

e,e′ ::= ε | a (a∈ Σ) | e+e′ | e.e′ | ē.

The semantics fore+ e′ ande.e′ are the same as the regular expressions. We define

L(ē) = Σ∗ \L(e). Therefore, star-free regular expressions do not allow Kleene star

operator, but instead allow complementation. Although standard regular expressions

do not have built-in complementation operator, it is easy tosee that they are definable

using regular expressions (e.g. using Proposition 2.2.2).On the other hand, it is well-

known that star-free regular languages actually form a proper subclass of the class of

regular languages [MP71]. Other proofs of this result can also be found in [Lib04,

Tho96]. We shall see later that there is a tight connection between star-free regular

languages and the class of languages definable in first-orderlogic over finite words.

We now touch the computational complexity aspect of star-free regular expres-

sions. The most important such result for the present thesisis that checking whether

two star-free regular expressions over an alphabet consisting at least two letters gen-

erate the same language is decidable but is nonelementary, i.e., cannot be decided in

k-fold exponential time for some integerk > 0.

Proposition 2.2.5 ([Sto74])The language equivalence problem for star-free regular

expressions over an alphabetΣ with |Σ| ≥ 2 is decidable but is nonelementary.
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This proposition has been commonly used in the literature for deriving fundamental

complexity lower bounds for translations between automataand logic (cf. [Sto74,

Tho96]).

2.2.2 Automata over ω-words

Languages over ω-words

Fix a finite alphabetΣ. An ω-word overΣ is a mappingw from Z>0 to Σ. As for finite

words, we will often think ofw as the infinite sequencew(1)w(2) . . .. Let Σω denote

the set of allω-words overΣ. We use the notationw[i, j] and for nonnegative integers

i ≤ j to denote the finite wordw(i) . . .w( j). Similarly, w[i,∞) denotes theω-word

w(i)w(i + 1) . . .. Given a finite wordw = a1 . . .an ∈ Σ∗ and anω-word w′ ∈ Σω, we

define their concatenation as theω-word w.w′ (also written asww′) as follows

(w.w′)(i) :=

{
ai if 1 ≤ i ≤ n

w′(i−n) if i > n.

An ω-word language over the alphabetΣ is simply a subset ofΣω. As for finite

words, we could apply the standard set operations (union, intersection, and comple-

ment) toω-word languages. Given a finite word languageL ⊆ Σ∗ and anω-word

languageL ′ ⊆ Σω, we could define theirconcatenationas theω-word language

L .L ′ := {uv : u∈ L ,v∈ L ′}.

We shall mostly writeLL ′ instead ofL .L ′ when the meaning is clear.

ω-regular languages

As in the case of finite words, we can define the notion ofω-regular languages as those

ω-word languages that can be finitely represented by finite automata in some way. Let

us now make this notion more precise. Given an NWAA = (Σ,Q,δ,Q0,F) and anω-

wordw∈ Σω, arun ofA on wis a functionπ : N→Q such thatπ(0)∈Q0 and, for each

i ∈ N, we have(π(i),w(i + 1),π(i + 1)) ∈ δ. We say thatπ is said to beacceptingif

there exists infinitely many indicesi ∈N such thatπ(i)∈F. In other words,F is visited

infinitely often inπ. Such an acceptance condition is commonly referred to asBüchi

acceptance condition. The ω-word w is acceptedby A if there exists an accepting

run of A on w. The languageL(A) acceptedby A is simply the set of allω-words

w∈ Σω that are accepted byA . When using NWAs as acceptors ofω-word languages,
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Figure 2.2: An NBWA recognizing the language {a,b}∗{a}ω.

we refer to such NWAs asnondeterministic B̈uchi word-automata (NBWA). When the

NWA is deterministic, we say that it isdeterministic B̈uchi word-automaton (DBWA).

A languageL ⊆ Σω is said to beω-regular (or simply regular, when the context is

clear) if it is accepted by some NBWA overΣ. For example, the language{a,b}∗{a}ω

is accepted by the NBWA depicted in Figure 2.2.

As in the case of finite words,ω-regular languages also satisfy desirable closure

properties including union, intersection, and complementation. On the other hand, DB-

WAs are not as powerful as NBWAs, unlike in the case of finite words. For example,

the language{a,b}∗{a}ω accepted by the NBWA in Figure 2.2 cannot be accepted by

a DBWA (for a proof, see [Var95]). Although there are deterministic automata models

onω-words that captureω-regular languages, we will not encounter them in the sequel.

We now state a basic result on emptiness checking for languages recognized by

NBWAs. The proof of the following proposition can be found in[Var95].

Proposition 2.2.6 Checking whether a given NBWAA recognizes an empty language

can be done in linear time.

Loosely speaking, the proof of the aforementioned proposition goes as follows. We

first run Kosaraju’s linear-time algorithm (see [AHU83]) tofind the strongly connected

components of the NBWAA (viewed as a directed graph). Checking emptiness, then,

amounts to finding a path from some strongly connected component that contains an

initial state to a strongly connected component that contains some final stateqF andat

leastone edge (so that there is a non-empty cycle that visits the final stateqF ).

2.2.3 Automata over trees

A direction alphabetϒ is a nonempty downward-closed subset of the setZ≥1 of posi-

tive integers, i.e., ifi ∈ ϒ and 1≤ j < i, then j ∈ ϒ. Given adirection alphabetϒ, atree

domainoverϒ is a non-empty setD⊆ ϒ∗ that satisfies the following two properties:

• D is prefix-closed, i.e., for eachw∈ ϒ∗ andi ∈ ϒ, wi ∈ D impliesw∈ D, and
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Figure 2.3: An example of a 3-ary tree over { f ,g,a,b} (left) depicted together with its

tree domain (right) whose elements are ordered by the prefix-of relations.

• for all wi ∈D and 1≤ j < i, it is the case thatw j ∈ D.

For a nonempty setΣ called alabeling alphabet, a treeoverΣ with direction alphabet

ϒ is a pairT = (D,τ) whereD is a tree domain overϒ andτ is a function mappingD

to Σ. A k-ary tree overΣ is a tree overΣ with direction alphabetϒ = {1, . . . ,k}. Unless

otherwise stated, we shall say “trees” to meank-ary trees, for some positive integerk,

over afinite labeling alphabet with afinite tree domain. Figure 2.3 gives an example of

a tree depicted together with its tree domain. When the meaning is clear, we shall omit

mention ofϒ and simply say thatT is a tree overΣ (or just “tree” whenΣ is clear).

We shall now define some standard graph-theoretic terminologies for dealing with

trees. Fix ak-ary treeT = (D,τ) over the labeling alphabetΣ. The elements ofD are

also callednodes. Therefore, we shall callτ a node labelingand that each nodeu∈ D

is labeledby τ(u). Thelevelof a nodeu∈D, denoted bylevel(u), is simply the length

|u| of the wordu. Theheightof the treeT is defined as 1+max{level(u) : u∈D}. We

shall refer to theroot of T as the the nodeε ∈ D. Wordsu∈ D such that noui is in D

are calledleaves. If v∈ D andvi ∈ D for somei ∈ ϒ, then we callvi a child of v andv

theparentof vi. Likewise, if vi ∈ D andv j ∈ D for somei, j ∈ ϒ, then we say thatvi

andv j aresiblings. In addition, ifv,vw∈ D for somew∈ ϒ∗, thenvw is adescendant

of v andv an ancestorof vw. A path (or branch) starting at a nodev ∈ D is simply

a sequenceπ = v0, . . . ,vn of nodes such thatv0 = v andvi is a child ofvi−1 for each

i = 1, . . . ,n. The treeT is said to becompleteif, wheneveru∈ D andui ∈ D for some

i ∈ ϒ, it is the case thatu j ∈D for all j ∈ ϒ.

The notion of “prefix” for words has a natural analogue for trees. We shall define

this next. Fork-ary treesT = (D,τ) andT ′ = (D′,τ′) over the labeling alphabetΣ,

we say thatT extends T′, written T ′ � T, iff D′ ⊆ D and, for eachu ∈ D′, we have

τ(u) = τ′(u). Observe that the relation� reduces to the prefix-of relations in the word

case. In the sequel, we call the relation� on TREEk(Σ) to be thetree extension relation.

We now define the notion of “subtrees”, which is the tree analogue of the standard

notion of “suffix” of a word. Givenk-ary treesT1 = (D1,τ1) andT2 = (D2,τ2) over the
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T1 T1[T2/u]

u

Figure 2.4: A depiction of the subtree substitution operation. Here the subtree rooted

at u on the left is replaced by the tree T2, which is the subtree rooted at u on the right.

labeling alphabetΣ, we say thatT2 is asubtree of T1 rooted at u∈ D1 if D2 coincides

with {v : uv∈ D} and thatτ2(v) = τ1(uv) for eachv ∈ D2. This also motivates the

substitution operationon subtrees. Givenk-ary treesT1 = (D1,τ1) andT2 = (D2,τ2)

over the labeling alphabetΣ and a nodeu∈D1, we writeT1[T2/u] for the tree obtained

by replacing the subtree ofT1 rooted atu by T2. More precisely, the treeT1[T2/u] is

defined to be the treeT = (D,τ) where

D := (D1\{uv∈D1 : v∈ {0, . . . ,1}∗})∪uD2,

τ(w) :=

{
τ1(w) if w∈ (D1\{uv∈D1 : v∈ {0, . . . ,1}∗}),
τ2(v) if w = uv∈ uD2.

See Figure 2.4 for an illustration. The subtree substitution operation can also be easily

generalized to take into account multiple substitutions. Given k-ary treesT0, . . . ,Tn

and nodesu1, . . . ,un in T0 that are incomparable with respect to the prefix-of relations

over words{1, . . . ,k}∗ (i.e. no ui is an ancestor ofu j for all distinct indicesi, j),

we defineT0[T1/u1, . . . ,Tn/un] to be the tree(. . .(T0[T1/u1]) . . .)[Tn/un] obtained by

applying the subtree substitution operations for multipletimes (the order of which is

of no importance).

The set of allk-ary trees overΣ is denoted by TREEk(Σ). A tree languageover

TREEk(Σ) is simply a subset of TREEk(Σ). Observe that word languages can be

thought of as a subset of TREE1(Σ).

Regular tree languages

To define the notion of regular tree languages, we shall review a standard definition

of tree automata. A(top-down nondeterministic) tree automatonover TREEk(Σ) is a

tupleA = (Σ,Q,δ,Q0,F) where
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Figure 2.5: The tree depicted here is virt (T), where T is the tree from Figure 2.3.

• Q is a finite set ofstates,

• Q0⊆Q is a set ofinitial states,

• F ⊆Q is a set offinal states, and

• δ is atransition relation, i.e., a subset ofQ×Σ×Qk.

Note that the parameterk is implicit from the representation ofA , i.e., it can be deduced

by inspecting the transition relationδ. In the sequel, we denote byStates(A) the set

of states ofA . For our constructions, it will be most conveninent to defineruns on

trees by attaching “virtual” leaves. Given ak-ary treeT = (D,τ), we definevirt (T)

to be thek-ary tree(D′,τ′) over the alphabetΣ′ := Σ∪ {$}, where $/∈ Σ, such that

D′ = D∪{vi : v∈ D,1≤ i ≤ k} and

τ′(u) =

{
τ(u) if u∈ D,

$ otherwise.

See Figure 2.5 for an example. Notice thatvirt (T) is a complete tree. Arun of A

on T then is a mappingρ : D′ → Q such thatρ(ε) ∈ Q0 and, for each nodeu ∈ D′

with childrenu1, . . . ,uk∈ D′, we have(ρ(u1), . . . ,ρ(uk)) ∈ δ(ρ(u),τ(u)). A run is

said to beacceptingif ρ(u) ∈ F for each leafu ∈ D′. A tree T ∈ TREEk(Σ) is said

to beacceptedby A if there exists an accepting run ofA on T. The languageL(A)

recognized byA is the set ofk-ary trees overΣ accepted byA . Such a language is said

to betree-regular. In the sequel, we shall abbreviate nondeterministic tree automata as

NTA.

For the purpose of complexity analysis, we shall now define thesize‖A‖ of an NTA

A = (Σ,Q,δ,q0,F) overk-ary trees. Let‖A‖ be the number of tuples(q,q1, . . . ,qk) ∈
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Qk+1 such that(q,a,q1, . . . ,qk) ∈ δ for somea∈ Σ. As for automata over finite words,

without loss of generality, we may assume that each state inQ occurs inδ at least once.

In this case, the number of bits needed to representA is at most

O(‖A‖×|Σ|×k log(|Q|)× log(|Σ|)),

which is polynomial in both‖A‖ and|Σ|. This justifies our definition of‖A‖.

Remark 2.2.2 Several important remarks are in order. Firstly, there is also a notion

of bottom-up nondeterministic tree automata, which recognize precisely regular tree

languages (cf. [CDG+07]). Furthermore, the translations between these two represen-

tations can be performed in linear time. Secondly, it is useful to keep in mind that,

although we may define thedeterministictree automata with respect to these two fla-

vors of tree automata, only the bottom-up notion gives the full power of regular tree

languages. Since we will not need it in the sequel, we shall avoid further mention

of deterministic tree automata. Finally, we cannot simply assume that we only deal

with NTAs with only one final state (unlike in the case of word automata). More pre-

cisely, the conversion from general NTAs to those with only one final state might cause

an exponential blow-up in the size of the direction alphabet. Incidentally, if we have

“ε-transitions” in our NTAs (which are abundant, among others, in the literature of

ground tree rewrite systems and ground tree transducers [CDG+07, Löd03, Löd06]),

the polynomial-time procedure of removing theseε-transitions naturally yield NTAs

with multiple final states (see below). In contrast, it is possible to assume that an NTA

has only oneinitial state. This is because we can introduce a new initial stateq0 and

add linearly many extra transitions in the standard way. In the sequel, weshall of-

ten assume that NTAs have only one initial state and write(Σ,Q,δ,q0,F) instead of

(Σ,Q,δ,{q0},F). �

Some basic results

Regular tree languages satisfies the same closure properties that are satisfied by reg-

ular word languages, e.g., union, intersection, and complementation. The following

proposition can be proved in the same way as Proposition 2.2.3 (see [CDG+07] for a

proof).

Proposition 2.2.7 Given NTAsA andB overTREEk(Σ):

• we can compute in time O(|Σ|× (‖A‖+‖B‖)) an NTA of size‖A‖+‖B‖ rec-

ognizing the languageL(A)∪L(B),
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• we can compute in time O(|Σ|×‖A‖×‖B‖) an NTA of size‖A‖×‖B‖ recog-

nizing the languageL(A)∩L(B), and

• if |States(A)| = n, we can compute in exponential time an NTA with2n states

recognizing the languageL(A).

Checking language emptiness (and hence membership) for tree automata is also easy,

as in the case of word languages. The proof of the following proposition can be found

in [CDG+07].

Proposition 2.2.8 Checking whether an NTAA = (Σ,Q,δ,Q0,F) over k-ary trees

(where k isnot fixed) recognizes a non-empty language can be done in time O(‖A‖×
|Σ|). Consequently, checking whether a tree T= (D,τ) ∈ TREEk(Σ) is a member of

L(A) is solvable in time O(|D|×‖A‖×|Σ|).

Nondeterministic tree automata with ε-transitions

We shall now introduce an extension of NTAs withε-transitions. This is only done

for the purpose of convenience when describing the NTAs. Roughly speaking,ε-

transitions are transitions of the form(q,q′) for a pair of states of the automaton. Intu-

itively, if we imagine a top-down tree automaton that that runs on a treeT, then at any

given nodeu of T when the the automaton is at stateq it can use the transition(q,q′)

to instantaneouslyswitch to the stateq′ at the same nodeu. More precisely, anε-NTA

A over TREEk(Σ) is a tuple(Σ,Q,δ,Q0,F), whereΣ, Q, Q0, andF are the same as for

NTAs and

• δ is a transition relationcontaining transitions of the form(q,a,q1, . . . ,qk) ∈
Q×Σ×Qk, or of the form(q,q′) ∈Q×Q.

Before defining the languageL(A) accepted by theε-NTA A above, we let⇒ denote

the transitive closure of{(q,q′) ∈ Q×Q : (q,q′) ∈ δ}. Define a new NTA (without

ε-transitions)A ′ := (Σ,Q,δ′,Q0,F ′) as follows:

• δ′ = {(q,a,q1, . . . ,qk) : ∃q′ ∈Q such that(q′,a,q1, . . . ,qk) ∈ δ andq⇒ q′}, and

• F ′ := {q : ∃q′ ∈ F such thatq⇒ q′}.

A treeT is said to beaccepted byA if it is accepted byA ′. ThelanguageL(A) of A is

defined to be the languageL(A ′) of A ′. The following proposition is now immediate.
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Proposition 2.2.9 Given anε-NTAA overTREEk(Σ) with n states, we may construct

an NTAA ′ over TREEk(Σ) of size n×‖A‖ such thatL(A) = L(A ′) in time O(|Σ| ×
n×‖A‖).

Notice that the parameterk, which isnot fixedfor the problem, does not get into the

exponent for the size and the computation time of the NTAA ′. In the sequel, we shall

useε-NTA solely for a descriptional purpose.

2.2.4 Automata over infinite trees

An infinite k-ary treeover the labeling alphabetΣ is a tupleT = (D,τ), whereD =

{1, . . . ,k}∗ and τ is a mapping fromD to Σ. Let TREEω
k (Σ) denote the class of all

infinite k-ary trees overΣ.

Büchi-recognizable infinite-tree languages

In the sequel, we do not need the full power of regular infinitetree languages, which

are usually defined by automata over infinite trees with powerful acceptance conditions

such as Rabin, parity, and Muller [Tho96]. We shall only needautomata over infinite

trees with Büchi accepting condition, which is well-knownto be strictly less powerful

than regular infinite-tree languages (e.g. see [Tho96]) unlike in the case ofω-word

automata.

A (nondeterministic) B̈uchi k-ary tree automaton, abbreviated as NBTA, overΣ is

ak-ary tree automatonA = (Σ,Q,δ,q0,F) that we defined for finite trees, except with

infinite trees as input. Given an infinite-treeT = ({1, . . . ,k}∗,τ), a run of A on T is a

mappingρ : {1, . . . ,k}∗→Q such thatρ(ε) = q0 and, for each nodev∈ {1, . . . ,k}∗, we

have(ρ(v1), . . . ,ρ(vk))∈ δ(ρ(v),τ(v)). The runρ is said to be accepting if, for each in-

finite pathπ = {vi}∞
i=0 in the runρ (viewed as an infinitek-ary tree) starting at the root

ε, there exists infinitely many indicesi such thatρ(vi) ∈ F. In other words, for each

infinite path inρ starting at the root, the Büchi acceptance condition forω-words is sat-

isfied. The languageL(A) recognized byA is the set of allk-ary infinite-trees overΣ
that are accepted byA . Such an infinite-tree language is said to beBüchi-recognizable.

The proof of the following proposition can be found in [VW86b], although it was first

proved in [Rab70] for binary trees.

Proposition 2.2.10Checking whether a given Büchi tree automaton recognizes a non-

empty language can be done in quadratic time.
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2.2.5 Pushdown automata and context-free grammars

We now turn back to languages over finite words. Acontext-free grammar (CFG)G

over the alphabetΣ is a 4-tuple(Σ,V,δ,S0) where

• V is a set ofnon-terminals,

• S0 ∈V is an initial non-terminal,

• δ is the set ofrewrite rules, which is a finite subset ofV× (V×Σ)∗

When discussing context-free grammmars, the elements ofΣ are also often calledter-

minals. Given two sequencesα,β ∈ (V × Σ)∗ of non-terminals and terminals, we

say thatβ can beimmediately derivedfrom α, written α⇒ β, if there exist words

u,v ∈ (V ×Σ)∗ and a rewrite rule(X,w) ∈ δ such thatα = uXv andβ = uwv. Let

⇒∗ denote the transitive-reflexive closure of this immediate derivation relation⇒⊆
(V ×Σ)∗× (V ×Σ)∗. We say thatα can bederivedfrom β if α⇒∗ β. A sequence

v∈ Σ∗ of terminals is said to bederivable byG if S0⇒∗ v. The languageL(G) gen-

erated byG is simply the set of wordsv ∈ Σ∗ that are derivable byG . A language

L ⊆ Σ∗ is said to becontext-freeif some CFGG generatesL . It is well-known that

context-free languages strictly subsume regular languages.

We now define pushdown automata, which are another model withthe same expres-

sive power as context-free grammars. Fix an (input) alphabet Σ and letΣε := Σ∪{ε}.
A pushdown automaton (PDA)P over the input alphabetΣ is a tuple(Σ,Γ,Q,δ,q0,F)

where:

• Γ is a finitestack alphabetcontaining the specialstack-bottom symbol$∈ Γ,

• Q is a finite set ofstates,

• q0 is aninitial state,

• F ⊆Q is a set offinal states, and

• δ is atransition relation, which is a finite subset of(Q×Σε×Γ∪{ε})×(Q×Γ∗).

The PDAP is said to beε-free if δ is a subset of(Q×Σ×Γ)× (Q×Γ∗). A stack

content(with respect toP ) is a wordw∈ Σ∗. The topmost symbol of the stack is on

the right1. A configurationof P is a pair(q,w) of stateq ∈ Q and astack content

1In the literature, stack contents are often written in the reversed way, i.e., topmost symbol on the
left. As we shall see later, this convention is more suitablefor our purposes.
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w. Given two configurations(q,w) and(q′,w′) of P and the symbola∈ Σε, we write

(q,w)→a (q′,w′) if there exists a wordv∈ Γ∗ such that, for some wordsu∈ Γ∪{ε}
andu′ ∈ Γ∗ we havew = vu andw′ = vu′ and that((q,a,u),(q′,u′)) is a transition in

P . Given an input wordv∈ Σ∗, we write(q,w)→v (q′,w′) if there exists a sequence

a1, . . . ,an ∈ Σε of input letters (possibly interleaved with empty words) such thatv =

a1 . . .an and there exists a sequence of configurations(q0,w0), . . . ,(qn,wn) of P such

that(q0,w0) = (q,w), (qn,wn) = (q′,w′), and

(q0,w0)→a1 . . .→an (qn,wn).

We say thatP acceptsthe word v ∈ Σ∗ if, for some final stateqF ∈ F, we have

(q0,$)→v (qF ,$). ThelanguageL(P ) of P is the set of wordsv∈ Σ∗ that are accepted

by P . We say also thatP acceptsL(P ). The following proposition is well-known (e.g.

see [Sip97] for a proof).

Proposition 2.2.11There exists a polynomial-time algorithm, which given a CFGG

overΣ, computes a PDAP overΣ such thatL(G) = L(P ). Conversely, there exists a

polynomial-time algorithm, which given a PDAP overΣ, computes a CFGG overΣ
such thatL(G) = L(P ).

2.2.6 Parikh’s Theorem and semilinear sets

We shall now recall Parikh’s Theorem [Par66] — one of the mostcelebrated theorem in

automata theory — and its connection tosemilinear sets. Roughly speaking, Parikh’s

Theorem states that the sets of letter-counts (a.k.a. Parikh images) of regular languages

and context-free languages precisely coincide with semilinear sets. Let us now make

these more precise.

Let us tacitly assume that our finite input alphabetΣ = {a1, . . . ,ak} has some to-

tal ordering≺, saya1 ≺ . . . ≺ ak. Given a wordw ∈ Σ, we let P (w) be the tuple

(|w|a1, . . . , |w|ak) ∈ N
k. In other words,P (w) is obtained by “forgetting” the ordering

of the wordw, i.e., only count multiplicities of each letter in the alphabetΣ. TheParikh

imageP (L) of the languageL ⊆ Σ∗ is simply the set{P (w) : w∈ L} ⊆N
k. This def-

inition allows us to now talk about the Parikh images of (the languages of) CFGs and

NWAs.

Let us now recall the definition ofsemilinear sets. For every vectorv ∈ Z
k and

every finite setS= {u1, . . . ,um} of vectors inZ
k, we writeP(v;S) to denote theZ-

linear set{v + Σm
i=1aiui : a1, . . . ,am ∈ N}. The pairB := 〈v;S〉 is said to be alinear
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basisfor P(v;S). Notice that there exist non-unique linear bases for aZ-linear set.

The vectorv is said to be theoffsetof B, and the vectorsS theperiods(or generators)

of B. A Z-semilinear setS is simply a finite (possibly empty) union ofZ-linear sets

P(v1;S1), . . . ,P(vs;Ss). In this case, we say thatB = {〈vi ;Si〉}si=1 is asemilinear basis

for P(B) := S. Likewise, semilinear bases forS are not unique. AZ-semilinear set

S⊆ Z
k is said to beN-semilinear(or simply semilinear) if it has a semilinear basis

with vectors fromN
k only. The notion ofN-linear (or simply linear) sets is also

defined similarly. In the sequel, we shallnot distinguish (semi)linear sets and their

bases, when it is clear from the context. Thus, we shall use such a phrase as “compute

a (semi)linear set” to mean that we compute a particular (semi)linear basis for it.

Remark 2.2.3 SinceZ-(semi)linear basesB are simply a sequence of vectors fromZ
k,

we could talk about their size‖B‖ when represented on the tapes of Turing machines.

In particular, we shall use bothunaryandbinary representations of numbers, and be

explicit about this when necessary.�

The connection between Parikh images of CFGs and NWAs and semilinear sets is

given by Parikh’s Theorem, which we shall state next.

Theorem 2.2.12 (Parikh [Par66]) Given a subset S⊆ N
k, the following statements

are equivalent:

(1) S is a semilinear set.

(2) S= P (L(A)) for some NWAA overΣ = {a1, . . . ,ak}.

(3) S= P (L(G)) for some CFG G overΣ = {a1, . . . ,ak}.

Furthermore, the translations among these finite representations of the set S are effec-

tive.

The translations from (1) to (2) is rather obvious, which canbe done in polynomial

time (provided that we represent numbers in unary). There exists a simple polynomial-

time algorithm which, given an NWA, computes an equivalent CFG (e.g. see [Sip97])

yielding a translation from (2) to (3). The non-trivial partis the translation from (3)

to (1), which was given by Parikh [Par66]. We shall mention also that there are other

constructions from (3) to (1) with different flavors and techniques (cf. [Esp97b, Koz97,

SSMH04, VSS05]). All these constructions run in exponential time (in fact, they pro-

duce exponentially many linear sets in the worst case). We shall see in Chapter 7
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that this cannot be improved even for CFGs over the fixed alphabetΣ = {a}. On the

other hand, we shall give a direct translation from (2) to (1)in Chapter 7 that has a

polynomial-time worst case complexity when the size of the alphabet is fixed.

2.3 Computability and complexity theory

In this section, we shall recall briefly some standard concepts from computability and

complexity theory (e.g. see [Koz97, Koz06, Pap94, Sip97] for more details).

2.3.1 Computability

For the sake of completeness, we shall briefly recall the definition of Turing machines.

A nondeterministic Turing machineis a tupleM = (Σ,Γ,Q,δ,q0,qF ,2), where the

following are satisfied:

• Σ is aninput alphabet.

• Γ is astack alphabetsatisfyingΣ∪{2} ⊆ Γ. Here2 is a reservedblank symbol.

• Q is a set ofstates.

• q0 ∈Q is aninitial state.

• qF ∈Q is anaccept state.

• δ : (Q×Γ)× (Q×Γ×{L,R}) a transition function.

The machineM is said to bedeterministicif δ is a function fromQ×Γ to Q×Γ×
{L,R}. In the sequel, a Turing machine is deterministic, unless stated otherwise. The

configuration ofM is simply a word in the languageΓ∗(Q× Γ)Γ∗. The one-step

reachability relation→ between configurations ofM can be defined in the standard

way: ((q,a),(q′,b,d)) ∈ δ is executed iff, whenever the machine is in stateq and

the tape cell currently pointed to by the machine holds the value a, then the machine

rewrites the valuea by b, switches to stateq′, and moves the pointer to the left if

d = L and to the right ifd = R. Without loss of generality, we assume that there is no

transition fromqF . The machine is said to behalting on a wordw if every run ofM

starting from the configuration(q,2)w eventually reaches the stateqF or a dead end.

The machine is said to behalting if it is halting on every input word. For the case when

there exists a run ofM that reachesqF on an input wordw, we say thatM acceptsthe
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word w. Otherwise, it rejectsw. The languageL(M ) acceptedby M consists of all

wordsw∈ Σ∗ which are accepted byM .

A languageL is said to berecursively enumerable (r.e.)if it is accepted by a Turing

machine. It is said to beco-recursive-enumerable (resp. co-r.e.)if its complement is

accepted by a Turing machine. It is said to berecursive(or decidable) if it is accepted

by a halting Turing machineM . In this case, we also say thatL is decidedby M .

Let Σ0
1 (resp.Π0

1) denote the class of r.e. (co-r.e.) languages. Let∆0
1 denote the class

of decidable languages. For anyC of these sets, a languageL is said to beC -hard

if for each languageL ′ ∈ C there exists a halting Turing machineM which given an

input wordw outputs another wordM (w) such thatw ∈ L iff M (w) ∈ L . Such a

Turing machine is also said to be a(many-one) reduction. The languageL is said to

beC -complete if it is inC and isC -hard.

It is well-known thatΣ0
1∩Π0

1 = ∆0
1, but Σ0

1 6= Π0
1. These sets can be generalized

in a natural way to form anarithmetic hierarchy(cf. [Koz06]). There are languages

that are beyond this hierarchy. In the sequel, we shall briefly see languages that are

Σ1
1-complete. In recursion theory,Σ1

1 can be understood as the class of all relations

R⊆N
n that can be defined by a formula of the form

∃ f ϕ(x1, . . . ,xn, f ),

where f ranges over number-theoretic functions (i.e. domains and co-domains areN)

and ϕ is a first-order formula in number theory (i.e. quantification over numbers).

Σ1
1-complete languages are also often said to behighly undecidable.

Remark 2.3.1 As often done in computability theory, the term “languages”will hence-

forth be synonymously identified with “problems”.

2.3.2 Complexity theory

In computational complexity, we restrict ourselves to decidable languages and try to

classify difficulty of these languages by restricting resources such as time, space, and

nondeterminism. Given a halting Turing machineM and an input wordw, we can

measure the time (or the number of steps) or space that are required to reach a halt. The

time (resp. space) complexity of a Turing machine is then defined to be the function

f : N→ N such that for everyn ∈ N the maximum amount of time (resp. space)

required byM before it terminates on an input word of lengthn is f (n).
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Let us now recall some standard complexity classes. For a function f : N→ N,

we defineDTIME( f (n)) (resp. NTIME( f (n))) to be the class of problems solvable

by a deterministic (resp. nondeterministic) Turing machine that runs in timeO( f (n)).

Similarly, we defineSPACE( f (n)) to be the class of problems that are solvable by a

Turing machine that usesO( f (n)) space. Let us define the class expk of functions

for everyk ∈ N by induction. Let exp0 be the class of all polynomial functions. By

induction, the class expk (k > 0) contains all functions of the form 2O( f (n)), where f

is a function in expk−1. By convention, exp stands for exp1. We may now define the

following standard complexity classes:

• P is the class of problems solvable in polynomial-time.

• PSPACE is the class of problems solvable in polynomial space.

• NP is the class of problems solvable by nondeterministic polynomial-time Tur-

ing machines.

• NPSPACE is the class of problems solvable by nonterministic polynomial-space

Turing machines.

• k-EXP is the class of problems that are solvable in time expk.

• EXP is the class 1-EXP.

The following containtments are standard:

P⊆ NP⊆ PSPACE = NSPACE ⊆ EXP⊂ 2-EXP⊂ . . .

Here, set containments of the form⊆ are not known to be strict. Each of these com-

plexity classes have complete problems under many-one reductions that run in poly-

nomial time. A decidable problem is said to beelementaryif it is in k-EXP for some

k∈N. Otherwise, it is said to benonelementary.

For a complexity classC , we write coC for the set of problems whose complements

are solvable inC . For example,coNP is the set of problems whose complements are

in NP. While the classesP, PSPACE, and k-EXP closed under complements, it is not

known whetherNP = coNP.

We now define polynomial hierarchy. Let

∆p
0 = Σp

0 = Πp
0 = P.
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For eachk > 0, let

∆p
k = P

Σp
k−1,

Σp
k = NP

Σp
k−1,

Πp
k = coNP

Σp
k−1.

Here, the notationPΣp
k−1 refers to the class of problems solvable by a polynomial-time

machine that can make calls to an oracle solving a problem inΣp
k−1. Oracles are viewed

as blackboxes and so their computation time is measured as a constant. The notations

NP
Σp

k−1 andcoNP
Σp

k−1 can also be defined in a similar way. Each of these classes are

known to have complete problems. LetPH be the union of allΣp
k (k∈N). It is known

thatPH⊆PSPACE. In Chapter 8, we will see the complexity classesPNP andPNP[log].

The former is simply the class∆p
2, while the latter is the class of problems solvable by

polynomial-time Turing machines that can only make logarithmically many calls toNP

oracles. Clearly, we havePNP[log] ⊆ PNP. The classPNP[log] is also known to contain

NP, coNP, and even the entireboolean hierarchy. We shall only mention the first level

of boolean hierarchy, which is the classDP containing problems of the form

{〈v,w〉 : v∈ L ,w∈ L ′}.

for someNP languageL andcoNP languageL ′.

We shall now briefly recall the notion of alternating Turing machines (see [Koz06,

Sip97] for more details). Alternating Turing machines can be viewed as generalizations

of nondeterministic Turing machines with universal states. More precisely, each state

of a Turing machineM is declared either existential or universal. To accept from

a configurationc = v(q,a)w of M whereq is existential, some runs ofM from c

will have to result in an accept. On the other hand, to accept from a configuration

c = v(q,a)w of M whereq is universal,all runs ofM from c will have to result in an

accept. As before, we can define the amount of time/space usedby the algorithm on

an input wordw and define the time/space used by the algorithm in terms of itsworse-

case complexity. We writeATIME( f (n)) (resp.ASPACE( f (n))) to denote the class of

problems solvable by an alternating Turing machine in time (resp. space)O( f (n)). In

the sequel, we will meet the complexity classes:

• AP = ATIME(exp0(n)).

• ALOG = ASPACE(log(n)).
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• APSPACE = ASPACE(exp0(n)).

It is known thatAP = PSPACE, ALOG = P, andAPSPACE = EXP. Furthermore,

poly-time alternating Turing machines with a fixed number ofalternations (between

existential states and universal states) in all their possible runs accept only languages

in PH.

Finally, following [Koz06], we define the notation

STA( f1(n), f2(n), f3(n))

to denote the class of problems solvable in spacef1(n), in time f2(n) and with f3(n)

alternations. We also write∗ to denote unbounded. For example, we have the follow-

ing:

• STA(exp0(n),∗,∗) = PSPACE,

• STA(∗,exp0(n),∗) = P, and

• STA(∗,exp0(n),exp0(n)) = AP.

2.4 Structures and transition systems

In this section, we recall the standard definitions of (logical) structures and transition

systems. For a more thorough treatment, the reader may consult the following refer-

ences [BBF+01, BdRV01, CGP99, Lib04, Sti01, Tho96, vD08].

A vocabularyis a finite setσ = {a1, . . . ,an} of (relation) namestogether with a

functionAR : σ→ Z>0 mapping each relation name to a positive integer representing

its arity. A σ-structureS is a tuple〈S,{Ra}a∈σ〉 whereS is some set (a.k.a.universe

or domain) andRa⊆ SAR(ai) is anAR(ai)-ary relation onS.

Example 2.4.1 We now consider several important structures that have played sig-

nificant roles in logic, automata, and verification. The firststructure is naturals with

addition〈N,+〉. The addition relation+ is interpreted as a 3-ary relation consisting

of tuples(n,m,k) ∈ N
3 such thatk is the sum ofn andm. The second structure is

nonnegative integers with linear order〈N,<〉, where the binary relation< consists of

pairs(n,m) ∈ N
2 such thatn is smaller thanm. The third structure is naturals with

successor〈N,succ〉, where the 2-ary relationsucc consists of pairs(n,m) ∈ N
2 with

m= n+1. Another important structure is〈{0,1}∗,succ0,succ1〉, where the binary re-

lation succi (i = 0,1) contains pairs of words of the form(v,vi) with v∈ {0,1}∗. The
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structure〈{0,1}∗,succ0,succ1〉 can be naturally interpreted as the infinite complete

binary tree with the rootε. We could also equip this structure with the transitive clo-

sure� of succ0∪succ1 yielding the structure〈{0,1}∗,succ0,succ1,�〉. Observe that,

when〈{0,1}∗,succ0,succ1〉 is viewed as the infinite binary tree, the relation� can be

interpreted as the descendant relation between nodes in thetree.♣

In the sequel, we shall mostly deal withtransition systems, which are defined as

structures over vocabularyσ with only names of arity two. Therefore, transition sys-

tems are simply edge-labeled directed graphs. In the sequel, we shall often use the

notation→a instead ofRa to denote the binary edge relation with namea, and write

s→a s′ instead of(s,s′) ∈→a. Since we mostly use transition systems to model the

evolution (or behavior) of some dynamic objects, the elements in the universeS of

a transition systemS = 〈S,{→a}a∈σ〉 are calledconfigurations2. The edge relation

→a will be called thetransition relationlabeleda, while the edges in→a are called

a-labeledtransitions. In this case, each name inσ is also said to be anaction label.

Hence, we will also use the notationACT to denote the vocabularyσ and callACT an

action alphabet.

Example 2.4.2 Some examples of transition systems include the structures〈N,succ〉,
〈N,<〉, 〈{0,1}∗,succ0,succ1〉, and〈{0,1}∗,succ0,succ1,�〉 which we defined in Ex-

amples 2.4.1. Also, each NWAA over Σ (omitting initial and final states) can be

easily construed as transition systems over the action alphabet Σ. Another exam-

ple of transition systems are those which are generated by a pushdown automaton

P = (Σ,Γ,Q,δ,q0,F), i.e., containing configurations ofP as vertices, and transition

relations→a for eacha ∈ Σε. For more details of transition systems generated by

pushdown automata, see Chapter 3.♣

2.5 Logics and properties

In this section, we shall review the definitions of the logicsand verification properties

that we will consider in the sequel. For a more detailed treatment, the reader is referred

to [BBF+01, BdRV01, CGP99, Lib04, Sti01, Tho96, vD08].

2they are often calledstatesin the literature of modal logic, but we have reserved this term for
automata
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2.5.1 Safety, liveness, and fairness

We shall now define safety, liveness, and fairness properties, which are probably the

most important properties in verification. Each of these is actually aclassof proper-

ties, instead of a single property. Such properties are often treated informally in the

literature since they are often definable in some temporal logics or in terms of some

other properties including reachability and recurrent reachability (see subsequent sub-

sections). We shall now recall the informal definitions of safety, liveness, and fairness

properties. See [BBF+01, Chapters 6–11] for a more thorough treatment.

Two most commonly considered properties in verification aresafety(under some

conditions, no “bad” configurations are ever reachable) andliveness(under some con-

ditions, some “good” configurations are eventually reachable). For example, the prop-

erty that “the system never reaches a configuration where twoprocesses are in a crit-

ical region” is an important safety property for mutual exclusion protocols, while the

property that “every philosopher who requests noodle will eventually get it” is a live-

ness property that is often considered for protocols for dining philosopher problems

[BA06, Lyn96]. To prove or disprove a safety property, it suffices to consider only

finite executions of the systems since a violation of the property can be witnessed by a

finite path that takes the system from an initial configuration to a bad configuration. On

the other hand, this is not the case with liveness properties. To prove or disprove a live-

ness property, we need to take into account (potentially infinite) maximalexecutions

of the systems.

Fairnessis another important property in verification. Roughly speaking, it states

that under certain conditions some events must occur infinitely often. One important

use of fairness property is that liveness property in a system can often be reduced

to a fairness property in a modified system via an automata-theoretic technique (see

below). Another use of fairness property is as ahypothesisof a liveness property.

Liveness property is often easily violated unless some fairness hypothesis is imposed.

For example, for a dining philosopher protocol withn philosophers, an “unfair” path

in the system could simply ignore a philosopher’s request indefinitely and therefore

resulting in a violation of a desired liveness property. Onecommon fairness hypothesis

in the setting of distributed protocols is that if a resourceis requested infinitely, it must

be infinitely often granted.
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2.5.2 Reachability and recurrent reachability

Safety, liveness, and fairness are often best expressed in terms of reachability and

recurrent reachability. We shall now define these concepts.Given a transition system

S= 〈S,{→a}a∈ACT〉 and a subsetACT′⊆ACT, we write→ACT′ to denote the relation(
S

a∈ACT′ →a

)
and→ to denote the relation→ACT. As usual, for a binary relation

R⊆ S×S, we writeR+ (resp.R∗) for the transitive (resp. transitive-reflexive) closure

of R. Given s, t ∈ S, we say thats can reach t in S (or t is reachablefrom s) if it

is the case thats→∗ t. In the sequel, thereachability relationfor the systemS is

the relation→∗, while its one-step reachability relationis the relation→. We shall

also call→+ thestrict reachability relationfor the systemS. It is also convenient to

refer to the preimages and postimages of a relation. To this end, given a setS′ ⊆ Sof

configurations and a relationR⊆ S×S, we write

pre(S′)[R] := {v∈ S: ∃w∈ S′((v,w) ∈R)},
post(S′)[R] := {v∈ S: ∃w∈ S′((w,v) ∈R)}.

Given a transition systemS = 〈S,{→a}a∈ACT〉 and a subsetS′ ⊆ S, we now define

the following sets:

pre(S′) := pre(S′)[→],

post(S′) := post(S′)[→],

pre∗(S′) := pre(S′)[→∗],
post∗(S′) := post(S′)[→∗],
pre+(S′) := pre(S′)[→+],

post+(S′) := post(S′)[→+].

We now move to recurrent reachability. Given a setS, a subsetS′⊆S, and a relation

R⊆ S×S, we denote byRec(S′)[R] the set of all elementss0 ∈ Sfor which there exists

an infinite sequence{si}i∈Z≥1 such that:

• si ∈ S′ for all i ∈ Z≥1, and

• (sj ,si) ∈ R for all pairs of distinct integers satisfying 0≤ j < i.

See Figure 2.6 for an illustration of an infinite sequence witnessings0 ∈ Rec(S′)[R].

Given a transition systemS = 〈S,{→a}a∈ACT〉 and a subsetS′ ⊆ S, we use the nota-
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· · · · · · · · ·
s0 s1 s2

Figure 2.6: An illustration of an infinite sequence witnessing s0∈Rec(S′)[R]. The edges

are from the relation R, while each configuration si (with i > 0) must belong to S′. The

configurations in this sequence are not necessarily all different.

tion Rec(S′) to denoteRec(S′)[→+]. In this case, by transitivity of→+ we haves0∈S′

iff there exists an infinite sequence{si}i∈Z≥1 such thatsi ∈ S′ andsi−1→+ si for all

i ∈ Z≥1. In other words, the setRec(S′) is the set of configurations inS′ from which

there exists an infinite path visitingS′ infinitely often.

2.5.3 FO: First-order logic

We assume basic knowledge of mathematical logic (cf. [Lib04, vD08]). We shall only

briefly recall some basic definitions and results on first-order logic.

Syntax and semantics

Let VAR be a countable set of (first-order) variables. In the sequel,we shall usexi ,yi ,zi

for variables withi ∈ N. The syntax of first-order formulas over the vocabularyσ can

be defined inductively as follows: (i)x = y is an atomic formula for not necessarily

distinct variablesx andy (ii) if a∈ σ andx1, . . . ,xn are (not necessarily distinct) vari-

ables, wheren = AR(a), thenRa(x1, . . . ,xn) is an (atomic) formula, (iii) ifϕ andψ are

formulas, then so are their conjunctionϕ∧ψ, their disjunctionϕ∨ψ, and the negation

¬ϕ, and (iv) if ϕ is a formula, then so are∃xϕ and∀xϕ. Notice that we allow the

standard built-in equality relation ‘=’. The formulaϕ is said to beexistential positive

if it is of the form∃x1, . . . ,xnψ, whereψ is quantifier-free, i.e., a boolean combinations

of atomic formulas. Thefree variablesfree(ϕ) of a first-order formulaϕ are also built

inductively: (i) free(x = y) = {x,y} (ii) free(Ra(x1, . . . ,xAR(a)) = {x1, . . . ,xAR(a)},
(iii) free(ϕ∨ψ) = free(ϕ∧ψ) = free(ϕ)∪ free(ψ), (iv) free(¬ϕ) = free(ϕ), and (iv)

free(∃xϕ) = free(∀xϕ) = free(ϕ)\{x}. If ϕ is a formula with free variablesx1, . . . ,xn,

then we writeϕ(x1, . . . ,xn) to emphasize which free variables the formulaϕ has. A

first-ordersentenceis simply a first-order formulaϕ with free(ϕ) = /0.
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Fix a σ-structureS = 〈S,{Ra}a∈σ〉. A S-valuationν is a function mapping the

setVAR of variables to elements ofS. WheneverS is clear from the context, we shall

simply sayvaluation. If ϕ is a formula overσ, we may define the notion oftruth of ϕ
in S with respect toν in the standard way (cf. [Lib04, vD08]). Ifϕ is true inS with

respect toν, then we also say thatS satisfiesϕ with respect toν and writeS |= ϕ[ν].

A standard proposition in mathematical logic is that the truth of ϕ(x1, . . . ,xn) in S

only depends on the values of the valuationν on the free variablesx1, . . . ,xn of ϕ:

S |= ϕ[ν] iff, for every valuationν′ that agrees withϕ on x1, . . . ,xn, it is the case

thatS |= ϕ[ν′]. For this reason, we shall often simply writeS |= ϕ(ν(x1), . . . ,ν(xn))

wheneverS |= ϕ[ν] for some valuationν.

For two formulasϕ(x1, . . . ,xn) andψ(x1, . . . ,xn) over the vocabularyσ with the

same free variables, we say thatϕ andψ are(logically) equivalent, written ϕ ≡ ψ, if

for everyσ-structureS and valuationν it is the case thatS |= ϕ[ν] iff S |= ψ[ν]. The

following are several basic results on equivalence of first-order formulas: (i)¬¬ϕ≡ ϕ,

(ii) ϕ∧ψ≡¬(¬ϕ∨¬ψ), (iii) ϕ∨ψ≡¬(¬ϕ∧¬ψ), (iv) ∃xϕ≡¬∀x¬ϕ, and (v)∀xϕ≡
¬∃x¬ϕ. Therefore, we will sometimes assume that first-order formulas use only the

operators{∨,¬,∃}. Similarly, by pushing all the negations inside as much as possible,

we may assume that the only occurences of negations in first-order formulas are on the

atomic level. For other standard equivalences, the reader is referred to [vD08].

Quantifier rank and alternation rank

The quantifier rankqr(ϕ) of a first-order formulaϕ is defined to be the maximum

quantifier nesting depth insideϕ. More formally, this notion can be defined induc-

tively: (i) qr(Ra(x1, . . . ,xAR(a))) = qr(x= y) := 0, (ii) qr(ϕ∨ψ) := max(qr(ϕ),qr(ψ)),

(iii) qr(¬ϕ) := qr(ϕ), and (iv)qr(∃xϕ) := qr(ϕ)+1.

Given a formulaϕ, let us push all the negations inϕ to the atomic level. Thealter-

nation rankAL(ϕ) of a formulaϕ is defined to be the maximum number of alternations

of operators in{∀,∧} and operators in{∃,∨} over all paths from the root to the leaves

in the parse tree ofϕ.

First-order queries

The somewhat non-standard notion of first-order queries that we shall next define is

motivated by the standard notion of conjunctive queries in database theory literature
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(cf. [AHV95]). A first-order k-ary queryover the vocabularyσ is of the form

υ(x1, . . . ,xk)← ϕ(y1, . . . ,yr)

whereϕ is a formula overσ, y1, . . . ,yr are distinct variables, andx1, . . . ,xk are not

necessarily distinct variables. Given aσ-structureS, we define theimageof S under

υ to be the set

[[υ]]S := {(ν(x1), . . . ,ν(xk)) : ν is aS-valuation s.t.S |= ϕ[ν]}.

We shall callυ(x1, . . . ,xk) the headof the queryυ, while ϕ(y1, . . . ,yr) is called the

bodyof the queryυ. Without loss of generality, since first-order formulas areclosed

under existential quantification, we may assume that the variablesy1, . . . ,yr in the body

of υ are among variablesx1, . . . ,xk in the head of the query.

Albeit it is the case that first-order queries can be crudely dealt with using only

first-order formulas, there are two main reasons for using the notion of first-order

queries. Firstly, the definition of first-order queries enforces anexplicit ordering of

the arguments in the inducedk-ary relations, which is important when using automata

to recognize relations (e.g. see Proposition 3.1.1). Secondly, unlike first-order for-

mulas, the arity of the relations defined by first-order queries need not coincide with

the number of free variables in their bodies. More importantly, we shall see later that

first-order queries provide a cleaner notation for proofs.

FO
k: restriction of FO to k variables

In the literature of model theory (e.g. see [Lib04]), it is common to restrict the expres-

sive power ofFO by enforcing onlyk variables in the formulas, for a fixedk∈ Z≥1. In

the sequel, we useFO
k to denote thek-variable first-order logic containing the set of

all first-order formulas which only use at mostk variables.

First-order logic with two or three variables are often already sufficiently powerful.

One well-known example is the equivalence betweenFO
3 over finite words and star-

free regular expressions due to McNaughton and Papert [MP71]. We shall now make

this statement more precise only over the alphabet{0,1}, although it generalizes to

any alphabet. A finite wordw = a1 . . .an over the alphabet{0,1} can be thought of as

a finite structureS = 〈S,<,U〉, where

• S= {1, . . . ,n},

• < is the standard transitive binary ordering relation over{1, . . . ,n}, and
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• U = {i ∈ S: ai = 1} is a unary relation.

For example, the word 011 corresponds to the structure〈{1,2,3},<,U〉, where< is

the standard less-than relation over{1,2,3} andU = {2,3}. The reverse interpretation

can similarly be done. Therefore, given a first-order sentence ϕ over the vocabulary

consisting of a binary relation name< and a unary relation nameU , we may define

L(ϕ) to be the class of finite wordsw over {0,1} such thatw |= ϕ. We say that

a languageL ⊆ {0,1}∗ is definablein FO (resp.FO
k) if there exists a formula inFO

(resp.FO
k) such thatL(ϕ) = L . McNaughton and Papert [MP71] proved that a regular

language is star-free iff it is definable inFO. Other proofs for this result can also be

found in [Lib04, Tho96]. In fact, it is folklore thatFO
3 suffices and the translation to

FO
3 from star-free regular expressions takes polynomial-time(e.g. see [EVW02] for a

sketch).

Proposition 2.5.1 (McNaughton and Papert [MP71])A language is star-free regu-

lar iff it is definable inFO
3. Furthermore, the translation from star-free regular ex-

pressions toFO
3 sentences can be performed in polynomial time.

Many results in the literature show that a large number of modal and temporal log-

ics can be embedded in first-order logic with two or three variables possibly extended

with the transitive closure operators (cf. [BdRV01, EVW02,IK89, Kam68, Lib04]).

We shall mention some of these results below.

2.5.4 FOREG(Reach): FO with regular reachability

As we saw earlier, most properties in verification are related to the reachability prop-

erty in some way. Therefore, a minimum criterion for a suitable logic in verification is

that it needs to be able to express reachability. It is a well-known fact in model theory

that first-order logic is not powerful enough to express reachability (cf. [Lib04]) over

graphs. One way to overcome this limitation is to extend the logic with a reachability

operator. We shall now define the logicFOREG(Reach) that extendsFO with “regular”

reachability operators, and its subclassFO(Reach) which extendsFO with the sim-

plest reachability operators. These logics are natural andcommonly considered in the

context of verification (e.g. see [Col02, DT90, Löd03, LS05b, WT07]).

Given a finite setACT of action labels,FOREG(Reach) are built from atomic for-

mulas of the formx= y, x→a y (a∈ ACT) andReachA(x,y) for an NWAA overACT,

which we then close under boolean combinations and first-order quantifications using
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the standard rules for first-order logic. The semantics forFO(Reach) are defined with

respect to transition systems. They can be defined in the sameway as forFO, except

for formulas of the formReachA(x,y), which can be defined as follows: given a transi-

tion systemS overACT and aS-valuationν, we define thatS |= ReachA(ν(x),ν(y))

iff there exists a path

s0→a1 . . .→an sn

in S such thats0 = ν(x), sn = ν(y), and a1 . . .an ∈ L(A). In other words,S |=
ReachA(ν(x),ν(y)) iff the configurationν(x) can reachν(y) via a sequence of actions

that are permitted by the NWAA .

We define the logicFO(Reach) to be the sublogic ofFOREG(Reach) where we

only permit atomic formulas of the formReachA(x,y), whereL(A) = Γ∗ for some

Γ ⊆ ACT. In the sequel, we shall use the shorthandReachΓ(x,y) to refer to such an

atomic formula, and the shorthandReach(x,y) to denoteReachACT(x,y). The logic

FOREG(Reach) is probably the weakest extension ofFO that can express reachability

in a meaningful way.

The notion of quantifier rank can be easily extended toFOREG(Reach) from FO

by interpretingqr(ReachA(x,y)) := 0. The same goes with the notion of alternation

rank. As before, we useFO
k
REG(Reach) (resp.FO

k(Reach)) to denote the restrictions

of FOREG(Reach) (resp.FO(Reach)) to formulas with at mostk variables.

2.5.5 HM-logic: Hennessy-Milner Logic

It is well-known that many properties in verification cannotdistinguish bisimulation-

invariant properties. Due to its intimate connection with the notion of bisimulation,

Hennessy-Milner logic3 plays an important role in verification. We shall now briefly

recall the definition of Hennessy-Milner logic, the notion of bisimulations, and several

basic results that are relevant to this thesis; for a more thorough treatment, the reader is

referred to [BdRV01, Lib04, Sti01].Hennessy-Milner logic (HM-logic)over the action

alphabetACT is defined by the following grammar:

ϕ,ψ :=⊤ | ¬ϕ | ϕ∨ψ | 〈ACT′〉ϕ (ACT′ ⊆ ACT).

If a∈ ACT, then we write〈a〉ϕ to denote〈{a}〉ϕ. We also use the usual abbreviations

⊥ := ¬⊤, ϕ∧ψ := ¬(¬ϕ∨¬ψ), and[ACT′]ϕ := ¬〈ACT′〉¬ϕ. The semantics[[ϕ]]S

3Hennessy-Milner logic (modulo minor syntactic issues) is justmodal logic, which was much earlier
introduced in philosophy (cf. [BdRV01]).
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of an HM-logic formulaϕ with respect to a transition systemS = 〈S,{→a}a∈ACT〉 is

simply a subset ofSdefined inductively as follows:

• [[⊤]]S := S,

• [[¬ϕ]]S := S\ [[ϕ]]S,

• [[ϕ∨ψ]]S := [[ϕ]]S∪ [[ψ]]S, and

• [[〈ACT′〉ϕ]]S := {s∈ S: ∃s′ ∈ S(s→ACT′ s
′ ands′ ∈ [[ϕ]]S)}.

Given a configurations∈ S, we also writeS,s |= ϕ iff s∈ [[ϕ]]S. The problem of

model checking HM-logicis defined as follows: given a systemS = 〈S,{→a}a∈ACT〉,
a configurations∈ S, and an HM-logic formulaϕ overACT, decide whetherS,s |= ϕ.

Standard translation to FO
2

It is well-known that HM-logic formulas can be thought of as first-order formulas with

two variables. More precisely, for every HM-logic formulaϕ over ACT, there exists

an FO formulaϕ′(x) over ACT with one free variable such that, for every transition

systemS = 〈S,{→a}a∈ACT〉 ands∈ S, it is the case that

S,s |= ϕ ⇔ S |= ϕ′(s).

Furthermore, there exists an algorithm that performs this translation in linear time (cf.

[BdRV01, Lib04]).

2.5.6 EFREG-logic: HM-logic with regular reachability

HM-logic is not capable of expressing reachability. For this reason, we introduce

EFREG-logic, which is HM-logic with a regular reachability operator, and its syntac-

tic restrictionEF-logic, which is HM-logic with a simple reachability operator. More

precisely, the syntax ofEFREG-logic over the action alphabetACT is the extension of

the syntax of HM-logic overACT with the following rule:

• if A is an NWA overACT andϕ anEFREG-logic formula overACT, thenEFA ϕ
is anEFREG-logic formula overACT.

The semantics of formula of the formEFA ϕ is defined as follows:
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• for a transition systemS = 〈S,{→a}a∈ACT〉 ands0 ∈ S, we haveS,s0 |= EFA ϕ
iff there exists a path

s0→a1 . . .→an sn

in S such thata1 . . .an ∈ L(A) andsn ∈ [[ϕ]]S.

We then define[[EFA ϕ]]S to be the set of configurationss0∈Ssuch thatS,s0 |= EFAϕ.

We defineEF-logic to be the restriction ofEFREG-logic which allows only reachability

operators of the formEFA , whereL(A) = Γ∗ for someΓ ⊆ ACT. In the sequel, we

shall use the shorthandEFΓ to refer to such a reachability operator, and the shorthand

EF to denoteEFACT.

Remark 2.5.1 In the verification literature,EF-logic is often defined in such a way that

only the reachability operatorEF is allowed (e.g. see [BEM97, LS02, May98, Wal00]).

However, it is known that permitting the more general operator EFΓ does not change

the complexity of model checking problems in most cases. Forthis reason, we shall

adopt the more general definition.�

We saw earlier that HM-logic can be naturally thought of as a fragmentFO
2. In

the same manner,EFREG-logic can be thought of as a fragment ofFO
2
REG(Reach) and

EF-logic a fragment ofFO
2(Reach). Furthermore, the same linear-time translation can

be used in this case.

2.5.7 CTL: Computation Tree logic

CTL is one of the most common branching-time temporal logicsthat are considered in

the context of verification (cf. [BBF+01, CGP99, Lib04, Sti01]). Loosely speaking, it

is an extension ofEF-logic with powerful “constraints on the way”. To be more precise,

let us define the syntax and semantics of CTL. The syntax of thelogic CTL over the

action alphabetACT is the extension of the syntax ofEF-logic with the following two

rules:

• if ϕ andψ are CTL formulas overACT, thenE(ϕ U ψ) is also a CTL formula

• if ϕ is a CTL formula overACT, then so isEGϕ.

The semantics of these types of formulas are defined with respect to a transition system

S = 〈S,{→a}a∈ACT〉 and a configurations0 ∈ Sas follows:
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• S,s0 |= E(ϕ U ψ) iff there exists a path

s0→ . . .→ sn

such thatS,sn |= ψ and, for eachi = 0, . . . ,n−1, we haveS,si |= ϕ.

• S,s0 |= EG(ϕ) iff there exists a (finite or infinite) maximal paths0→ s1→ . . .

such thatS,si |= ϕ, for eachi ∈ N.

As before, we use[[ϕ]]S to denote the set of configurationss∈ Ssuch thatS,s |= ϕ.

Theproblem of CTL model checkingcan be defined as follows: given a finite sys-

tem S = 〈S,{→a}a∈ACT〉, a configurations∈ S, and a CTL formulaϕ over ACT,

decide whetherS,s |= ϕ. It is well-known (cf. [CGP99]) that model checking CTL

over finite systems can be done in polynomial time. This definition can also be easily

extended to finitely representable infinite-state systems by permitting finite represen-

tations ofS ands to be the input.

2.5.8 LTL: Linear Temporal Logic

Linear Temporal Logic (LTL) is one of the most standard and natural temporal logics

considered in the context of verification. It has been arguedthat the logic is more

intuitive than branching-time temporal logics like CTL (cf. [Var01]). We shall now

recall the definition of LTL and review some of its most important results. See [Var95,

Wol00] for a more thorough treatment.

The syntax of LTL overACT is defined as follows:

ϕ,ϕ′ := a (a∈ ACT) | ¬ϕ | ϕ∨ϕ′ | ϕ∧ϕ′ | Xϕ | ϕUϕ′.

We shall use the standard abbreviations:Fϕ for trueUϕ, Gϕ for ¬F¬ϕ, andFs andGs

for their strict versions:Fsϕ = XFϕ andGsϕ = ¬Fs¬ϕ. The semantics of LTL over

ACT is given byω-word languages overACT:

• [[a]] = {v∈ ACTω : v(1) = a},

• [[¬ϕ]] = ACTω− [[ϕ]],

• [[ϕ∨ϕ′]] = [[ϕ]]∪ [[ϕ′]],

• [[ϕ∧ϕ′]] = [[ϕ]]∩ [[ϕ′]],

• [[Xϕ]] = {v∈ ACTω : v[1,∞) ∈ [[ϕ]]}, and
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• [[ϕUϕ′]] = {v∈ ACTω : ∃ j ≥ 0∀i < j(v[i,∞) ∈ [[ϕ]]∧v[ j,∞) ∈ [[ϕ′]])}.

Given anω-wordv∈ACTω and an LTL formulaϕ overACT, we writev |= ϕ iff v∈ [[ϕ]].

We shall now recall a seminal result by Vardi and Wolper [VW86a].

Proposition 2.5.2 (Vardi-Wolper [VW86a]) Given an LTL formulaϕ over ACT, we

can compute an NBWAAϕ of size2O(‖ϕ‖) such thatL(Aϕ) = [[ϕ]] in time2O(‖ϕ‖).

Given a transition systemS = 〈S,{→a}a∈ACT〉 and a wordv = a1a2 . . . ∈ ACTω, we

say thats0 ∈ S realizes vif there is an infinite path

s0→a1 s1→a2 s2→a3 . . .

in S. We define the semantics of LTL over transition systems in thestandard way:

(S,v) |= ϕ iff every ω-wordv∈ ACTω realized byv satisfiesϕ. We write[[ϕ]]∀S for the

set of allv∈Ssuch that(S,v) |= ϕ. Here, the symbol∀ is used to signify the universal

semantics that is adopted in the definition (i.e.everypath starting inv satisfiesϕ).

Dually, we will write [[ϕ]]∃S for the complement of the set[[¬ϕ]]∀S, i.e., for the set of

v∈ S from whichthere existsa path that satisfiesϕ.

Theproblem of LTL model checkingcan be defined as follows: given a finite system

S = 〈S,{→a}a∈ACT〉, a configurations∈ S, and an LTL formula, decide whether

S,s |= ϕ. This definition can be easily extended to finitely representable infinite-state

systems by allowing a finite representation ofS ands as the inputs. In the case of

finite systems, the problem is known to bePSPACE-complete, which can be shown

using a model-theoretic technique [SC85] or an automata-theoretic technique (i.e. a

more refined version of Proposition 2.5.2) [Var95, VW86a, Wol00]. See the survey

[Sch02] for a more thorough discussion.

2.5.9 Other logics

There are of course other logics that are common in verification. We shall mention a

few others, but not give a precise definition since we will notencounter them in the

sequel. Among others, we mention:

• Monadic second-order logic (MSO). This is simply first-order logic extended

with quantification over sets of elements (see [Lib04, Tho96, Tho03] for a def-

inition). This logic is perhaps the most expressive logic inverification, i.e., it

subsumes virtually all logics that are considered in verification.
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• µ-calculus. This is simply modal logic extended with least fixed point opera-

tors (see [Sti01, Lib04] for a definition). This logic is subsumed inMSO, but

subsumes most logics that are invariant under bisimulation.

• Propositional dynamic logic (PDL). This is simply modal logic extended with

recursion and other modalities (see [BdRV01] for a definition). There are a num-

ber of variations of this logic with different expressive power, but the most basic

PDL is subsumed inµ-calculus.

2.5.10 Model checking complexity

When we deal with the problem of model checking with respect to a certain logicL,

there are usually several parameters that are considered aspart of the problems. The

two most important ones are: (1) structures, and (2) formulas.

Let us first clarify how we measure the size of structures and formulas. In this the-

sis, when structures are part of the model checking problems, they always take shape

of transition systems, i.e., edge-labeled directed graphs. In the case of finite systems,

we may measure them in the standard way we measure the size of graphs. When they

are implicitly (or symbolically) represented (e.g. when the systems are infinite), we

will simply use the size of these symbolic representations,which we will define when

defining a symbolic language for the representations. In thecase of formulas, we will

simply measure the size of the parse trees of the given formula (except for Chapter 8

when we represent our formulas as dags). In the case of logic which allows natural

numbers as constants (e.g. Presburger Arithmetic with syntactic sugar), we will also

measure the numbers in binary, unless stated otherwise.

There are three standard complexity measures when dealing with model checking

depending on which of the two input parameters are fixed. The first measure iscom-

bined complexitywhen both structures and formulas are considered as part of the input.

This measure is reasonable when both structures and formulas are important parame-

ters. The second measure isdata complexitywhich considers only structures to be part

of the input, i.e., formulas are fixed. This measure is considered to be the most useful

measure in the context of verification since for most applications the size of the struc-

tures can be extremely large, while only small formulas are used in practice. The third

measure isexpression complexitywhich considers only formulas to be part of the input,

i.e., the structures are fixed. Many believe that the third measure is not very reasonable

in practice. This is, however, not true since many verification problems these days
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are achieved by reductions to Presburger Arithmetic, S1S, or S2S. Nowadays there are

fast solvers that have been developed for these theories (e.g. MONA [HJJ+95], LIRA

[BDEK07], and Omega [Ome]).
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Chapter 3

Word/Tree-automatic Systems

Generic approaches to infinite-state model checking require generic frameworks that

are expressive enough to subsume Turing-powerful models ofcomputation. Many

such frameworks have been proposed in the literature (cf. [AJNS04, Bar07, BGR10,

BFLS05, BFLP08, BG09, BLN07, Blu99, BG04, Boi99, Bou01, BLW03, BLW09,

BW94, BJNT00, BHV04, DLS02, FL02, KMM+97, KMM+01, JN00, Mor00, Nil05,

Rub08, WB98]). Such frameworks often make use finite state automata (or equivalent

models) as finite representations of the transition relations and the domains of transi-

tion systems in various ways. Although the use of finite stateautomata often yield nice

closure and algorithmic properties, they are not in generalsufficient for the verification

of reachability or more complex properties due to expressive power of the framework.

In this thesis, we adoptword automatic systems[Blu99, BG04] andtree automatic

systems[Blu99, BG04, BLN07] as our generic frameworks since they strike a good

balance between the expressive power (e.g. they subsume many decidable classes of

infinite-state transitions systems) and closure/algorithmic properties (e.g. effective clo-

sure under boolean combinations and automata projections).

Our purpose of using generic frameworks in this thesis significantly differs from

common uses of generic frameworks in the literature of infinite-state model checking.

For example, generic frameworks are often used in combination with semi-algorithms

for computing reachability sets and reachability relations (cf. [AJNS04, BFLS05,

BFLP08, Boi99, BLW03, Bou01, BW94, BJNT00, BHV04, BLW09, DLS02, Nil05,

KMM +97, KMM+01, JN00, WB98]). Although the results in this thesis can be used

in conjunction with such semi-algorithms, we shall chiefly use generic frameworks

as frameworks for derivingalgorithmic metatheorems for decidable model checking,

which are generic results that can be used in a “plug-and-play” manner for inferring de-

55
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cidability of certain model checking tasks overa large familyof formalisms of infinite-

state systems, instead of doing so fora singleformalism at a time. Such a use of generic

frameworks is not new, e.g., this can be found in the work of [BFLP08, BFLS05, LS04,

LS05a] on flattable linear counter systems, which derives a single semi-algorithm for

reachability that isguaranteedto terminate over many important subclasses of Petri

nets and counter systems (cf. [LS04, LS05a]). We shall give our algorithmic metathe-

orems for word/tree automatic transition systems in the next two chapters of the thesis.

This chapter aims to review basic definitions and results forword/tree automatic

transition systems [Blu99, BG04], and compare them with several other closely-related

generic frameworks that have been considered in the literature. The chapter is orga-

nized as follows. We review the definition and standard results of word automatic

transition systems in Section 3.1, and of tree automatic systems in Section 3.2. In

particular, we shall review basic properties of word/tree automatic transition systems

and give several well-known concrete classes of infinite-state systems that they can

capture. In Section 3.3, we shall discuss a number of other well-known generic frame-

works that have been considered in the literature — in particular, length-preserving

word-automatic systems, rational transition systems, Presburger-definable transition

systems, andω-automatic transition systems — and compare them with word/tree au-

tomatic systems in terms of expressive power and closure/algorithmic properties.

3.1 Word-automatic systems

In this section, we shall define the framework of word-automatic systems [Blu99,

BG04]. The reader is also referred to [Bar07, BGR10, Rub08] for more recent re-

sults regarding automatic structures.

3.1.1 Basic definitions

Loosely speaking, word-automatic systemsS = 〈S,{→a}a∈ACT〉 are those transition

systems such that, for some alphabetΣ, S is a regular language overΣ and→a is a

“regular relation” overΣ. To define the notion of regular relations, we need a binary

operation overΣ∗ calledconvolution⊗, which computes an encoding of a pair of words

over Σ∗ as a word over some new alphabet. More precisely, given wordsv,w ∈ Σ∗

wherev = a1 . . .an andw = b1 . . .bm, let v⊗w be the wordc1 . . .ck over the alphabet
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Σ⊥×Σ⊥, whereΣ⊥ := Σ∪{⊥} with ⊥/∈ Σ, k = max(n,m), and

ci =





[
ai

bi

]
if i ≤min(n,m)

[
⊥
bi

]
if n < i ≤m

[
ai

⊥

]
if m< i ≤ n.

Roughly speaking, the wordv⊗w is obtained by puttingv on top ofw and padding the

shorter word by the padding symbol⊥. For example, whenv = aabandw = ababab,

the wordv⊗w is simply

[
a

a

][
a

b

][
b

a

][
⊥
b

][
⊥
a

][
⊥
b

]
.

A relation→a⊆Σ∗×Σ∗ is said to beregular if the language{v⊗w : v→a w} is regular.

Example 3.1.1 The relation= ⊆ {0,1}∗×{0,1}∗ consisting of pairs of equal words

(u,v) is obviously regular, e.g., it is generated by the regular expression

([
0

0

]
+
[

1

1

])∗
.

The relationel ⊆ {0,1}∗×{0,1}∗ consisting of words(u,v) ∈ {0,1}∗×{0,1}∗ of

equal length is regular, e.g., it is generated by the regularexpression({0,1}×{0,1})∗.
The prefix-of relation� ⊆ {0,1}∗× {0,1}∗ consisting of words(u,uw) for some

words u,w ∈ {0,1}∗ is also regular, e.g., it is generated by the regular expression([
0

0

]
+
[

1

1

])∗
({⊥}×{0,1})∗. ♣

In the sequel, we shall not distinguish a relation and its language representation. Let

us now summarize the definition of word-automatic systems asfollows.

Definition 3.1.1 A transition systemS = 〈S,{→a}a∈ACT〉 is said to beΣ∗-automatic

if S is a regular language overΣ and each→a is a regular relation overΣ. It is said to

beword-automatic(or justautomatic) if it is Σ∗-automatic for some alphabetΣ.

As there are multiple ways of representing a given regular language, there are also

non-unique ways of representing a given word-automatic system. This motivates the

following definition. A presentationof a Σ∗-automatic system〈S,{→a}a∈ACT〉 is a

tuple η = 〈AS,{Aa}a∈ACT〉 whereAS andAa’s are NWAs such thatL(AS) = S and

L(Aa) = {v⊗w : v→a w} for eacha ∈ ACT. We shall also use the notationSη to

denote the transition system of whichη is a presentation. A transition systemS′

over ACT is said to be(word-)automatically presentableif it is isomorphic to some

automatic systemS overACT.
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Remark 3.1.1 Two remarks are in order. Firstly, our definition of automatic systems

is slightly different from the common definition in the literature of automatic structures

(e.g. see [BG04]); the latter coincides with our definition of automatically presentable

systems. Nonetheless, both approaches are equivalent since we are only interested in

verification problems, instead of the expressive power of certain logics, over automatic

systems. Secondly, our definition of automatic presentations use NWAs as default

representations of regular languages. One may of course adopt other representations

of regular languages, such as regular expressions or DWAs. Nonetheless, our choice of

representations of regular languages is justified by computational complexity reasons,

i.e., that most systems that are considered in the literature permit succinct automatic

presentations in terms of NWAs (but not necessarily in termsof DWAs or regular

languages), while the complexity of the algorithmic metatheorems that we obtain in the

thesis do not increase even if we adopt NWAs (instead of DWAs or regular languages)

as default representations of regular languages.

3.1.2 Examples

We now give four examples of classes of infinite-state systems which can be construed

as word-automatic systems; more will be given in subsequentchapters.

Example 3.1.2 (Pushdown systems)A pushdown system (PDS)is a PDA without an

initial state and the set of final states (cf. [BEM97, May98, MS85, Tho03]). This

omission is due to the fact that we are no longer interested inPDAs as acceptors of

languages, but instead as generators of infinite transitionsystems. More precisely,

given a PDA(Σ,Γ,Q,δ,q0,F), the tupleP := (ACT,Γ,Q,δ) is a PDS over the action

alphabetACT, which we define to be the set of elementsa in Σε for which there ex-

ists a transition rule inδ of the form((q,a,u),(q′,u′). Many notions for PDAs (e.g.

configurations) can be easily adapted to PDSs. The PDSP gives rise to the transi-

tion systemSP = 〈S,{→a}a∈ACT〉, whereS⊆ Q×Γ∗ is the set of configurations of

P and→a⊆ S×S is the binary relation containing tuples((q,vu),(q′,vu′)) such that

there exists a transition((q,a,u),(q′,u′))∈ δ. A simple example of a transition system

generated by a PDS (up to isomorphism) is the structure S2S; see Example 2.4.1 for a

definition. This can, in fact, be generated by a PDS with one state.

Transition systems generated by pushdown systems can be easily thought of as

word-automatic systems as follows. Given a PDSP = (ACT,Γ,Q,δ), let Ω = Q∪Γ.
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We define the setS′ and, for eacha∈ ACT, the relation→′a as follows:

S′ := QΓ∗

→′a := {(qu,q′u′) ∈ S′×S′ : (q,u)→a (q′,u′)}.

In other words, by interpreting each configuration(q,u) of P as the wordqu∈QΓ∗, we

see that the transition systemS′P = 〈S′,{→′a}a∈ACT〉 is isomorphic toSP . Further-

more, the isomorphism function can be implemented to run efficiently, i.e., in linear

time. It is now not hard to see thatS′P is word-automatic for which a presentation can

be computed in timeO(|Q∪Γ|2+ |Γ|×‖P‖). This is because each NWAAa for→′a
is over the alphabetΩ2

⊥ and behaves as follows:

1. nondeterministically guess a transition in(q,a,u,q′,u′) ∈ δ,

2. make sure that
[

q

q′

]
is the first letter read,

3. read a word of the formv⊗v∈ (Γ×Γ)∗, and

4. nondeterministically jump to a state to check that the rest of the input word is

u⊗u′.

In other words, these two representations of pushdown systems are polynomially equiv-

alent. Therefore, in the sequel we shall use the term “pushdown system” to refer to

either of these representations.♣

Example 3.1.3 (Prefix-recognizable systems)Prefix-recognizable systems are natu-

ral generalizations of pushdown systems, where we allow potentially infinitely many

rules which are represented using regular languages (cf. [Cau03]). More precisely, a

prefix-recognizable system1 P overACT is a tuple(ACT,Γ,Q,δ) where

• Γ is a finite stack alphabet,

• Q is a finite set of states, and

• δ is a transition relation, i.e., a finite set of transitions ofthe form

((q,a,A),(q′,A ′),A ′′),

whereq,q′ ∈Q, a∈ ACT, andA ,A ′,A ′′ are NWAs overΓ.

1In the literature, prefix-recognizable systems are usuallydefined without state components. How-
ever, the two definitions are easily seen to be equivalent.
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As for PDSs, aconfigurationis simply a pair(q,w) ∈Q×Γ∗ consisting of a state and

a word inΓ∗. Given two configurations(q,w) and(q′,w′) of P , we write(q,w)→a

(q′,w′) if there exist three wordsα,β,γ∈Γ∗ and a rule((q,a,A),(q′,A ′),A ′′) in δ such

thatw= αβ, w′ = αγ, α∈L(A ′′), β∈ L(A), andγ∈L(A ′). The transition systemSP

generated byP is simply the system〈S,{→a}a∈ACT〉, whereS⊆Q×Γ∗ is simply the

set of all configurations ofP , and→a is the one-step reachability relation via actiona

that we just defined. To understand the definition of prefix-recognizable systems and

the transition systems they generate, it is helpful to draw an analogy with pushdown

systems. We may think of pushdown systems as prefix-recognizable systemsP =

(Σ,Γ,Q,δ), where each rule inδ is of the form((q,a,A),(q′,A ′),A ′′) for some NWAs

A andA ′ that accepts only a single word inΓ∗ and for someA ′′ that accepts all words

in Γ∗. A simple example of a transition system that can easily be generated by a prefix-

recognizable system (up to isomorphisms) is〈{0,1}∗,succ0,succ1,�〉 (see Example

2.4.1). This, however, cannot be generated by pushdown systems since the nodes in

〈{0,1}∗,succ0,succ1〉 have an infinite degree.

Transition systems generated by prefix-recognizable systems can be easily thought

of as word-automatic systems as follows. Given a prefix-recognizable systemP =

(ACT,Γ,Q,δ), letΩ := Q∪Γ. We define a transition systemS′P = 〈QΓ∗,{→′a}a∈ACT〉
in the same way as in the previous example. In other words, we interpret each configu-

ration(q,u) of P as the wordqu∈QΓ∗. It is easy to see that the new transition system

S′P is isomorphic toSP . Furthermore, the isomorphism function can be computed in

linear time. Similarly, it is not hard to see thatS′P is automatic for which a presentation

can be computed in timeO(|Q∪Γ|2+‖P‖). The construction for the NWAs for each

→′a is a simple adaptation of the construction in the previous example. In the sequel,

when the meaning is clear from the context, we shall use the term “prefix-recognizable

system” to refer to either of these representations of prefix-recognizable systems.♣

Example 3.1.4 Counter machines [Min67] are a well-known Turing-powerfulmodel

of computation. We shall now define the notion of counter systems, which are simply

counter machines without initial and final states. Ak-counter systemM over the action

alphabetACT is a tuple(ACT,X,Q,∆) where

• X is a set ofk (counter) variables, say{x1, . . . ,xk},

• Q is a set ofstates,

• ∆ is a finite set ofinstructionsof the form((q,ϕ(X)),a,(q′, i1, . . . , ik)), where:
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– q,q′ ∈Q,

– a∈ ACT,

– eachi j is a number in{−1,0,1}

– ϕ(X) is a (guard) Presburger formula of the form
V

x∈Y x∼x 0 for some

Y ⊆ X and∼x ∈ {=,>}.

A configurationof M is a tuple(q,n1, . . . ,nk) ∈ Q×N
k expressing the stateM is in

and the current values of thek counters. Given two configurationsc1 = (q,n1, . . . ,nk)

andc2 = (q′,n′1, . . . ,n
′
k), we writec1→a c2 if there exists an instruction

((q,ϕ(X)),a,(q′, i1, . . . , ik))

such that the guard formulaϕ(n1, . . . ,nk) is true in〈N,+〉, and for eachj = 1, . . . ,k

we haven j = max(0,n j + i j). In other words, when the counter value is 0, it stays 0

whenM tries to substract 1 from it. The transition system generated by M is simply

SM := 〈S,{→a}a∈ACT〉, whereS⊆ Q×N
k is the set of all configurations ofM and

→a is the one-step reachability relation via actiona that we just defined. It is well-

known that the reachability problem for counter systems (i.e. checking whether a

given configurationc2 of a counter systemM is reachable inSM from another given

configurationc1 of M ) is undecidable [Min67].

We can think of transition systems generated byk-counter systemsM as automatic

systems in two different ways depending on whether we adopt the standard binary rep-

resentation of numbers (cf. [Kla08, WB00]), or its reverse (cf. [BC96, BHMV94]).

In the sequel, we shall adopt the reversed binary representation of numbers from

[BC96, BHMV94]. More precisely, given a numbern, let rev-bin(n) denote the

standard binary representation ofn (with unnecessary leading 0s removed) written

in reverseorder, e.g.,rev-bin(8) = 0001. Given the numbersn1, . . . ,nk ∈ N, define

n1⊗0 . . .⊗0nk as the wordrev-bin(n1)⊗ . . .⊗ rev-bin(nk) with the symbol⊥ replaced

by the symbol 0. For example, 7⊗0 8⊗0 6 is the word



1

0

0







1

0

1







1

0

1







0

1

0


 .

Therefore,n1⊗0 . . .⊗0 nk is a word over the alphabet{0,1}k. Define a new alphabet

Ω := Q∪ {0,1}k. Then, we can define a functionχ mapping a given configuration
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c= (q,n1, . . . ,nk) ∈Q×N
k of M to the wordqw∈Ω∗, wherew= n1⊗0 . . .⊗0 nk. We

may therefore think of the set of configurations ofM as the set

S:= {χ(c) : c∈Q×N
k}

and the relation→a as the relation

→′a:= {(χ(c),χ(c′)) : c→a c′}.

It is easy to construct an NWAAS for the setSwith 2 states in timeO(|Q|+2k), most

of which is spent in enumerating the letters in the alphabetΩ. Similarly, it is not hard

to construct in timeO(|Q|2×2k) an NWA Aa with O(‖M ‖×2k) states overΩ2
⊥ for

→′a. Intuitively, the automaton first nondeterministically guesses a transition inM that

will be executed and remember it in its finite memory. Upon reading any input letter

{0,1}k×{0,1}k, it will remember in its finite memory precisely one carry bitfor each

of thek counters.♣

Example 3.1.5 Given a Turing machineM = (Σ,Γ,Q,δ,q0,qF ,2), define the transi-

tion systemSM = 〈S,→〉, whereS= Γ∗(Q×Γ)Γ∗ is the set of all configurations of

M and→ is the one-step reachability relation defined byM . The reachability problem

for transition systems generated by Turing machines is well-known to be undecidable.

It is known that transition systems generated by Turing machines are automatic

[BG04]. DefineΩ := Γ∪ (Q× Γ). The setS of configurations ofM is therefore

regular. We can also easily construct an NWA for the relation→ ⊆ S×S sinceM

makes only local changes at each step (i.e. at most three cells and the state ofM ). In

fact, this automatic presentation forSM can be computed in time polynomial in‖M ‖.
♣

3.1.3 Basic closure and algorithmic results

Givenv1, . . . ,vn ∈ Σ∗, let us writevi = ai,1 . . .ai, j i for eachi = 1, . . . ,n. Letting m=

max( j1, . . . , jn), we definev1⊗ . . .⊗ vn as the wordc1 . . .cm over the alphabetΣn
⊥

where, for eachk = 1, . . . ,m, ck := (c1,k, . . . ,cn,k) and

ci,k :=

{
ai,k if k≤ j i

⊥ if j i < k≤m.

An r-ary relationR⊆ (Σ∗)r is said to beregular if the language

{v1⊗ . . .⊗vr : (v1, . . . ,vr) ∈R}
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is regular. Observe that this definition generalizes our earlier definition of binary reg-

ular relations. As before, we do not distinguish a relation and its language representa-

tion.

Definition 3.1.2 A Σ∗-automaticstructure over the vocabularyσ is aσ-structureS =

〈S,{Ra}a∈σ〉 where S is a regular language overΣ and Ra is an AR(a)-ary regular

relation over S. Aσ-structure is said to beautomaticif it is Σ∗-automatic for some

alphabetΣ.

An automatic presentationη of a Σ∗-automatic structureSη = 〈S,{Ra}a∈σ〉 is a tu-

ple 〈AS,{Aa}a∈σ〉, whereAS is an NWA overΣ with L(AS) = S andAa is an NWA

overΣAR(a)
⊥ such thatL(Aa) = Ra. A σ-structure is said to be(word-)automatically

presentableif it is isomorphic to an automatic structure overσ. Remark 3.1.1 for our

definition of automatic systems also holds for our definitionof automatic structures.

Example 3.1.6 Presburger arithmetic〈N,+〉 is well-known to be{0,1}∗-automatic

(via the reverse binary encoding of numbers; see Example 3.1.4). In fact, the ex-

tension〈N,+, |2〉 with the binary relation|2 is automatic, where for alln,m ∈ N,

n |2 m iff n divides m and n = 2k for somek ∈ N. The structure〈N,+, |2〉 is also

known asBüchi Arithmetic. See [BGR10, Blu99, BHMV94] for more details. The

structure〈{0,1}∗,succ0,succ1,�〉= 〈{0,1}∗,succ0,succ1,�〉 is also word-automatic

[Blu99, BG04]. In fact, it is still automatic even when extended with an equal-length

binary relationel defined in Example 3.1.1. For more examples, see the recent survey

[BGR10].♣

The following closure properties are well-known.

Proposition 3.1.1 ([Hod83]) Given an automatic presentationη of an automatic struc-

tureSη = 〈S,{Ra}a∈σ〉 over the vocabularyσ and a first-order queryυ(x̄)←ϕ(ȳ) over

σ, the relation[[υ]]Sη is effectively regular.

We shall next sketch a standard proof of this proposition in some details as it will be

used in the sequel as a backbone of a more complex construction.

Proof Sketch. We shall adopt NWAs as representations of regular languages. Suppose

that η = 〈AS,{Aa}a∈ACT〉. Inductively on the structure of the query bodyϕ(ȳ), we

shall construct an NWA overΣm
⊥, wherem= AR(υ), such that for allv1, . . . ,vm∈ S, it

is the case that

(v1, . . . ,vm) ∈ [[υ]]Sη ⇔ v1⊗ . . .⊗vm∈ L(Aϕ).
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An NWA for [[υ]]Sη can later be obtained by taking a product ofAϕ with the regular

setLm := S⊗ . . .⊗S︸ ︷︷ ︸
m times

, for which an NWA of size‖AS‖m can be easily constructed.

• Base case:ϕ := Ra(xi1, . . . ,xir ) for anr-ary relationRa and some (not necessarily

distinct) indices 1≤ i1, . . . , ir ≤m. If Aa = (Σr
⊥,Q,δ,Q0,F) is the NWA forRa

in the presentationη, then we construct the NWAAυ = (Σm
⊥,Q,δ′,Q0,F) where

δ′(q,(a1, . . . ,am)) := δ(q,(ai1, . . . ,air )).

Therefore, we haveL(Aυ)∩Lm = [[υ]]. Note that‖Aυ‖= ‖Aa‖. The time taken

to constructAυ is clearly.O(|Σ|m×‖Aa‖).

• Inductive case:ϕ := ¬ψ(xi1, . . . ,xir ) for some indices 1≤ i1, . . . , ir ≤m. Define

the new query

υ′(x1, . . . ,xm)← ψ(xi1, . . . ,xir ).

Let Aυ′ be an NWA such thatL(Aυ′)∩Lm = [[υ′]] which can be obtained by

induction. To obtain an NWAAυ such thatL(Aυ)∩Lm = [[υ]], we determinize

and then complementAυ′ . The number|States(Aυ)| of states ofAυ′ is at most

exponential in the number|States(Aυ′)| of states ofAυ′ . It follows that‖Aυ‖ ≤
22|States(Aυ′)|. The time taken to constructAυ is 2O(|States(Aυ′ )|+mlog(|Σ|)) on top of

the time taken to constructAυ′.

• Inductive case:ϕ := ϕ′(xi1, . . . ,xis)∨ϕ′′(x j1, . . . ,x jr ) for some indices

1≤ xi1, . . . ,xis ≤m and 1≤ j1, . . . , jr ≤m.

Define new queries

υ′(x1, . . . ,xm)← ϕ′(xi1, . . . ,xis)

and

υ′′(x1, . . . ,xm)← ϕ′′(x j1, . . . ,x jr ).

By induction, we can construct the NWAsAυ′ andAυ′′ such that

L(Aυ′)∩Lm = [[υ′]],

L(Aυ′′)∩Lm = [[υ′′]].

To obtain an NWAAυ such thatL(Aυ)∩Lm = [[υ]], we simply perform NWA

union ofAυ′ andAυ′′ . It follows that‖Aυ‖= ‖Aυ′‖+‖Aυ′′‖. The time taken to

constructAυ is O(|Σ|m× (‖Aυ′‖+‖Aυ′′‖)) on top of the time taken to construct

Aυ′ andAυ′′ .



Chapter 3. Word/Tree-automatic Systems 65

• Inductive case:ϕ := ϕ′(xi1, . . . ,xis)∧ϕ′′(x j1, . . . ,x jr ) for some indices

1≤ xi1, . . . ,xis ≤m and 1≤ j1, . . . , jr ≤m.

This case is identical to the disjunction case, but instead we compute the product

automata. The number of states of the resulting NWA is the product (instead of

sum) of the number of states of the two NWAs obtained from induction. Such is

also the case for the time taken to compute the NWA for[[υ]].

• Inductive case:ϕ := ∃yϕ′(xi1, . . . ,xir ,y) for some indices 1≤ xi1, . . . ,xir ≤m. By

induction, we can construct an NWAAυ′ such thatL(Aυ′)∩Lm+1 = [[υ′]], where

υ′ is defined as

υ′(x1, . . . ,xm,y)← ϕ′(xi1, . . . ,xir ,y).

Observe that[[υ]] = {(v1, . . . ,vm) : ∃u ∈ S((v1, . . . ,vm,u) ∈ [[υ′]])}. Therefore,

we need to construct a new NWAA ′υ′ from Aυ′ in such a way thatL(Aυ′)∩
(Lm×Σ∗⊥) = [[υ′]]. More precisely, suppose thatAS = (Σ,Q2,δ2,Q2

0,F2). Let

A ′S = (Σm+1,Q2,∆,Q2
0,F

2) be the NWA such that(q,(a1, . . . ,an,an+1),q′) ∈ ∆
iff (q,an+1,q′) ∈ δ2. Taking a product ofAυ′ and A ′S, we obtain an NWA

A ′υ′ = (Σm+1
⊥ ,Q′,δ′,Q′0,F

′) such thatL(A ′υ′)∩ (Lm×Σ∗⊥) = [[υ′]]. We now shall

construct an NWAAυ = (Σm
⊥,Q,δ,Q0,F) such thatL(Aυ)∩Lm = [[υ]] as fol-

lows:

– Q := Q′,

– Q0 := q′0,

– for eachq∈Q anda1, . . . ,am∈ Σ⊥, let

δ(q,(a1, . . . ,am)) :=
[

a∈Σ⊥

δ′(q,(a1, . . . ,am,a)),

and

– let F be the set of statesq∈ Q′ from which there exists a pathπ in Aυ′ on

some wordw∈ ({⊥}m×Σ)∗ to some state inF.

Such a construction is commonly known as NWAprojection. Obviously, we

haveF ⊆ F ′ but they might not necessarily coincide. The reason for thisdefini-

tion of F is simply that, given(v1, . . . ,vm) ∈ [[υ]], the wordu such that

(v1, . . . ,vm,u) ∈ [[υ′]]
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might have length greater than max(v1, . . . ,vm). Furthermore, the setF can be

computed by the standard algorithm for testing nonemptiness for NWAs, which

requires only linear time. Note thatAυ = ‖Aυ′‖× ‖AS‖. The time taken to

constructAυ is at mostO(|Σ|m+1×‖Aυ′‖×‖AS‖) on top of the time taken to

constructAυ′ .

This completes our proof of the proposition.2

It is easy to see that the aforementioned construction runs in nonelementary time.

Clearly, the most expensive operation in the construction is complementation, which

yields a DWA of exponential size. In contrast, NWA projection takes only linear time.

A more careful analysis of the aforementioned construction, however, reveals that the

bottleneck of the complexity of the construction comes fromthe number of alterna-

tions between negations and existential quantifiers in the given first-order formula: the

former turns an NWA into a DWA of exponential size (for which all boolean opera-

tions can be easily done), but the latter turns a DWA back intoan NWA (for which

complementation is expensive).

A better complexity can be obtained for the above proposition when restricting

to simpler fragments of first-order logic. The most commonlyused fragment in the

sequel is the class ofconjunctive queries, i.e., first-order queriesυ(x̄)← ∃y1, . . . ,ynϕ,

whereϕ is simply a conjunction of atomic formulas. The following proposition can be

obtained in a straightforward way by applying the proof of Proposition 3.1.1.

Proposition 3.1.2 Let

υ(x1, . . . ,xm)←∃y1, . . . ,ynϕ

be a conjunctive query overσ, where

ϕ = Ra1(z1)∧ . . .∧Rak(zk)

is a conjunction of atomic formulas, wherezi ⊆ x̄∪ ȳ for each i= 1, . . . ,k and each

variable inx̄ occurs in one ofzi at least once. Given a presentationη = 〈AS,{Aa}a∈σ〉
of theΣ∗-automatic structureSη, an NWAAυ accepting[[υ]]Sη of size O

(
∏k

i=1‖Ai‖
)

can be computed in time O
(
|Σ|m+n×∏k

i=1‖Ai‖
)
.

Example 3.1.7 In this example, we show how the above Proposition can be usedto

prove that the reachability relation of a transition systemis “efficiently” interdefin-

able with the strict reachability relation, provided that they are regular. Suppose that

Sη = 〈S,{→a}a∈ACT〉 is aΣ∗-automatic transition system overACT, presented by the
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presentationη = 〈{AS},{Aa}a∈ACT〉. Since regular languages are closed under union,

the relation→=
(

S

a∈ACT→a
)

is recognized by an NWAN of size∑a∈ACT ‖Aa‖ and

is computable in timeO(|Σ|2×∑a∈ACT ‖Aa‖). As we shall see later, the reachability

relation→∗=
(

S

a∈ACT→a
)∗ and the strict version→+ are in general not regular (in

fact, not even recursive).

Suppose, however, that→∗ is regular and is recognized by the NWAR . Ob-

serve now that Proposition 3.1.2 implies that the strict reachability relation→+ is

also regular, for which an NWAR ′ of size O(‖N ‖× ‖R ‖) is computable in time

O(|Σ|3×‖N ‖×‖R ‖). This is because the relation→+ is definable in the new struc-

tureS′ = 〈S,→,→∗〉 as follows:x→+ y⇔ ∃z(x→ z∧ z→∗ y). Conversely, if→+

is regular and is recognized by the NWAR , then so is the relation→∗ since→∗ is

nothing but the union of→ and→+. This also implies that an NWA for→∗ of size

O(‖N ‖+‖R ‖) is computable in timeO(|Σ|2× (‖N ‖+‖R ‖)). ♣

It turns out that the above proposition easily extends to themore general class of

existential positive first-order formulas.

Proposition 3.1.3 Let

ϕ(y1, . . . ,ym) = ∃x1, . . . ,xnψ(x1, . . . ,xn,y1, . . . ,ym)

bet a first-order formula over the vocabularyσ, whereψ is a positive boolean com-

bination of atomic propositions with h conjunctions. Givenan automatic presentation

η of an automatic structureSη, an NWAAϕ accepting[[ϕ]]Sη is computable in time

polynomial in‖η‖ and‖ψ‖, but exponential in h and n+m.

3.1.4 Negative results

It turns out that the nonelementary complexity of the construction above is unavoidable

[BG04, Grä90], even when the input formula has no free variables.

Proposition 3.1.4 There exists an automatic structure whose first-order theory has

nonelementary complexity.

A simple example of an automatic structure with nonelementary first-order theory is

S2S with descendant [CH90]. Since transition systems of Turing machines are auto-

matic, the following proposition due to [BG04] is immediate.
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Proposition 3.1.5 ([BG04]) The reachability problem for automatic transition sys-

tems is undecidable. In fact, it isΣ0
1-complete even for a fixed automatic transition

system.

In fact, theΣ0
1-hardness lower bound follows from the fact that the transition systems

generated by counter machines and Turing machines are automatically presentable.

The upper bound is owing to the fact that reachability for automatic transition sys-

tems has a finite witness that can be effectively checked. We now adapt the proof of

Proposition 3.1.5 to show that for the problem of checkingrecurrent reachability for

automatic transition systemsis much harder: given a presentationη of an automatic

systemSη = 〈S,{→a}a∈ACT〉, an initial configurations0 ∈ S, and an NWAA , decide

whethers0 ∈ Rec(L(A))[→+].

Proposition 3.1.6 The recurrent reachability problem for automatic transition systems

is Σ1
1-complete.

Proof. To proveΣ1
1-hardness, we establish a many-to-one reduction from therecurrent

state properties for nondeterministic Turing machines: given an NTM

M = (Σ,Γ,Q,δ,q0,qF)

and a stateq ∈ Q, check whetherM have an infinite computation path visiting the

stateq infinitely often. This problem is known to beΣ1
1-complete (e.g. see [Har86,

Corollary 6.2]). Therefore, we may use the construction of automatic presentationη
for the transition systemSM = 〈S,→〉 generated byM from Example 3.1.5, which

works as well for NTMs. Therefore,M has an infinite computation path visitingq

infinitely often iff (q0,2) ∈Rec(Γ∗({q}×Γ)Γ∗)[→]. This completes the reduction.

One way to prove membership inΣ1
1 is to establish a many-to-one reduction to the

problem of recurrent state properties for NTMs. More precisely, given a presentation

η = 〈AS,{→a}a∈ACT〉 for theΩ∗-automatic systemSη = 〈S,{→a}a∈ACT〉, an initial

configurationv0 ∈ S, and an NWAAF overΩ for a setF ⊆ S, we construct the NTM

M that has a special stateq that is visited iff a signalling bitb is turned “on”. The

machineM initially replaces the input word on the tape withv0, turns “off” the bit

b, and begins “exploring” the transition systemSη from v0. At each stage ofM ’s

computation,M will remember on the tape a wordw ∈ Ω∗ that is reachable from

v0, and a bitb signalling whetherw ∈ F. If w ∈ F is signalled, thenM will visit

the stateq and then turn off the bitb before resuming the exploration ofSη from
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the currently remembered configurationw. If w /∈ F, the NTM M will resume the

exploration ofSη without first visiting the stateq. After this, the machineM will

nondeterministically write down a wordw′ ∈ Ω∗ on the tape. Note that this step ofM

might not terminate, but is not important as the resulting infinite computation path will

not visitq infinitely often. In the case whenM terminates withw′ fully written on the

tape,M checks whetherw→w′, which could be easily done since an NWA for→ can

be easily constructed. Ifw→ w′, thenM will set w := w′, adjust the value of the bitb

according to whetherw′ ∈ L, and continue to the next stage. Ifw 6→ w′, theM simply

enters a halting state. Finally, it is easy to check thatv0 ∈ Rec(F) iff the NTM M has

an infinite computation path visitingq infinitely often on the empty input.2

Let us briefly revisit the proof of this proposition. For the proof, it is important that the

NWA A in the input has an infinite language. In fact, ifA recognizes a finite language,

by pigeonwhole principle one of the configurations inL(A), says, must be visited

infinitely often. This means that there existsfinite witnessesfor positive instances (i.e.

a path from the initial configurations0 to s, and a path froms to itself), and therefore

is recursively enumerable.

3.2 Tree-automatic systems

In this section, we review the basic definitions and results for tree-automatic systems

[BLN07, Blu99, BG04]. We refer the reader to [Bar07, BGR10] for a more up-to-date

exposition of the subject.

3.2.1 Basic definitions

The notion of tree-automatic systems is to a large extent similar to word-automatic sys-

tems, except that we use NTAs instead of NWAs to represent thedomain and the tran-

sition relations of the systems. To make this notion more precise, we define the convo-

lution operation⊗ over TREEk(Σ) as follows: given two treesT1,T2 ∈ TREEk(Σ) with

T1 = (D1,τ1) andT2 = (D2,τ2), let T1⊗T2 be thek-ary tree(D,τ) over the alphabet

Σ⊥×Σ⊥, whereΣ⊥ := Σ∪{⊥} with⊥/∈ Σ, such thatD = D1∪D2 andτ(u) = (a1,a2)

whereai = τi(u) if u ∈ Di , or elseai =⊥. Observe that this is a simple generaliza-

tion of the word case. Figure 3.1 illustrates how this operation works. A relation

R⊆ TREEk(Σ)× TREEk(Σ) is said to betree-regular(or simply regular) if the lan-

guage{T1⊗T2 : (T1,T2) ∈ R} is tree-regular.
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a

b

a b

a ⊗
c

a b

b

=

(a,c)

(b,a)

(a,⊥) (b,⊥)

(a,b)

(⊥,b)

Figure 3.1: A specific example illustrating the convolution operation on binary trees

Example 3.2.1 The identity relation= on TREEk(Σ) is obviously tree-regular. In fact,

it can be recognized by an NTA with one stateq, which only has transitions of the

form (q,(a,a),q,q, . . .,q) for a∈ Σ. Similarly, theequal tree-domainrelation≈dom on

TREEk(Σ) (i.e. that two trees have the same tree domain but possibly different label-

ings) is also tree-regular, for which an NTA with one state could be easily constructed.

The tree extension relation� on TREEk(Σ) is also easily seen to be regular. In fact, one

may construct an NTA for� with precisely two states and at mostO(2|Σ|) transitions.

♣

As in the case of word-automatic systems, we shall not distinguish a relation and

its language representation. Let us now summarize the definition of tree-automatic

systems.

Definition 3.2.1 A transition systemS = 〈S,{→a}a∈ACT〉 is said to beTREEk(Σ)-

automaticif S is a regular tree language overTREEk(Σ) and each→a⊆ TREEk(Σ)×
TREEk(Σ) is a tree-regular relation. The systemS is said to betree-automaticif it is

TREEk(Σ)-automatic for some k andΣ.

A presentationof a TREEk(Σ)-automatic system〈S,{→a}a∈ACT〉 is a tuple

η = 〈AS,{Aa}a∈ACT〉,

whereAS is an NTA over TREEk(Σ) and eachAa an NTA over TREEk(Σ)×TREEk(Σ),

such thatL(AS) = SandL(Aa) = {T⊗T ′ : T→a T ′} for eacha∈ ACT. We shall use

the notationSη to denote the tree-automatic transition system of whichη is a presen-

tation. A transition systemS′ over ACT is said to betree-automatically presentable

if it is isomorphic to some tree-automatic systemS over ACT. Clearly, the class of

tree-automatic (resp. tree-automatically presentable) systems subsumes the class of

word-automatic (resp. word-automatically presentable) systems.

Remark 3.2.1 Just as in the case of word-automatic systems, our definitionof tree-

automatic systems is slightly different from the common definition in the literature
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of automatic structures (e.g. see [BG04]); the latter coincides with our definition of

tree-automatically presentable systems. Nonetheless, both approaches are equivalent

since we are only interested in verification problems, instead of the expressive power

of certain logics.�

3.2.2 Examples

We now give two examples of tree-automatic transition systems; more will be given in

subsequent chapters.

Example 3.2.2 A ground tree rewrite system (GTRS) overACT (cf. [DT90, Löd03])

is a tupleP = (k,Σ,∆), where

• k is a positive integer,

• Σ is a labeling alphabet, and

• ∆ is a finite set of rewrite rules of the form(t,a, t ′), wheret, t ′ ∈ TREEk(Σ) and

a∈ ACT.

The GTRSP gives rise to a transition systemSP = 〈S,{→a}a∈ACT〉 whereS :=

TREEk(Σ) and, for all treesT,T′ ∈ TREEk(Σ) whereT = (D,τ), we haveT →a T ′ iff

for some rewrite rule(t,a, t ′) ∈ P andu∈D it is the case thatt is a subtree ofT rooted

at u andT ′ = T[t ′/u]. It is easy to see that ground tree rewrite systems generalize

pushdown systems in their expressive power as generators oftransition systems.

Transition systems generated by GTRSs can be easily construed as tree-automatic

systems as follows. Given a GTRSP = (k,Σ,∆), let SP = 〈S,{→a}a∈ACT〉 be the

transition system generated byP . It is easy to produce an NTA that recognizes each

→a. More precisely, an NTAAa for →a can be either in a “guessing mode”, “idle

mode”, or “checking mode”. SupposeT ∈ TREEk(Σ2
⊥) is the input tree toAa, and let

virt (T) = (D,τ) andu∈D. WhenAa is an idle mode, it simply ensures that the subtree

rooted atu is an identity relation (i.e. the subtree rooted atu when projected onto the

first component coincides with the subtree rooted atu when projected onto the second

component). WhenAa is in guessing mode, it nondeterministically guesses (withε-

transitions) whether the current node is the root of the subtree where the rewriting

takes place. When the guess is negative,Aa chooses one of its children to “pass on”

the guessing mode, while the rest of the children are to be in idle mode. When the guess

is positive, itinstantaneouslyswitches to a checking mode. ThenAa chooses a rewrite
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rule (t,a, t ′) ∈ δ encoded in its finite memory and ensures that the subtree rooted atu

when projected onto the first component coincides witht (minus the padding symbol),

and when projected onto the second component coincides witht ′ (minus the padding

symbol). This can be done bysimultaneouslyverifying the two components.The final

states are declared to be the union of the idle state and the states after successful checks

have been made.

Let us now measure the computation time to produce a tree-automatic presentation

for the transition systems generated by GTRSs. Analyzing the algorithm above, it is

easy to see that the NTA over TREEk(Σ2
⊥) that recognizes the one-step reachability is

of sizeO(‖P‖) and can be computed in timeO(|Σ|2×‖P‖). In other words, these two

representations of ground tree rewrite systems are polynomially equivalent. Therefore,

in the sequel we shall use the term “ground tree rewrite systems” to refer to either of

these representations.♣

Example 3.2.3 We now present a generalization of ground tree rewrite systems called

regular ground tree rewrite systems (RGTRSs)(cf. [DT90, Löd03, Löd06]). Intuitively,

RGTRSs extend ground tree rewrite systems in the same way prefix-recognizable sys-

tems extend pushdown systems. More precisely, aregular ground tree rewrite system

(RGTRS)overACT is a tupleP =(k,Σ,∆), wherek andΣ are the same as for GTRS and

∆ is a finite set of rules of the form(A ,a,A ′), whereA andA ′ are NTAs over TREEk(Σ)

anda∈ ACT. This GTRSP gives rise to a transition systemSP = 〈S,{→a}a∈ACT〉
whereS= TREEk(Σ) and, for all treesT,T′ ∈ TREEk(Σ) whereT = (D,τ), we have

T →a T ′ iff for some rewrite rule(A ,a,A ′) ∈ ∆, a treet ∈ L(A), a treet ′ ∈ L(A ′),

and a nodeu∈ D it is the case thatt is a subtree ofT rooted atu andT ′ = T[t ′/u]. It

is known (cf. [Löd03]) that RGTRSs subsume prefix-recognizable systems, although

the latter could be exponentially more succinct than the former.

It is not difficult to see that transition systems generated by RGTRSs are tree-

automatic. This can be proven in the same way as for GTRSs, e.g., for the verification

stage, we can do product construction. It is easy to see that the resulting NTA over

TREEk(Σ2
⊥) is of sizeO(‖P‖2) and can be computed in timeO(|Σ|2×‖P‖2). In other

words, these two representations of RGTRSs are polynomially equivalent. Therefore,

we shall not distinguish them in the sequel.♣
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3.2.3 Basic closure and algorithmic results

We now generalize the convolution operator⊗ to taken trees (n∈ Z≥1). Givenk-ary

treesT1 = (D1,τ1), . . . ,Tn = (Dn,τn) over the labeling alphabetΣ, we defineT1⊗ . . .⊗
Tn to be thek-ary treeT = (D,τ) over the labeling alphabetΣn

⊥, whereΣ⊥ = Σ∪{⊥}
and⊥/∈ Σ, such that

• D =
Sn

i=1Di , and

• for eachu∈ D, it is the case thatτ(u) = (a1, . . . ,an), where

ai =

{
τi(u) if u∈Di ,

⊥ otherwise.

Observe that whenn = 2 this definition coincides with the 2-ary convolution operator

for TREEk(Σ) that we defined earlier. Ann-ary relationR over TREEk(Σ) is said to be

tree-regular(or simplyregular) if the language

{T1⊗ . . .⊗Tn : (T1, . . . ,Tn) ∈R}

is tree-regular. As before, we do not distinguish a relationand its language representa-

tion.

Definition 3.2.2 A TREEk(Σ)-automaticstructure over the vocabularyσ is a structure

S = 〈S,{Ra}a∈σ〉, where S is a tree-regular language overTREEk(Σ) and Ra anAR(a)-

regular relation on S. Aσ-structure is said to betree-automaticif it is TREEk(Σ)-

automatic for some integer k> 0 and labeling alphabetΣ.

A presentationη of a tree-automatic structureSη = 〈S,{Ra}a∈σ〉 is a simply tuple

〈AS,{Aa}a∈σ〉, whereAS is an NTA over TREEk(Σ) with L(AS) = SandAa is an NTA

over TREEk(Σn
⊥) (wheren = AR(a)) such thatL(Aa) = Ra. A σ-structure is said to be

tree-automatically presentableif it is isomorphic to a tree-automatic structure overσ.

Remark 3.2.1 for our definition of tree-automatic systems also holds for our definition

of tree-automatic structures.

Example 3.2.4 It is easy to see that everyΣ∗-automatic structure is a TREE1(Σ)-

automatic structure. We now give two tree-automatically presentable structures which

are not word-automatically presentable. The first is the structure(N,×) over natu-

ral numbers with multiplication (i.e. Skolem arithmetic).Each positive integer can

be uniquely decomposed into a product of primes, say,pa1
1 . . . pan

n , wherepi is theith
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Figure 3.2: Tree representation of the numbers 2,3,5, and 60.

prime andan > 0. We may then represent each positive integer as a binary tree over the

labeling alphabet{0,1,◦}, whoseith branch corresponds to the reverse binary repre-

sentation ofai . For example, the number 2,3, 5 and 60 can be represented as the trees

in Figure 3.2. The ternary relation× can then be recognized by an NTA which sepa-

rately runs the NWA for adding numbers on each branch (it is easy to treat the number

0 as a separate case). See [BGR10] for more details. Another example is the structure

〈TREEk(Σ),�,≈dom〉, with the tree extension relation� and the equal tree domain re-

lation≈dom. Furthermore, it is still tree-automatic when we extend this structure with

the binary relationssucca
i (1≤ i ≤ k anda∈ Σ), which extendeachleaf of a tree by its

ith child labeleda. See [BLN07] for more details. For more examples, see the recent

survey [BGR10].♣

Just as for the case of word-automatic structures, the images of a tree-automatic

structure under a first-order query is also effectively tree-regular. The proof of this

result is identical to the word case and so is omitted.

Proposition 3.2.1 Given a presentationη of a tree-automatic structure

Sη = 〈S,{Ra}a∈σ〉

over the vocabularyσ and a first-order queryυ(x̄)← ϕ(ȳ) overσ, the relation[[υ]]Sη

is effectively tree-regular.

Just as in the case of word-automatic structures, a better complexity can be obtained

when restricting to conjunctive queries.

Proposition 3.2.2 Let

υ(x1, . . . ,xm)←∃y1, . . . ,ynϕ

be a conjunctive query overσ, where

ϕ = Ra1(z1)∧ . . .∧Rah(zh)
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is a conjunction of atomic formulas, wherezi ⊆ x̄∪ ȳ for each i= 1, . . . ,h. Given a pre-

sentationη = 〈AS,{Aa}a∈σ〉 of theTREEk(Σ)-automatic structureSη, an NTAAυ ac-

cepting[[υ]]Sη of size O
(
∏h

i=1‖Ai‖
)

can be computed in time O
(
|Σ|m+n×∏h

i=1‖Ai‖
)
.

Example 3.2.5 Just as in the case of word-automatic systems, Proposition 3.2.2 can

be used to show that reachability relations and strict reachability relations for tree-

automatic systems are polynomially interdefinable. See Example 3.1.7.♣

3.2.4 Negative results

Finally, since tree-automatic transition systems generalize word-automatic transition

systems, the negative results from word-automatic transition systems carry over to

tree-automatic transition systems. TheΣ0
1 andΣ1

1 upper bounds for, respectively, reach-

ability and recurrent reachability also easily carry over to the automatic case.

3.3 Other generic frameworks

In this section, we shall briefly discuss several other generic frameworks that have

been considered in the literature and compare them with word/tree automatic transition

systems. In particular, we will mention length-preservingword-automatic systems,

rational transition systems, Presburger-definable transition systems, andω-automatic

transition systems.

3.3.1 Length-preserving word-automatic transition syste ms

A relationR⊆ Σ∗×Σ∗ is said to belength-preservingif (v,w) ∈ R implies |v| = |w|.
A word-automatic systemS = 〈S,{→a}a∈ACT〉 is said to belength-preservingif each

relation→a is length-preserving. The class of length-preserving word-automatic sys-

tems are commonly considered in the literature ofregular model checking(e.g. see

[AJNS04, Bou01, BJNT00, BHV04, JN00, Nil05]), which aims todevelop semi-

algorithms for dealing with various verification problems over generic frameworks

where the domains are represented as words or trees over somealphabet2. Length-

preserving automatic systems are known to be suitable for modeling parameterized

2Despite this, nowadays the term “regular model checking” seems to almost exclusively mean model
checking over length-preserving word-automatic systems
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systems, which are simply distributed protocols with a finite, but unbounded, number

of processes (e.g. the thesis [Nil05] gives many examples).

Most verification problems for length-preserving word-automatic systems are al-

ways defined slightly differently in such a way that words ofeverylength will have

to be considered simultaneously. For example, to check safety for parameterized sys-

tems, it is necessary to be able to computepost∗(L(A)) or pre∗(L(A)) for an ar-

bitrary NWA A . Note that, unlike in the case of general word-automatic systems,

computingpost∗(s0) andpre∗(s0), for any given words0 ∈ Σ∗, is decidable since there

are at most 2O(|s0|) reachable configurations froms0. In fact, this simple observa-

tion generalizes to most verification problems (e.g. temporal logic model checking)

when considered over length-preserving automatic transition systems. On the other

hand, the setpost∗(L(A)) and pre∗(L(A)) need not be regular nor computable in

general since it can be used to solve the halting problems forTuring machines (e.g. see

[AJNS04, BJNT00, Nil05]).

So, how general is length-preserving automatic systems compared to the class of

all word-automatic systems? Which verification problems for the general class of all

word-automatic systems can be reduced to the length-preserving case? We have seen

an answer to the first question: length-preserving automatic systems indeed are a gen-

eral class of infinite systems, although there are only finitely many reachable configu-

rations from any given configuration. Let us now briefly answer the second question.

A verification problem for the class of all word-automatic systems that involvesonly

finite pathscan in some sense be reduced to a variant of the problem over length-

preserving automatic systems. This includes checking reachability (i.e. safety). The

reduction is done by treating the padding symbol⊥ as a letter in the domain of the

system and composing each resulting transition relation with the language
[
⊥
⊥

]∗
. That

way, checking whether a configurationv can reach another configurationw can be

reduced to checking whetherw⊥∗⊆ post∗(v⊥∗) in the resulting length-preserving

automatic system. In contrast, such a reduction cannot be done for liveness problems

including recurrent reachability or for temporal logic model checking. To explain this,

consider as an example the problem of checking whether, for two given NWAsA and

A ′ over the alphabetΣ and a length preservingΣ∗-automatic systemS, there exists

a configurationv (or for each configurationv) in the languageL(A) for which it is

the case thatv ∈ Rec(L(A ′)) is satisfied inS. Since there are only finitely many

reachable configurations from any given configurationv, the infinite path witnessing

v∈Rec(L(A ′)) in S must eventually loop at some configurationv′ ∈ L(A ′). In fact, it
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is easy to see that this problem is r.e. or co-r.e., which is incontrast to the highly unde-

cidable problem of recurrent reachability for the class of all word-automatic systems

(see Proposition 3.1.6). This gives a theoretical justification that length-preserving au-

tomatic transition systems arenotsuitable for dealing with liveness and temporal logic

(e.g. LTL) model checking since most interesting classes ofinfinite-state systems (e.g.

pushdown systems) could easily generate a simple infinite path.

3.3.2 Presburger transition systems

Presburger transition systems are transition systems whose domains and transition re-

lations are definable in Presburger arithmetic. More precisely, aPresburger transition

systemis a transition systemS = 〈S,{→a}a∈ACT〉, where for some first-order for-

mulasϕ(x1, . . . ,xk) andψa(x1, . . . ,x2k) over 〈N,+〉, for eacha ∈ ACT, it is the case

that

• S= {(i1, . . . , ik) ∈ N
k : 〈N,+〉 |= ϕ(i1, . . . , ik)}, and

• for all tuples(i1, . . . , ik),( j1, . . . , jk) ∈N
k, we have(i1, . . . , ik)→a ( j1, . . . , jk) iff

〈N,+〉 |= ψa(i1, . . . , ik, j1, . . . , jk).

A transition system is said to bePresburger-presentableif it is isomorphic to a Pres-

burger transition system. Every presburger transition system is word-automatic [BG04,

BHMV94] since the structure〈N,+〉 is word-automatic (as we saw in Example 3.1.6)

and first-order queries are regularity preserving over automatic structures (Proposition

3.1.1). On the other hand, some word-automatic systems are not even Presburger-

presentable. For example, it can be seen that the word-automatic transition system

〈{0,1}∗,succ0,succ1,�〉 is not Presburger-presentable since the first-order theoryof

〈{0,1}∗,succ0,succ1,�〉 has a nonelementary lower bound [CH90, Sto74], while the

first-order theory of every fixed Presburger-presentable system can be solved in 3-fold

exponential time by any standard algorithm for checking satisfactions in Presburger

arithmetic (e.g. see [Koz06]).

The class of Presburger transition systems (and restrictions thereof) has been con-

sidered as generic frameworks for model checking in the literature and many powerful

semi-algorithms for computing reachable sets and reachability relations using repre-

sentations of semilinear sets have been fully implemented (e.g. see [Boi99, YKB09,

YKBB05, LAS, ABS01, BFLP08, FL02]). Although the class of Presburger transition

systems is strictly smaller than the class of word-automatic systems, it still subsumes
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many interesting classes of systems such as Minsky machinesand Petri nets, many

subclasses of which we shall encounter in the sequel. One of the most appealing

aspects of the class of Presburger transition systems is that it contains many natural

subclasses whose reachability relations are themselves Presburger-definable. This in-

cludes reversal-bounded counter systems [ISD+02, Iba78] and their extensions with

one free counter and/or discrete clocks [ISD+02, Iba78, DIB+00]; and many sub-

classes of Petri nets [LS04, Esp97b, LS05a].

One reason to consider the full class of word-automatic transition systems instead

of the subclass of Presburger transition systems is that there are natural models of com-

putation whose reachability relations can be captured within word-automatic frame-

work, but not within Presburger framework. Two such models include pushdown sys-

tems and prefix-recognizable systems. The framework of Presburger transition sys-

tems is not even powerful enough to capture the transition systems that are generated

by prefix-recognizable systems; the system〈{0,1}∗,succ0,succ1,�〉 is one such ex-

ample. It turns out that the framework of Presburger transition systems is powerful

enough to capture pushdown systems, although not their reachability relations.

Proposition 3.3.1 Pushdown systems are Presburger transition systems

Proof Sketch. Each configuration(qi,w)∈Q×Γ∗ of a pushdown systemP with states

Q= {q0, . . . ,qn−1} and stack alphabetΓ = {0,1} can be interpreted (in a bijective way)

as a tuple(i,bin(1w)) ∈ N×N. Note that the stack content is interpreted asbin(1w)

instead ofbin(w) so thatw = 000 andw = 0 are not interpreted as the same numbers.

The transition relations→a can also be easily defined as a formulaϕ(x1,y1,x2,y2)

in Presburger arithmetic. Obviously the changes in the finite state unit ofP can be

handled easily in Presburger arithmetic. To deal with the changes in the stack content,

first observe that testing whetherw has a suffix of the formu ∈ {0,1}∗ expressed

using a sequence of divisibility tests by 2 (at most|u| times), which is expressible in

Presburger arithmetic. For example, to check whetherw has a suffix of the form 01

can be done by testing that 26 |y1 and 2|⌊y1/2⌋. The changes in the stack content can

also be deal with using a sequence of divisions and multiplications by 2 (and perhaps

additionally additions/substractions by a 1).2

3.3.3 Rational transition systems

Rational transition systems are transition systems whose domain is a regular set of

words over some alphabet (like word-automatic systems) andwhose transition rela-
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tions are “rational”, which is a more general notion than regular relations. In or-

der to define the notion of rational systems, we need to first recall the standard no-

tion of finite-state input/output transducers (a.k.a. rational transducers). Arational

transducerR over the input alphabetΣ is an NWA over the alphabetΣε×Σε, where

Σε = Σ∪{ε}. The relationrealizedby R consists of precisely all tuples(v,w)∈Σ∗×Σ∗

where, for some
[

a1

b1

]
. . .

[
an

bn

]
∈L(R )⊆ (Σε×Σε)

∗, it is the case thatv= a1 . . .an and

w = b1 . . .bn. Note that in this case we do not necessarily have|v| = |w| since some

of the lettersai ’s andb j ’s might beε. A simple example of a rational relation is the

relation{(an,a2n) : n∈N} over the alphabetΣ = {a}, which can be easily proved to be

not a regular relation by an application of pumping lemma forregular languages. We

refer the reader to the textbook [Ber79] for a more thorough treatment of rational trans-

ducers and their basic properties. Arational transition systemis a transition system

S = 〈S,{→a}a∈ACT〉, where for some NWAA and rational transducers{Ra}a∈ACT,

it is the case thatS= L(A) and→a is realized byRa. Rational transducers are also

studied in the context of natural language processing (e.g.[JM00]).

The class of rational transition systems is more general than the class of word-

automatic transition systems, but is not known to be comparable to the class of tree-

automatic transition systems. On the other hand, unlike automatic systems, many sim-

ple problems are already undecidable for rational transition systems. For example, it

is undecidable to check whether a rational transition system has a self-loop [Mor00],

which is trivially decidable for word/tree automatic systems since the property can be

easily expressed in first-order logic. Other such problems include checking whether

a transition relation→a in the system is symmetric, reflexive, or transitive [Joh86],

all of which are easily expressible in first-order logic. Despite this, model checking

HM-logic enriched with inverse modality over rational transition systems and regular

atomic propositions is decidable [BG09] since the images and preimages of regular

languages under rational relations are effectively regular. A partial technique for com-

puting the transitive closure of rational relations has also been proposed by Dams et al.

in [DLS02].

In summary, although rational transition systems is a natural class of transition

systems and is more general than the class of word-automatictransition systems, it

remains to be seen whether it can be used to model natural classes of infinite-state

transition systems with decidable model checking that cannot already be modeled as

word-automatic systems. We also leave it as an open questionif the positive results in

this thesis can be extended in some way to the class of rational transition systems.
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3.3.4 ω-word automatic transition systems

ω-word automatic transition systems can be defined in the sameway as word-automatic

transition systems, but using NBWAs instead of NWAs. They can be easily seen as

a natural generalization of word-automatic transition systems (cf. [Bar07, BGR10,

Blu99, BG04]). They are also known to satisfy most properties which are satisfied

by word-automatic transition systems (e.g. closure under boolean combinations and

automata projections, and decidability of first-order logic). Similar notions can also be

defined forω-word automatic structures. The class ofω-word automatic structures is

quite expressive. For example, they include real numbers with addition〈R,+〉 even

with an extra test of whetherx is an integer [Blu99, BG04] and other interesting pred-

icates. It follows that any infinite-state transition system which can be defined in the

first-order theory of reals (possibly with extra tests for integers) are alsoω-automatic.

There are several interesting classes of infinite-state transition systems that are known

to be definable in the first-order theory of the reals including real-timed systems (cf.

[CJ99]). In fact, Comon and Jurski showed that even the reachability relation is de-

finable in the first-order theory of the reals. For these reasons, it is natural to adopt

ω-word automatic transition systems as a generic framework and consider whether

the results in this thesis for word/tree automatic systems can be proven forω-word

automatic systems. We leave this as future work.

We shall also mention some partial techniques that have beendeveloped for restric-

tionsω-word automatic systems. Legayet al. [BLW03, BLW09] have developed semi-

algorithms for computing reachability relations and LTL model checking forω-word

automatic systems when the given automata are weak-deterministic. These results are

orthogonal to the result in this thesis.
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Algorithmic metatheorems for

recurrent reachability

Recall that theproblem of recurrent reachability over word (resp. tree) automatic

systemsis defined as follows: given a presentationη of a word (resp. tree) automatic

systemSη = 〈S,{→a}a∈ACT〉, an initial configurations0∈S, and a NWA (resp. NTA)

A (called the “target automaton”), decide whetherv0 ∈ Rec(L(A))[→+]. That is, we

wish to decide whether there exists an infinite path fromv0 in Sη which visitsL(A)

infinitely often. Theglobal versionof this problem is simply to compute an NWA

(resp. NTA) representing the setRec(L(A))[→+], if this set turns out to be regular.

These problems are tightly connected with LTL model checking, as we shall see in the

next chapter.

As we mentioned in Proposition 3.1.6, the problem of recurrent reachability is

Σ1
1-complete (i.e. highly undecidable) for automatic systems. In this chapter, we

shall show that it becomes decidableif we are given an NWA (resp. NTA) represent-

ing the reachability relation of the automatic system as part of the input. In fact,

stronger results are shown in this chapter. Firstly, it turns out that in this case the set

Rec(L(A))[→+] is guaranteed to be effectively regular. Secondly, a succinct repre-

sentation of the witnessing infinite path as nondeterministic Büchi word/tree automata

can also be computed. As an immediate corollary, when we restrict to any subclass

C of word/tree automatic systems for which there exists an algorithm for computing

the reachability relations, we immediately obtain decidability for recurrent reachability

and its global version overC . In this sense, our result is an algorithmic metatheorem

for decidable recurrent reachability. The time complexityof our algorithm is polyno-

mial in the size of the automatonR which represents the reachability relation→+ of

81
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the word/tree automatic systemSη and the size of the target automatonA , on top of

the time taken to produceR from the input presentationη. We shall present our algo-

rithmic metatheorem for word automatic systems in Section 4.1, and for tree-automatic

systems in Section 4.2. In these sections, we shall also givedirect applications of our

algorithmic metatheorems foruniformlyderiving a polynomial-time complexity for re-

current reachability and its global version for pushdown systems and (regular) ground

tree rewrite systems, and an exponential-time complexity for prefix-recognizable sys-

tems. These turn out to be also optimal for the respective classes of systems. These

results are already known in the literature (e.g. see [EKS03, KPV02, Löd03, Löd06]).

In Chapter 6, we will use these algorithmic metatheorems forderiving new decidabil-

ity results for checking recurrent reachability, e.g., over reversal-bounded counter sys-

tems extended with discrete clocks, PA-processes, and order-2 collapsible pushdown

systems.

In Section 4.3, we give an extension of our algorithmic metatheorem for recurrent

reachability to handlegeneralized B̈uchi condition: given several automataA1, . . . ,An

(instead of one, as for the original problem) decide whetherthere exists an infinite path

visiting eachof the setsL(A1), . . . ,L(An) infinitely often. In fact, this extension is a

comparatively simple corollary of our algorithmic metatheorem for recurrent reacha-

bility over word/tree automatic systems. In this case, the complexity of our algorithm

becomes exponential inn and polynomial in the size of other input parameters, which

we show to be optimal. Using this result, we derive an exponential-time algorithm

for recurrent reachability with generalized Büchi condition for pushdown systems, for

which we give a PSPACE lower bound, and prefix-recognizable systems and regular

ground tree-rewrite systems, for which we give a matchingEXP lower bound. Inci-

dentally, this answers an open question by Löding [Löd06]concerning the decidability

of recurrent reachability with generalized Büchi conditions1.

In practice, it has been observed (cf. [AJNS04, AJRS06, BFLP08, BLW03, BLW09,

DLS02, Nil05]) that partial techniques for computing the reachability relations over

many generic frameworks have not been as successful in practice as partial techniques

for deriving reachability sets, although recent work by Cook et al. (cf. [CPR06b,

CPR06a]) sheds a light that they could be made practical. In Section 4.4, we study what

we can deduce when we are given an automatonR which represents an over/under ap-

proximation of the reachability relation→+, i.e.,→+⊆ L(R ) or L(R ) ⊆→+. Such

1Löding [Löd06] remarked that his technique for solving recurrent reachability for RGTRSs cannot
easily handle generalized Büchi condition, which he left as an open problem whether it is still decidable
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techniques could prove valuable when combined with partialtechniques for comput-

ing upper/under approximations of the reachability relations of word/tree automatic

systems.

In the next chapter, we shall apply our results from this chapter for deriving al-

gorithmic metatheorems for decidable LTL model checking with complex fairness

constraints, as well as model checking extensions ofFOREG(Reach) with recurrent

reachability operators. Part of the result in this chapter has been published in [TL08].

4.1 The word-automatic case

In this section, we prove an algorithmic metatheorem for decidable recurrent reacha-

bility over Σ∗-automatic systems, which we will apply for deriving an optimal com-

plexity of checking recurrent reachability over PDSs and prefix-recognizable systems.

Analyzing the proof of our main theorem, we shall also deducethat with an extra

polynomial-time overhead we may compute four “small” wordsoverΣ which repre-

sent periodic infinite paths witnessing positive instancesof the problem.

4.1.1 Main theorem

The setting of our algorithmic metatheorems is simple. Let us start with a classC

of presentations of word-automatic systems. What conditions are sufficient for ensur-

ing decidable recurrent reachability overC? We shall now give one such sufficient

condition.

Definition 4.1.1 A classC of presentations of automatic systems is said to beclosed

under transitive closureif, for each automatic transition systemSη = 〈S,{→a}a∈ACT〉
presented by someη∈ C overΣ, the transitive closure→+ of

(
S

a∈ACT→a
)
⊆Σ∗×Σ∗

is regular. Furthermore, the classC is effectively closed under transitive closureif

there exists an algorithmMC that computes an NWAR + recognizing this transitive

closure relation for each input presentationη ∈ C . We say thatMC is an effective

transitive closure witness (ETC-witness)of C .

Notice that above we may alternatively define that the non-strict reachability relations

→∗ are effectively regular. However, these two definitions areequivalent since these

two relations are polynomially interdefinable (see Example3.1.7). In the sequel, we

shall tacitly assume thatMC runs in at least linear time since such an algorithm should
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read the entire input. The output of the algorithmM on inputη is writtenM (η) with

size‖M (η)‖, which obviously satisfies‖M (η)‖ ≤ TIMEM (‖η‖). We now state our

algorithmic metatheorem for decidable recurrent reachability.

Theorem 4.1.1 SupposeC is class of automatic systems closed under transitive clo-

sure. Then, given a presentationη ∈ C overΣ of an automatic systemSη = 〈S,{→a

}a∈ACT〉 and an NWAA overΣ, the set Rec(L(A)) is regular.

Moreover, ifC is effectively closed under transitive closure with an ETC-witness

M , then an NWA recognizing Rec(L(A)) of size O((‖M (η)‖+ ‖η‖)×‖M (η)‖×
‖A‖) is computable in time TIMEM (‖η‖)+O(|Σ|2×‖M (η)‖3×‖A‖2).

Observe that once an NWAA ′ recognizingRec(L(A)) has been computed, we can

check whetherv∈Rec(L(A)) for a given wordv∈ Σ∗ in timeO(|Σ|×|v|×‖A ′‖) by a

standard membership algorithm for NWAs. In other words, assuming effective closure

under transitive closure for the classC of presentations of automatic systems, recurrent

reachability is decidable in polynomial time assuming thatthe reachability relation is

given as part of the input.

4.1.2 Proof of the main theorem

We now give a proof of Theorem 4.1.1. Firstly, our assumptionof closure under tran-

sitive closure gives an NWAR over the alphabetΣ⊥×Σ⊥ recognizing the transitive

closure→+ of
(

S

a∈ACT→a
)
. By definition, we havev∈ Rec(L(A)) iff there exists

a sequence{vi}i∈N of words inΣ∗ with v0 = v such thatvi−1⊗ vi ∈ L(R ) andvi ∈
L(A) for all i > 0. We now divide the setRec(L(A)) into two setsRec	(L(A)) and

Rec։(L(A)), whereRec	(L(A)) contains words with witnessing sequence{vi}i∈N

that satisfiesv j = vk for somek > j ≥ 0, andRec։(L(A)) contains words with a wit-

nessing sequence{vi}i∈N that satisfiesv j 6= vk for all distinct j,k∈N. Clearly, it is the

case that

Rec(L(A)) = Rec	(L(A))∪Rec։(L(A)).

Hence, we may separately construct NWAs forRec	(L(A)) andRec։(L(A)), from

which we can easily compute their union. Let us start with theeasy case of constructing

an NWA A	 recognizingRec	(L(A)).

Lemma 4.1.2 An NWAA	 of size at most‖A‖× ‖R ‖× (‖R ‖+ ‖η‖) recognizing

Rec	(L(A)) can be constructed in time O(|Σ|2×‖A‖×‖R ‖× (‖R ‖+‖η‖)).
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v w

Figure 4.1: A witnessing sequence for v∈ Rec	(L(A)) of lasso shape.

Proof. Observe that, for each wordv ∈ Σ∗, v ∈ Rec	(L(A)) iff there exists a word

w ∈ Σ∗ such thatv→∗ w, w→+ w, andw ∈ L(A). The pair(v,w) is a witnessing

sequence of lasso shape; see Figure 4.1. To this end, we simply apply Proposition

3.1.2 on the formula

ϕ(x) := ∃y(x→∗ y∧y→+ y∧y∈ L(A)).

Observe that an NWA for→∗ can be obtained by taking a union of the NWAR for→+

and the NWA (of size‖η‖) for
(

S

a∈ACT→a
)
. Therefore, we obtain an upper bound

of ‖A‖× ‖R ‖× (‖R ‖+ ‖η‖) for the size ofA	, and an upper bound ofO(|Σ|2×
‖A‖×‖R ‖× (‖R ‖+‖η‖)) for the amount of time needed to computeA	. 2

Thus, it remains to construct an NWAA։ recognizingRec։(L(A)).

Lemma 4.1.3 An NWAA։ of size O(‖A‖×‖R ‖2) recognizing Rec։(L(A)) can be

constructed in time O(|Σ|2×‖A‖2×‖R ‖3).

The proof of this lemma is substantially more involved than the proof of the previ-

ous lemma. Therefore, we first give the proof idea. Firstly, by applying pigeonhole

principles on word lengths, we can show that it suffices to consider witnessing infinite

sequences{vi}i∈N such that there exist two sequences{αi}i∈N and{βi}i∈N of words

overΣ such that:

1. |αi|> 0 for all i > 0,

2. |αi|= |βi | for all i ∈N, and

3. vi = β0 . . .βi−1αi for all i ∈ N.

See Figure 4.2 for an illustration of witnessing infinite sequences of this special form.

Such pairs of sequences{αi}i∈N and{βi}i∈N can then be represented as a pair(α,β)

of ω-words overΣ∪{#}, where # is a new symbol not inΣ and

α := α0#α1#. . . ,

β := β0#β1#. . . .
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v0 = α0

v1 = β0α1

v2 = β0β1α2

v3 = β0β1β2α3
...

Figure 4.2: Witnessing infinite sequences {vi}i∈N of special form. The lengths of the

words in the sequence are strictly increasing and that, for all i ∈ N, |αi|= |βi |.

The strategy then is to construct an NBWAB that acceptsω-wordsα⊗β correspond-

ing to witnessing sequences of this special form. OnceB is constructed, it will be easy

to obtainA։. If we assume that the NWAsA andR are deterministic, the construction

of B is then rather immediate. We will, however,refrain from determinizingthe NWAs

A andR since this will cause an exponential blow-up in the size of the automatonB.

Instead, by further applying pigeonhole principles on the runs ofA and infinite Ram-

sey theorem on the runs ofR , we will prove sufficiency of infinite sequences of the

above special form that satisfy further technical restrictions (see below) as witnesses.

An NBWA B that recognizes such sequences can then be constructed in polynomial

time.

We shall now elaborate the details of the proof of Lemma 4.1.3. Let A = (Σ⊥×
Σ⊥,Q,δ,q0,F) andR = (Σ,Q′,δ′,q′0,F

′). The following lemma asserts that we may

restrict ourselves to witnessing infinite sequences of a special form.

Lemma 4.1.4 For every word v∈ Σ∗, it is the case that v∈Rec։(L(A)) iff there exist

two infinite sequences{αi}i∈N and{βi}i∈N of words overΣ such that

(1) α0 = v and|αi |> 0 for all i > 0,

(2) |αi|= |βi | for all i ∈ N,

(3) there exists an infinite runπ of A onβ0β1 . . . such that, for all i∈N, the NWAA

acceptsαi+1 from q, where q= π(|β0 . . .βi |),

(4) there exists an infinite runπ′ of R on (β0× β0)(β1⊗ β1) . . . such that, for all

i ∈N, R acceptsαi⊗βiαi+1 from q′ where q′ = π′(|β0 . . .βi−1|).
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· · · · · · · · ·
v0 v1 v2

Figure 4.3: An illustration of ω-chains.

One direction of the lemma is easy: if (1)–(4) hold, then fromthe infinite sequences

{αi}i∈N and{β}i∈N we can form a new sequence{vi}i∈N with vi := β0 . . .βi−1αi . Con-

dition (3) ensures thatvi ∈L(A) for all i > 0, and condition (4) implies thatvi→+ vi+1

for all i ∈N. This implies thatv∈Rec։(L(A)) and thus proving sufficiency in Lemma

4.1.4. To prove the converse, we will prove a more general lemma concerningω-

chains, which are simply the transitive closures of any one-directional infinite path

(see Figure 4.3). More precisely, letR⊆ Σ∗×Σ∗ be a (not necessarily transitive) bi-

nary relation andU ⊆ Σ∗ a language. A(transitive) U-colouredω-chain in Rfrom

a wordv ∈ Σ∗ is an infinite sequence{vi}i∈N of distinct words in Σ∗ such that the

following three properties are satisfied:

• v0 = v,

• for each integeri > 0, it is the case thatvi ∈U , and

• for each pair of integersj ≥ i ≥ 0, we have(vi ,v j) ∈R.

Figure 4.3 gives an illustration ofω-chains. We write CHAIN (U,R) to denote the

set of wordsv ∈ Σ∗ from which there exists aU -colouredω-chain in R. Observe

that CHAIN (L(A),→+) coincides withRec։(L(A)). The following proposition is a

Ramsey-type result forω-chains in word-automatic systems.

Proposition 4.1.5 Suppose thatN is an NWA overΣ, andT an NWA overΣ⊥×Σ⊥
recognizing a regular relation R⊆ Σ∗×Σ∗. Then, for every word

v∈ CHAIN (L(N ),L(T )),

there exists a word v′v′′ such that

1. |v′|= |v| and|v′′|> 0

2. v⊗v′v′′ ∈ L(T ),
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3. there exists an accepting runρ of N on v′v′′, and a runρ′ on T on v′ ⊗ v′

such that v′′ ∈ CHAIN (L(N q),L(T q′)), where q:= ρ(|v|), q′ := ρ′(|v|), and

N q (resp.T q′) is the NWAN but with q (resp. q′) as the initial state.

Proof. Suppose thatv ∈ CHAIN (L(N ),L(T )). Then, there exists a sequenceσ =

{vi}i∈N of distinct words overΣ such thatv0 = v, and it is the case that, for alli >

0, the wordvi is in L(N ) with accepting runηi , and for all distinct pair of indices

j > i ≥ 0, we havevi ⊗ v j ∈ L(T ). As there are only finitely many different words

of length |v| but infinitely many words inσ, we may assume that|vi | > |v| for all

i ≥ 1; for, otherwise, we may simply omit these words fromσ. Now every wordvi ,

wherei > 0, can be written asvi = uiwi for some wordsui ,wi such that|ui| = |v| and

|wi |> 0. As there are only finitely many different words of length|v| and finitely many

different runs ofN of length|v|, by pigeonhole principle there must existk > 0 such

thatη j [0, |v|] = ηk[0, |v|] (and sou j = uk by the definition of NWA runs) for infinitely

many j > 0. Letv′ := uk andρ := ηk[0, |v|]. Therefore, we may discard all wordsvi in

σ with i ≥ 1 such thatη is not a prefix ofηi . By renaming indices, call the resulting

sequenceσ = {vi}i∈N and, for alli ≥ 1, denote byηi the accepting run ofN onvi that

hasρ as a prefix. Notice thatσ is still a witness forv∈ CHAIN (L(N ),L(T )). So, for

k > j ≥ 0, let θ j ,k denote the accepting run ofT on v j ⊗ vk. Let X denote thefinite

set of all runs ofT on v′⊗ v′. Notice that it is not necessarily the case that|X | = 1

sinceT is nondeterministic. Therefore, consider the edge-labeled undirected graph

G = 〈V,{Eu}u∈X 〉 such thatV = Z>0 and

Eu = {{ j,k} : 0 < j < k andu is a prefix ofθ j ,k}.

Notice that{Eu}u∈X is a partition of{{ j,k} : j 6= k,k > 0}, and soG is a complete

graph. By infinite Ramsey theorem,G has a monochromatic complete infinite sub-

graphH = 〈V ′,Eu〉 for someu ∈ X . Setρ′ := u. Notice that if the elements ofV ′

are i1 < i2 < .. ., then the runθi j ,ik (for all k > j > 0) hasu as a prefix. Therefore,

we can discard all wordsvi (i > 0) in σ such thati /∈V ′ and by renaming indices call

the resulting sequenceσ = {vi}i∈N. We now setv′′ to be the unique wordw such that

v1 = v′w. It is easy to see that (1) and (2) are satisfied. Furthermore,it is easy to check

thatv′′ ∈CHAIN (L(N q),L(T q′)) with a witnessing sequence{wi}i>0, wherewi is the

unique word such thatvi = v′wi for all i > 0. 2

Now it is not difficult to complete the proof of Lemma 4.1.4. Givenv∈Rec։(L(A))=

CHAIN (L(A),L(T )), we will inductively construct the desired sequences{αi}i∈N
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and{βi}i∈N, along with the runπ of the NWA A and the runπ′ of the NWA R , by

using Proposition 4.1.5 at every induction step. The gist ofthe proof is that from

the wordv′v′′ given by Proposition 4.1.5 at induction stepk, we will setβk = v′ and

αk+1 = v′′, and extend the partial runsπ andπ′ in Lemma 4.1.4. Notice that we have

v′′ ∈CHAIN (L(N q),L(T q′)), which sets up the next induction step. See the appendix

for a detailed argument. This completes the proof of Lemma 4.1.4.

It is now easy to construct an NBWAB that recognizesω-words of the formα⊗β
satisfying

α := α0#α1#. . . ,

β := β0#β1#. . .

for some{αi}i∈N and{βi}i∈N satisfying the conditions in Lemma 4.1.4. The automa-

ton B will attempt to simultaneously guess the runsπ andπ′, while at the same time

checking that the runs satisfy the conditions (3) and (4) in Lemma 4.1.4. To this end,

B will run a copy ofA andR , while simultaneously also running several other copies

of A andR to check that the runsπ andπ′ guessed so far satisfy the conditions (3)

and (4) along the way. The automatonB consists of three components depicted as Box

1, Box 2, and Box 3 in Figure 4.4. The first box is used for reading the prefix of the

input before the first occurrence of
[

#

#

]
, while the other boxes are used for reading the

remaining suffix. Boxes 2-3 are essentially identical, i.e., they have the same sets of

states and essentially the same transition functions. WhenB arrives in Box 2, it will

read a single letter inΣ×Σ and goes to Box 3 so as to make sure that|αi |> 0 for each

i > 0. WhenB is in Box 3, it will go to Box 2 upon reading the letter
[

#

#

]
. We will

set all states in Box 2 as the final states so as to make sure thatinfinitely many
[

#

#

]
is

seen, i.e., the sequences{αi}i and{βi}i are both infinite, and each wordsαi andβi are

finite.

Box 3

[
#

#

] [
a

b

]

[
#

#

]Box 1 Box 2

Figure 4.4: A bird’s eye view of the Büchi automaton B
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More precisely, the NBWAB =

(
Σ2∪

{[
#

#

]}
,S,∆,s0,SF

)
is defined as follows.

Define

P := (Q×Q′×Q′)∪ (Q×Q′×Q×Q′×Q′×{2,3}).

Intuitively, Q×Q′×Q′ will be the states in Box 1 andQ×Q′×Q×Q′×Q′×{i} will

be the states in Boxi. The initial state is defined to bes0 := (q0,q′0,q
′
0). The first and

the last components in each state are meant for guessing the infinite runsπ andπ′. The

second component of each state in Box 1 is used for guessing a prefix of the accepting

run ofR onα⊗β0α1. The automatonB will finish this guessing when it reaches Box

3 upon the completion of parsingα1⊗β1. WhenB is in Box 2 or 3 readingαi ⊗βi,

wherei > 0, the third and fourth components of the states are used for checking that

β0 . . .βi−1αi⊗β0 . . .βiαi+1 ∈ L(R ), which will be completed in the next iteration. We

now formally define the transition function. Let

∆
(

(q,q′,q′′),
[

a

b

])
:=





δ(q,b)×δ′
(

q′,
[

a

b

])
×δ′

(
q′′,

[
b

b

])
, if a,b 6= #

(q,q′′,q,q′,q′′,2) , if a = b = #

/0 , otherwise.

and, whenB is in a state inQ×Q′×Q×Q′×Q′×{i}, wherei = 2,3, anda,b 6= # we

define

∆
(

(q1,q2,q
′
1,q
′
2,q
′′
2, i),

[
a

b

])
:= δ(q1,b)×δ′

(
q2,

[
a

b

])
×δ(q′1,a)×

δ′
(

q′2,
[
⊥
a

])
×δ′

(
q′′2,

[
b

b

])
×{3}.

If q′1 ∈ F andq′2 ∈ F ′, then we set

∆
(

(q1,q2,q
′
1,q
′
2,q
′′
2,3),

[
#

#

])
= (q1,q

′′
2,q1,q2,q

′′
2,2).

Finally, the set of final states areSF := Q×Q′×Q×Q′×Q′×{2}. Correctness of this

construction is immediate. Furthermore, it is easy to see that the construction takes

timeO(|Σ|2×‖A‖2×‖R ‖3).
Now, fromB we can easily compute the NWAA։ = (Q1,Σ,δ1,q1

0,F
1) that recog-

nizesRec։(L(A)). The automatonA։ accepts the set of finite wordsα0 such that the

word α0#α1#. . .⊗β0#β1#. . . is accepted byB for some{αi}i>0 and{βi}i∈N. There-

fore, we will set the new set of statesQ1 to beQ×Q′×Q′, i.e., the first component of

B in Figure 4.4. We then apply projection operation on the transition function∆ of B
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to obtainδ1. More precisely, ifa∈ Σ, we set

δ1((q1,q2,q
′
2),a) =

[

b∈Σ
∆
(

(q1,q2,q
′
2),

[
a

b

])
.

Finally, the new setF1 of final states will be those states inQ1 from whichB can accept

someω-words of the form
[

#

#

]
w for someω-wordw. For this, a simple modification of

the standard linear-time algorithm for testing nonemptiness for NBWA can be applied

(cf. Proposition 2.2.6), which still takes linear time. Finally, it is easy to check that the

size of the resulting NWA isO(‖A‖×‖R ‖2), and the total time taken to compute it

is O(|Σ|2×‖R ‖3×‖A‖2) on top of the time taken to computeR . This completes the

proof of Lemma 4.1.3 and hence the proof of Theorem 4.1.1.

Remark 4.1.1 As we mentioned earlier, the proof of Lemma 4.1.3 can be greatly sim-

plified by determinizing the NWAR . By doing this, we avoid the use of Ramsey

theorem, but at the expense of an exponential blow-up, i.e.,the algorithm no longer

runs in polynomial time. Such a proof technique (without Ramsey theorem) was used

in [KRS05] for proving a König’s lemma for automatic partial orders. In fact, our

proof above directly improves the complexity of the resultsfrom [KRS05].�

4.1.3 A small witness for recurrent reachability

The following corollary of the proof of Theorem 4.1.1 is rather immediate.

Corollary 4.1.6 Suppose thatC is a class of automatic systems effectively closed un-

der transitive closure with an ETC-witnessM . Then, given a presentationη ∈ C over

Σ of an automatic systemSη = 〈S,{→a}a∈ACT〉, a word v0 ∈ S, and an NWAA over

Σ, we can effectively decide whether v0 ∈ Rec(L(A)) and, if so, produce a witness of

the form:

1. (v0,w) ∈ Σ∗×Σ∗ such that v0→∗ w, w→+ w, and w∈ L(A), or

2. (v0,w0,v1,w1)∈ (Σ∗)4 such that whenever s0 := v0 and si := w0wi−1
1 v1 (for each

integer i≥ 1), it is the case that:

• si →+ sj for each pair of integers j> i ≥ 0, and

• si ∈ L(A) for each integer i> 0.

Furthermore, the total running time of the algorithm is TIMEM (‖η‖) + O(|Σ|2×
‖M (η)‖3×‖A‖2×|v0|).
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We shall now sketch the proof of this corollary. Wheneverv0 ∈ Rec(L(A)), we either

havev0 ∈ Rec	(L(A)) or v0 ∈ Rec։(L(A)). For the former case, as in the proof of

Lemma 4.1.2, we may apply the construction from the Proposition 3.1.1 on the formula

ψ(y) := v0→∗ y∧y→+ y∧y∈ L(A)

and obtain an NWAA ′	 of sizeO(|v0|×‖A‖×‖R ‖× (‖R ‖+‖η‖)). Therefore, we

may easily compute a witnessing wordw ∈ L(A ′	) such that|w| ≤ ‖A ′	‖. For the

casev0 ∈ Rec։(L(A)), we work from the NBWAB that was obtained during the

computation ofA։. FromB, we may compute a new NBWAB ′ that recognizesω-

wordsα⊗β ∈ L(B) of the form

α := v0#α1#. . .

β := β0#β1#. . .

for some sequences{αi}i>0 and{βi}i∈N of words inΣ∗. The NBWA B ′ can be com-

puted by taking a product of Box 1 in Figure 4.4 with a simple NWA that recognizes

only the wordv0. To obtain the wordsw0,v1,w1 ∈ Σ∗, we simply apply the standard

nonemptiness algorithm for NBWA onB ′. In fact, the maximum length of these words

is bounded by the size of the NBWAB ′. The complexity of the algorithm in Corollary

2 is immediate from the complexity of the algorithm from Theorem 4.1.1.

4.1.4 Two appetizer examples

We now give two immediate applications of Theorem 4.1.1 for deriving an optimal

complexity (up to a polynomial) of checking recurrent reachability of pushdown sys-

tems and prefix-recognizable systems. More concrete examples will be given in later

chapters.

Pushdown systems

Recall that pushdown systems can be thought of as word-automatic systems (see Ex-

ample 3.1.2). Caucal [Cau90] proved that the reachability relations of pushdown sys-

tems are rational, for which a rational transducer is computable in polynomial time.

Later in [Cau92] Caucal noted that the reachability relations are in fact also regular,

for which NWAs can be computed within the same time complexity.
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Proposition 4.1.7 ([Cau90, Cau92])Given a PDSP , the reachability relation→∗ of

P is regular. Furthermore, an NWA for→∗ can be computed in time polynomial in

‖P‖.

Notice that this proposition immediately implies the regularity of the strict reachability

relation→+, for which an NWA can be computed in polynomial time (see Example

3.1.7). Combining this with Theorem 4.1.1, the following theorem is immediate.

Theorem 4.1.8 Recurrent reachability for PDSs is decidable in polynomialtime. Fur-

thermore, the set of configurations Rec(L(A)) which satisfies the recurrent reachabil-

ity properties is also regular for which an NWA is computablein polynomial time.

This theorem is not new. In fact, it can be inferred from either from the result of Löding

[Löd03, Löd06] concerning recurrent reachability of ground tree rewrite systems or the

result of Esparza, Kucera and Schwoon [EKS03] concerning LTL model checking over

PDSs with “regular valuations”.

For the sake of completeness, we shall now sketch a proof of Proposition 4.1.7.

We start with the following well-known result, which can be proven using the standard

“saturation” construction (e.g. see [BEM97, EHRS00]).

Proposition 4.1.9 Given a PDSP and an NWAA , one can compute in polynomial

time two automataApre∗ and Apost∗ recognizing pre∗(L(A)) and post∗(L(A)), re-

spectively.

In fact, the algorithm given in [EHRS00] computes these automata in cubic time,

and the sizes ofApre∗ andApost∗ are at most quadratic in‖A‖. Now, given a PDS

P = (ACT,Γ,Q,δ), we writeDom(P ) for the set of configurationsqu∈QΓ∗ such that

((q,a,u),(q′,u′)) ∈ δ for somea∈ ACT, q′ ∈Q andu′ ∈ Γ∗. To construct an NWAR

recognizing the reachability relation ofP , we shall need the following easy lemma.

Lemma 4.1.10 Given a pushdown systemP = (ACT,Γ,Q,δ) and two configurations

q1u1,q2u2 ∈ QΓ∗, then q1u1→∗ q2u2 iff there exists a configuration q3u3 of P , which

satisfies either q3u3 ∈ Dom(P ) or u3 = ε, and words x,v1,v2 ∈ Γ∗ such that u1 = xv1,

u2 = xv2, and q1v1→∗ q3u3→∗ q2v2.

This lemma can be easily proved by induction on the length of the path witnessing

q1u1→∗ q2u2. Now constructing the NWAR for the reachability relation→∗ of P is

simple. First, we use Proposition 4.1.9 to compute the NWAsAC
pre∗ andAC

post∗ that rec-

ognize, respectively,pre∗(C) andpost∗(C) for every configurationC ∈ Dom(P )∪Q.
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Then, on inputq1u1⊗ q2u2, the NWA R first remembers(q1,q2) in its finite mem-

ory, andguessesa configurationC ∈ Dom(P )∪Q and a position at which the initial

common prefixx in Lemma 4.1.10 ends. The automatonR then simultaneously runs

the automataAC
pre∗ andAC

post∗ to verify that the top partv1 and the bottom partv2 of

the remaining input word (preceding the padding symbol⊥) satisfyq1v1 ∈ L(AC
pre∗)

andq2u2 ∈ L(AC
post∗). By Proposition 4.1.9, NWAs forpre∗(C) andpost∗(C) can be

computed in polynomial time for each configurationC∈ Dom(P )∪Q. Hence, we can

also compute the NWAR in polynomial time.

Prefix-recognizable systems

We now use Theorem 4.1.1 to infer the decidability of recurrent reachability for prefix-

recognizable systems with optimal complexity. Recall thatprefix-recognizable sys-

tems can be thought of as word-automatic systems (see Example 3.1.3). It turns out that

the reachability relations for prefix-recognizable systems are also regular, for which

NWAs can be computed in exponential time.

Proposition 4.1.11Given a prefix-recognizable system‖P‖, the reachability relation

→∗ of P is regular. Furthermore, an NWA for→∗ can be computed in time exponential

in ‖P‖.

As for PDSs, this proposition also implies the regularity ofthe strict reachability re-

lations of prefix-recognizable systems, for which NWAs can be computed within the

same time complexity. To prove the above proposition, we first use the well-known fact

(e.g. see [Cac02, Löd03]) that given a prefix-recognizablesystemP = (ACT,Γ,Q,δ)

we could construct another prefix-recognizable systemP ′ = (ACT,Γ′,Q,δ′) such that

each rule((q,a,A),(q′,A ′),A ′′) satisfiesL(A ′′) = Γ∗. In other words, theprefix con-

straintsin the original prefix-recognizable systems have been removed. This fact can

be proven via the standard technique for prefix-rewrite systems (cf. [Cac02, EKS03,

Löd03]) of annotating the runs ofeachNWA representing a prefix constraint ofP in

the new alphabetΓ′ and each rule inδ′, which causes the size ofΓ′ andδ′ to be ex-

ponential in the number of prefix constraints inP (but polynomial in the rest of the

parameters). One could now proceed in exactly the same way asin the proof of Propo-

sition 4.1.7 of the previous example, and infer that the reachability relation forP ′ is

regular, for which an NWA can be computed in time polynomial in ‖P‖.
Combining Proposition 4.1.11 and Theorem 4.1.1, we obtain the desired result on

recurrent reachability for prefix-recognizable systems.
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Theorem 4.1.12Recurrent reachability for prefix-recognizable systems isdecidable

in exponential time. Furthermore, the set Rec(L(A)) which satisfies the recurrent

reachability properties is also regular for which an NWA is computable in exponential

time.

This theorem was previously known, e.g., it can be easily derived from the result of

Kupferman, Piterman, and Vardi [KPV02]. In addition, it turns out that the complexity

given in the preceding theorem is optimal in the sense that the problem isEXP-hard,

which can be easily deduced from the recent result of Göller[Göl08] on theEXP-

completeness of the reachability problem for prefix-recognizable systems.

4.2 The tree-automatic case

In this section, we extend our algorithmic metatheorem for recurrent reachability over

word-automatic systems to tree-automatic systems, which we apply for deriving an

optimal complexity of checking recurrent reachability over regular ground tree rewrite

systems. The proof in this section is substantially more technical than the proof from

the previous section since we need to reason about many different branches of the trees

at the same time. Nonetheless, the proof idea is essentiallythe same: we encode an

infinite sequence of trees as an infinite tree which will be recognized by a nondeter-

ministic top-down Büchi automaton. Therefore, the readeris advised to first read the

construction from the previous section.

4.2.1 Main theorem

Let us first state the tree analogue of Definition 4.1.1.

Definition 4.2.1 A classC of presentations of tree-automatic systems is said to be

closed under transitive closureif, for each tree-automatic systemSη = 〈S,{→a}a∈ACT〉
presented by someη ∈ C , the transitive closure→+ of

(
S

a∈ACT→a
)

is tree-regular.

Furthermore, the classC is effectively closed under transitive closureif there exists an

algorithmMC that computes an NTAR + recognizing this transitive closure relation

for each input presentationη ∈ C . We say thatMC is an effective transitive closure

witness (ETC-witness)of C .

As before, we shall tacitly assume thatMC runs in at least linear time since such an

algorithm should read the entire input. The output of the algorithm M on inputη is
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writtenM (η) with size‖M (η)‖, which obviously satisfies‖M (η)‖≤ TIMEM (‖η‖).
We now state our algorithmic metatheorem for decidable recurrent reachability for

tree-automatic systems.

Theorem 4.2.1 Suppose thatC is a class of tree-automatic presentations that are

closed under transitive closure. Then, given a presentation η ∈ C of a TREEk(Σ)-

automatic systemSη = 〈S,{→a}a∈ACT〉 and an NTAA overTREEk(Σ), it is the case

that the set Rec(L(A)) is tree-regular.

Moreover, ifC is effectively closed under transitive closure with an ETC-witness

M , then an NTA recognizing Rec(L(A)) of size O(‖A‖×‖M (η)‖2) is computable in

time TIMEM (‖η‖)+O(|Σ|2×‖R ‖6×‖A‖4).

Observe that the time complexity obtained in this theorem, albeit still polynomial, is

slightly worse than the time complexity obtained in the wordcase (see Theorem 4.1.1).

4.2.2 Preliminaries

We will first fix some definitions and notations that we will usein the proof of Theorem

4.2.1. Ak-ary (linear) context treeover the labeling alphabetΣ with variablesX =

{x1, . . . ,xn} is a treeT = (D,τ)∈ TREEk(Σ∪X ) such that for eachi = 1, . . . ,n, there is

exactly one nodeui ∈D with τ(ui) = xi ; furthermore,ui is a leaf. The leavesu1, . . . ,un

are also calledcontext leaves. To emphasize which variables are inT ′, we will often

write T[x1, . . . ,xn] for T. Observe that whenevern = 0 the context treeT is just a

normal tree (a.k.a.ground tree). Given ground treest1, . . . , tn ∈ TREEk(Σ), the tree

T[t1, . . . , tn] is the ground treeT[t1/u1, . . . , tn/un], obtained by replacing all context

leavesu1, . . . ,un by the ground treest1, . . . , tn, respectively. We also defineT⊗T just

as we defined the operator⊗ for ground trees, but we replace the label
[

xi

xi

]
by xi .

For a context treeT ′ = (D′,τ′) and a treeT = (D,τ), we writeT ′ � T if D′ ⊆ D and

τ′(u) = τ(u) wheneveru∈D′ andu is not a context leaf.

Given an NTAA = (Σ,Q,δ,q0,F) over TREEk(Σ), we now extend the notion of

runs ofA to k-ary context treesT = (D,τ) overΣ with variablesX = {x1, . . . ,xn} and

context leavesu1, . . . ,un. First, we definevirt (T) to be thek-ary treeT ′ = (D′,τ′)
over the alphabetΣ′ := Σ∪X ∪ {$}, where $/∈ Σ, such thatD′ = D∪ {vi : v ∈ D \
{u1, . . . ,un},1≤ i ≤ k} and

τ′(u) =

{
τ(u) if u∈ D,

$ otherwise.
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Observe that this definition is to a large extent similar to the special case of ground

trees, except that we treat the context leavesu1, . . . ,un in the original context treeT as

virtual leaves. Arun of A on T, then, is a mappingρ : D′→ Q′ that can be defined in

the same way as for ground trees by treatingu1, . . . ,un as virtual leaves. We say thatρ
is potentially acceptingif ρ(u)∈ F for each leafu∈D′−{u1, . . . ,un}. In other words,

potentially accepting runsmightbecome accepting after we replace the context leaves

with some ground trees.

We shall also need the definition ofunranked treesas a conceptual tool. Anun-

ranked treeover a potentially infinite labeling alphabetΣ is a tree over the labeling

alphabetΣ and some direction alphabetϒ = {0, . . . ,k}, for some integerk > 1, with

a potentially infinite tree domain. Notice that the direction alphabet of unranked trees

are notapriori fixed, although they are finitely branching.

4.2.3 Proof of the main theorem

Let ϒ = {1, . . . ,k}. Let R be the NTA over TREEk(Σ⊥)×TREEk(Σ⊥) that recognizes

the transitive closure→+ of
(

S

a∈ACT→a
)
. For the rest of the proof, we writeA =

(Q1,δ1,q1
0,F1) andR = (Q2,δ2,q2

0,F2). By definition, for every treeT ∈ TREEk(Σ),

we haveT ∈ Rec(A) iff there exists an infinite sequence{Ti}i∈N of trees in TREEk(Σ)

such thatT0 = T, Ti−1→+ Ti , andTi ∈ L(A) for all i > 0. As in the case of words,

we shall prove that it is sufficient to consider only infinite sequences of trees of a

special form that can be recognized by a Büchi infinite-treeautomatonB, after which

constructing the desired NTAA ′ for Rec(A) will be easy. Unlike in the word case,

we shall find it notationally simplernot to treat separately trees with looping and non-

looping witnessing sequences.

Just as in the word case, we shall apply pigeonhole principles on thestructureof

the subtrees in the witnessing infinite sequence to obtain a witnessing infinite sequence

in a special form. The main difference in the tree case is thatthe number of branches

(as well as the length thereof) of the trees appearing in the witnessing sequence could

all grow indefinitely. To this end, we shall need the following definition.

Definition 4.2.2 For any context tree T′[x1, . . . ,xn] = (D′,τ′)∈ TREEk(Σ∪{x1, . . . ,xn})
and a tree T= (D,τ)∈ TREEk(Σ), we write T′[x1, . . . ,xn]⊑ T (or just T′⊑ T) if, when-

ever u1, . . . ,un, are the context leaves in T labeled by x1, . . . ,xn, respectively, it is the

case that

• for each i= 1, . . . ,n, we have ui /∈ D,
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a

a

x

c ⊑
f

b g

a b

Figure 4.5: An illustration of the relation ⊑.

• D′−{u1, . . . ,un} ⊆ D, and

• ui = vir i for some ri ∈ ϒ and vi ∈ D∩D′.

In other words,T ′ ⊑ T if all the nodes inT ′ are inT except for the context leaves. See

Figure 4.5 for an example. Note that in the word case the relation⊑ simply reduces to

comparing the length of two words. The following lemma givesa basic fact about the

relation⊑.

Lemma 4.2.2 Given trees T1,T2 ∈ TREEk(Σ), there exists a context tree T with vari-

ables x1, . . . ,xn (for some n∈N) such that the following two conditions hold:

(1) T[x1, . . . ,xn]⊑ T2, and

(2) for some trees t1, . . . , tn ∈ TREEk(Σ), it is the case that T[t1, . . . , tn] = T1.

Furthermore, the context tree T is unique up to relabeling ofthe context leaves.

As an illustration of Lemma 4.2.2, we may takeT1 to be the tree

a
a
a

a b

c andT2 to

be the right tree in Figure 4.5. The unique context treeT satisfying the two prescribed

conditions in Lemma 4.2.2 is the left tree in Figure 4.5. The proof of the lemma is easy,

which we relegate into the appendix. We are now ready to statea normal form lemma

(analogous to Lemma 4.1.4) for the infinite sequences witnessingT ∈Rec(L(A)).

Notation. For the rest of the proof, we shall use the following notation. Given an

NTA N = (Σ,Q,δ,q0,F) over TREEk(Σ) and a stateq∈Q, we writeN q for the NTA

(Σ,Q,δ,q,F) obtained by replacing the initial state ofN with q. �

Lemma 4.2.3 For every tree T∈ TREEk(Σ), it is the case that T∈Rec(L(A)) iff there

exists an unranked treeT = (DT,τT) over the labeling alphabet

Γ := {(t, t ′[x1, . . . ,xr ],q,q′) : q∈Q1,q
′ ∈Q2, r ∈ N, t ∈ TREEk(Σ),

t ′ ∈ TREEk(Σ∪{x1, . . . ,xr}), and t′ ⊑ t},
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andτT(u) = (αu,βu[x1, . . . ,xru],qu,q′u) for all u ∈ DT, such that the following condi-

tions hold:

1. τT(ε) = (T,βε[x1, . . . ,xrε ],q
1
0,q

2
0) for some context treeβε[x1, . . . ,xrε ] and some

rε ∈N such thatβε ⊑ T,

2. for all u∈DT we have

(a) the number of children of u is the same as ru,

(b) αu⊗βu[αu1, . . . ,αuru] ∈ L(R q′u),

(c) if v1, . . . ,vru are the nodes ofβu labeled by x1, . . . ,xru respectively, then

there exist an accepting runρu of Aqu onβu[αu1, . . . ,αuru] and a potentially

accepting runρ′u of R q′u on βu⊗βu such that, for each i= 1, . . . , ru, it is

the case that qui = ρu(vi) and q′ui = ρ′u(vi).

Intuitively, the unranked treeT in the above lemma encodes an infinite sequence of a

special form that witnessesT ∈ Rec(L(A)). In case of word-automatic systems, the

treeT reduces to a single branch which may grow indefinitely. However, in general

the treeT could have more than one infinite branch, which correspond tothe branches

in the witnessing infinite sequence that grow indefinitely. It is of course possible that

all of the branches inT are finite (and henceT is finite) in which case each leaf of

T is labeled by some(t⊗ t ′[x1, . . . ,xr ],q,q′) ∈ Γ with r = 0. The role ofα’s andβ’s

in the node labels ofT is very similar to the word case (see Figure 4.2). We shall

now show sufficiency in Lemma 4.2.3. To this end, we shall construct a witnessing

sequence{Ti}i≥0 out of the the treeT. We shall inductively define{Ti}i≥0 together

with a sequence{Ci}i≥0 of context trees as follows. We setT0 := αε = T, C0 := x,

T1 := βε[α1, . . . ,αrε ], andC1 := βε[xε
1, . . . ,x

ε
rε ]. Suppose thatCi , for somei≥1, has been

defined to be the context treeT ′[xu1
1 , . . . ,xu1

ru1
, . . . ,xun

1 , . . . ,xun
run

] for all nodesu1, . . . ,un

in T of level i − 1, wheren ∈ N and ru1, . . . , run ∈ N. We defineCi+1 to be T ′[σ],

whereσ replacesx
u j
k by βu jk[x

u jk
1 , . . . ,x

u jk
ruj k

]. Similarly, we defineTi+1 to be T ′[σ],

whereσ replacesx
u j
k by αu jk. See Figure 4.6 for an illustration. Notice that ifCi is

ground, thenTi+1 = Ti andCi+1 = Ci . By induction, the sequence{Ti}i≥0 together

with {Ci}i≥0 have been defined. It is not difficult to prove by induction that Ti ∈ L(A)

andTi−1⊗Ti ∈ L(R ) for all i ∈ Z≥1. Therefore, we conclude thatT ∈Rec(L(A)).

We shall now prove the converse of Lemma 4.2.3. To this end, weshall prove a tree

analogue of Proposition 4.1.5. Recall from Section 2.5 thatRec(L(A))[R] is defined

even when the relationR is non-transitive.
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Ti+1 Ci+1

Ci

x
uj′

k′

. . . . . .

x
uj

k . . .

. . . . . .αujk αuj′k
′ βujk βuj′k

′

Figure 4.6: An illustration of how the trees Ci+1 and Ti+1 are obtained from Ci .

Proposition 4.2.4 SupposeN andT are, respectively, an NTA overTREEk(Σ) and an

NTA overTREEk(Σ⊥×Σ⊥), where the relationL(T ) is not necessarily transitive. For

every tree T= (D,τ)∈ TREEk(Σ), if T ∈Rec(L(N ))[L(T )], then one of the following

is true:

(1) there exists a tree T′ = (D′,τ′) ∈ TREEk(Σ) such that D′ ⊆ D, T′ ∈ L(N ),

(T,T′) ∈ L(T ), and(T ′,T ′) ∈ L(T ).

(2) There exist a k-ary context tree T′[x1, . . . ,xn] = (D′,τ′) over the labeling alphabet

Σ and trees t1, . . . , tn ∈ TREEk(Σ) such that

(a) T′ ⊑ T,

(b) (T,T′[t1, . . . , tn]) ∈ L(T ),

(c) there exist an accepting runρ = (Dρ,τρ) of N on T′[t1, . . . , tn] and a po-

tentially accepting runρ′ = (Dρ′,τρ′) of T on T′⊗T ′ such that, whenever

1≤ i ≤ n, it is the case that ti ∈ Rec(L(N qi ))[L(T q′i )] where qi = τρ(ui)

and q′i = τρ′(ui).

Note that statement (1) yields an infinite witnessing sequence of lasso shape, as was

shown in Figure 4.1 in the word case.
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Proof. Suppose thatT = (D,τ)∈Rec(L(N ))[L(T )], but statement (1) is false. Then,

there exists an infinite sequenceσ = {Ti}i∈N of trees such thatT0 = T, Tj 6= Tk for all

distinct indicesj,k (since statement (1) is false), and it is the case that, for all i > 0,

Ti ∈L(N ) with accepting runηi = (Dηi ,τηi), and for all distinct pair of indices 0≤ i <

i′, Ti⊗Ti′ ∈ L(T ). Now, for every treeTi, wherei > 0, Lemma 4.2.2 implies that there

exists a unique context treeCi [x1, . . . ,xni ] = (Di,τi) with variablesx1, . . . ,xni for some

ni ∈ N, such thatCi ⊑ T, andTi = Ci [t i
1, . . . , t

i
ni
] for some (ground) treest i

1, . . . , t
i
ni
∈

TREEk(Σ). LetH = {Ci[x1, . . . ,xni ] : i > 0}. For infinitely manyi > 0, it is the case that

ni > 0, i.e., there exists a node inTi that is not inD; for, otherwise, there are infinitely

many indicesi such thatDi ⊆ D whereTi = (Di,τi) and, since there are only finitely

many different such trees, pigeonhole principle tells us that one of these trees must

repeat inσ, which contradicts our assumption that statement (1) is false. On the other

hand, it is easy to see that the number of nodes in any context treeCi in H is bounded

by |ϒ|× |D|. Therefore, the setH is finite and so is the number of different potentially

accepting runs ofN on context trees inH. So, if we defineη′i := (ηi)|Di
, i.e., the part

of the run treeηi restricted to the domainDi of Ci , then by pigeonhole principle there

existsk > 0 such thatCk[x1, . . . ,xnk] = Cj [x1, . . . ,xn j ] andη′k = η′j for infinitely many

indices js. Let n := nk, T ′[x1, . . . ,xn] := Ck[x1, . . . ,xn], andη′ = η′k. We remove all

elementsTi (i > 0) from σ such thatCi 6= T ′ or η′i 6= η′ and, by renaming indices, call

the resulting sequenceσ = {Ti}i∈N whereT0 = T. The same is done for the sequence

{ηi}i≥1 of runs so thatηi is an accepting runN onTi (i ≥ 1) such thatη′ � ηi . Notice

thatσ is still a witness forT ∈ Rec(L(N ))[L(T )]. Now letθ j ,k, where 0≤ j < k, be

an accepting run ofT on Tj ⊗Tk. Let C be thefinite set of all potentially accepting

runs ofT onT ′⊗T ′. The setC is nonempty asT ′⊗T ′ � Tj ⊗Tk andTj⊗Tk ∈ L(T ).

Consider the edge-labeled undirected graphG = (V,{Eθ})θ∈C such thatV = Z≥1 and

Eθ := {{ j,k} : 0 < j < k andθ� θ j ,k }.

Notice that{Eθ}θ∈C is a partition of{{ j,k} : j 6= k ∈ Z≥1}, and soG is a complete

graph. By (infinite) Ramsey theorem,G has a monochromatic complete infinite sub-

graphH = (V ′,Eρ′) for someρ′ ∈ C . Notice that ifV ′ contains precisely the ele-

ments j1 < j2 < .. . thenρ′ � θ jk, jk′ for all k′ > k≥ 1. We now remove allTi (i ≥ 1)

from σ with i /∈ V ′ and, again, rename indices. Notice thatσ is still a witness for

T ∈Rec(L(N ))[L(T )]. Recall that for eachi ≥ 1, we haveTi = T ′[t1
i , . . . , tn

i ] for some

ground treest1
i , . . . , tn

i . Setρ := η1 and tk := tk
1 for eachk = 1, . . . ,n. Letting σk =

{tk
i }i≥1 for eachk = 1, . . . ,n, it is easy now to check thattk ∈ Rec(L(N qk))[L(T q′k)]
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with witnessing sequenceσk, whereqk = τρ(uk) andq′k = τρ′(uk) if uk is the leaf node

of T ′ labeled byxk. So, condition (2c) holds. That (2b) holds is also immediate. As

we already saw thatT ′ ⊑ T, our proof is complete.2

In the same way we used Lemma 4.1.5 to complete the proof of necessity in Lemma

4.1.4, we can now finish off the proof of necessity in Lemma 4.2.3 by constructing

the treeT inductively and adding nodes of heightn at stepn∈N by using Proposition

4.2.4. Therefore, the proof of Lemma 4.2.3 is complete.

Before we construct a Büchi tree automaton recognizing witnessing infinite paths

of a special form, we will first show how any unranked treeT satisfying the conditions

in Lemma 4.2.3 can be represented as ranked trees. For any tree T = (D,τ), we write

T̂ for the tree obtained by attaching a new node labeled by the new symbol # to the

root ofT, i.e.,T̂ := (1D, τ̂) with τ̂(ε) := # and, wheneveru∈ D, τ̂(1u) := τ(u). Given

an unranked treeT = (DT,τT) satisfying the conditions in Lemma 4.2.3, we can in-

ductively define aΩ-labeledϒ-treeHv for everyv ∈ DT, whereΩ := Σ2
⊥ ∪{#}. We

setHv := (αv⊗βv)[Ĥv1, . . . , Ĥvrv]. Note thatHv might be infinite for somev∈ DT. If

Hv = (D,τ), we also denote byfull (Hv) the full infinite tree(ϒ∗,τ′) such that ifu∈D,

thenτ′(u) := τ(u); if u /∈D, thenτ′(u) :=⊥ where⊥ :=
[
⊥
⊥

]
. In other words, the tree

full (Hv) is the treeHv made full by padding finite branches by⊥.

We now construct the NBTAB = (Ω,U,δ,q0,F). The automatonB accepts pre-

cisely all Ω-labeled full infinite binary treefull (Hε), whereHε is generated by some

unranked treeT satisfying the conditions in Lemma 4.2.3. The constructionis very

similar to the word case. For notational convenience, we shall sketch it only in the

case ofϒ = {1,2}, though the construction extends tok-ary trees with precisely the

same complexity. Letq1
F andq2

F be new states not inQ1∪Q2. Denote byU1 (resp.U2)

the setQ1∪{q1
F} (resp.Q2∪{q2

F}). We define

U := (U1×U2×U2)∪ (U1×U2×U1×U2×U2).

The start state isq0 := (q1
0,q

2
0,q

2
0). The states in(U1×U2×U2) are meant to handle

the cases when no # has thus far been seen byB. On the other hand, whenB is

in U1×U2×U1×U2×U2, at least one # has been seen. We now formally define

the transition functionδ. We first define howB behaves when it is inU1×U2×U2.
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Suppose thatq1 ∈Q1, andq2,q′2 ∈Q2. For alla,b∈ Σ, we set

δ((q1,q2,q
′
2),

[
a

b

]
) :=





((qL1,qL2,q′L2),(qR1,qR2,q′R2)) |
(qL1,qR1) ∈ δ1(q1,b),

(qL2,qR2) ∈ δ2(q2,
[

a

b

]
),

(q′L2,q
′
R2) ∈ δ2(q′2,

[
b

b

]
)





.

For alla∈ Σ, q1 ∈ F1∪{q1
F} andq′2 ∈ F2∪{q2

F}, we set

δ((q1,q2,q
′
2),

[
a

⊥

]
) := {((q1

F ,qL2,q
2
F),(q1

F ,qR2,q
2
F)) : (qL2,qR2) ∈ δ2(q2,

[
a

⊥

]
)}

and, ifq2 ∈ F2∪{q2
F}, we set

δ((q1,q2,q
′
2),⊥) := {((q1

F ,q2
F ,q2

F),(q1
F ,q2

F ,q2
F))}.

Remark 4.2.1 Observe that, for alla,b ∈ Σ, we haveδ((q1,q2,q′2),
[

a

b

]
) = /0 if at

least one of the following holds:q1 = q1
F , q2 = q2

F , or q′2 = q2
F . Similarly, for a∈ Σ,

we haveδ((q1,q2,q′2),
[

a

⊥

]
) = /0 unlessq1 = q1

F and q′2 = q2
F . Likewise, we have

δ((q1
F ,q2

F ,q2
F),

[
a

⊥

]
) = /0 unlessa =⊥. This means that onceB is in (q1

F ,q2
F ,q2

F), it is

“trapped” and is forced to only see the node label⊥. �

Suppose now thatq1 ∈U1\{q1
F} andq2,q′2 ∈U2\{q2

F}. We then set

δ((q1,q2,q
′
2),#) := ((q1,q

′
2,q1,q2,q

′
2),(q

1
F ,q2

F ,q2
F)).

Notice that the state sent to the right child is(q1
F ,q2

F ,q2
F) as the right child of every

#-labeled node infull (Hε) is⊥-labeled.

We now proceed with our definition ofδ whenB is in U1×U2×U1×U2×U2.

Suppose thatq1,q′1 ∈Q1 andq2,q′2,q
′′
2 ∈Q2. For alla,b∈ Σ, we define

δ
(
(q1,q2,q

′
1,q
′
2,q
′′
2),

[
a

b

])

as




(
(qL1,qL2,q

′
L1,q

′
L2,q

′′
L2),(qR1,qR2,q

′
R1,q

′
R2,q

′′
R2)
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL1,qR1) ∈ δ1(q1,b),

(qL2,qR2) ∈ δ2(q2,
[

a

b

]
),

(q′L1,q
′
R1) ∈ δ1(q′1,a),

(q′L2,q
′
R2) ∈ δ2(q′2,

[
⊥
a

]
),

(q′′L2,q
′′
R2) ∈ δ2(q′′2,

[
b

b

]
)




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If a∈ Σ, q1 ∈ F1, andq′′2 ∈ F2, we define

δ
(
(q1,q2,q

′
1,q
′
2,q
′′
2),

[
a

⊥

])

as




(
(q1

F ,qL2,q
′
L1,q

′
L2,q

2
F)),(q1

F ,qR2,q
′
R1,q

′
R2,q

2
F)
)

∣∣∣∣∣∣∣∣∣∣

(qL2,qR2) ∈ δ2(q2,
[

a

⊥

]
),

(q′L1,q
′
R1) ∈ δ1(q′1,a),

(q′L2,q
′
R2) ∈ δ2(q′2,

[
⊥
a

]
)





If q1,q′1∈ F1 andq2,q′2,q
′′
2 ∈ F2, we setδ((q1,q2,q′1,q

′
2,q
′′
2),⊥) := (q1

F ,q2
F ,q1

F ,q2
F ,q2

F).

Finally, if (q1,q2,q′1,q
′
2,q
′′
2) ∈Q1×Q2×F1×F2×Q2, then we set

δ((q1,q2,q
′
1,q
′
2,q
′′
2), l) :=

{
{(q1,q′′2,q1,q2,q′′2)} if l = #,

/0 otherwise.

We now set

F :=
{(q1

F ,q2
F ,q2

F),(q1
F ,q2

F ,q1
F ,q2

F ,q2
F)}

S

Q1×Q2×F1×F2×Q2

It is easy to see thatB recognizes precisely all treesfull (Hε), whereHε is generated by

some unranked treeT satisfying lemma 4.2.3. Furthermore, checking the definition of

the transition functionδ of B, it is easy to see that‖B‖ = O(‖A‖2×‖R ‖3) and that

the construction ofB takes timeO(|Σ|2×‖A‖2×‖R ‖3).
We now show how to construct fromB the automatonA ′ = (Σ,Q′,δ′,q′0,F

′) that

recognizesRec(L(A)). The intuitive idea is similar to the word case: given a tree

T, the automatonA ′ guesses a treefull (Hε), whereHε is generated by an unranked

treeT = (DT,τT) satisfying lemma 4.2.3 such thatτT(ε) = (T⊗βε[x1, . . . ,xrε ],q
1
0,q

2
0)

for some context treeβε[x1, . . . ,xrε ]. More formally, we setQ′ := (U1×U2×U2) and

q′0 = (q1
0,q

2
0,q

2
0). The transition function is defined as follows:

δ′((q1,q2,q
′
2),a) =

[

b∈Σ⊥

δ((q1,q2,q
′
2),

[
a

b

]
).

Finally, we set

F ′ :=

(F1∪{q1
F})× (F2∪{q2

F})× (F2∪{q2
F})

∪ {(q1,q2,q′2) ∈Q1×Q2×Q2 |
B(q1,q2,q′2) accepts someΩ-labeled binary tree of the form̂T}.
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Observe thatF ′ can be computed by using the algorithm for checking emptiness for

Büchi tree automata, which runs in quadratic timeO(|B|2) = O(|Σ|2×‖A‖4×‖R ‖6)
(e.g. see [VW86a]). Finally, observe that‖A ′‖ = O(‖A‖×‖R ‖2) and the total time

taken to computeA ′ is O(|Σ|2×‖A‖4×‖R ‖6). Theorem 4.2.1 is now immediate.

Remark 4.2.2 Recall that the proof of the analogous statement for the word-automatic

case (i.e. Lemma 4.1.3) could be greatly simplified by first determinizing the NWAR

at the cost of an exponential blow-up in the size ofR . Our proof for Lemma 4.1.3

provides an exponential reduction in the size ofR , although this is not necessary if

complexity is not a primary concern. On the other hand, it is not obvious to adapt such

a technique in the tree case (i.e. to prove Lemma 4.2.3). Thisis simply because non-

deterministic top-down tree automata are not determinizable in general. Furthermore,

replacing the NTAR by a bottom-up deterministic automaton does not seem to helpin

the construction of the Büchi tree automatonB since the standard definition of Büchi

tree automata is top-down, which is more natural since the input tree is infinite. Inci-

dentally, our proof technique above easily yields a generalization of the results from

[KRS05] to the tree-automatic case.�

4.2.4 An appetizer example

We now give an immediate application of Theorem 4.2.1 for deriving an optimal com-

plexity (up to a polynomial) of checking recurrent reachability of regular ground tree

rewrite systems. More concrete examples will be given in Chapter 6.

Regular ground tree rewrite systems

Recall that RGTRSs can be thought of as tree-automatic systems. We now give another

proof of the result by Löding [Löd03, Löd06] on polynomial-time procedure for de-

ciding recurrent reachability over RGTRSs. We first recall aclassic result by Dauchet

and Tison [DT90] (also see [CDG+07, Chapter 3]) on the reachability relation for

RGTRSs.

Proposition 4.2.5 The reachability relations of RGTRSs are effectively tree-regular

relations. Furthermore, they can be computed in time polynomial in the size of the

input RGTRS.

The proof for the above proposition first constructs “groundtree transducers”, which

can then be easily converted into a tree-automatic presentation (e.g. see [CDG+07,
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Chapter 3]). Since reachability relations and strict reachability relations are polynomi-

ally interdefinable for tree-automatic systems (see Example 3.2.5), Theorem 4.2.1 and

Proposition 4.2.5 gives the following immediate corollary.

Corollary 4.2.6 Recurrent reachability over RGTRSs is solvable in polynomial-time.

Furthermore, the set of configurations Rec(L(A)) which satisfies the recurrent reach-

ability property is also regular for which an NTA can be computed in polynomial-time.

4.3 Generalized Büchi conditions

We now consider a more general version of recurrent reachability. Given a transition

systemS = 〈S,{→a}a∈ACT〉 and the setsS1, . . . ,Sn ⊆ S, we defineRec(S1, . . . ,Sn)

to be the set of alls0 ∈ S from which there exists an infinite pathπ = s0s1 . . . such

that, for eachi = 1, . . . ,n, we havesj ∈ Si for infinitely many j ∈ N. In other words,

Rec(S1, . . . ,Sn) contains alls∈ S from which there exists an infinite path which vis-

its eachSi (for all i = 1, . . . ,n) infinitely often. In analogy with finite automata over

ω-words, one may call this problemrecurrent reachability with generalized Büchi con-

dition2. Observe that this definition coincides with the definition of recurrent reach-

ability in the case whenn = 1. On the other hand, it isnot necessarily the case that

Rec(S1, . . . ,Sn) = Rec(
Sn

i=1Si) in general since the latter only enforces the existence

of path which visitsat least one Si infinitely often.

In this section, we shall apply Theorem 4.1.1 and Theorem 4.2.1 to show how to

handle generalized Büchi conditions for word/tree automatic systems. In contrast to

recurrent reachability (without generalized Büchi conditions), the time complexity of

our algorithm becomes exponential in the numbern of “target automata”, which we

show to be optimal even for simpler classes of word/tree automatic presentations in-

cluding pushdown systems and ground tree rewrite systems. As applications of our

main results of this section, we derive algorithms with optimal complexity for solv-

ing recurrent reachability with generalized Büchi conditions over pushdown systems,

prefix-recognizable systems, and ground-tree rewrite systems.

2Automata overω-words with generalized Büchi conditions, which recognize preciselyω-regular
languages, are well-studied (e.g. see [Wol00])
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4.3.1 Word-automatic systems

Let us first start with word-automatic systems. The following theorem is an extension

on Theorem 4.1.1 to recurrent reachability with generalized Büchi conditions.

Theorem 4.3.1 Suppose thatC is a class of automatic systems closed under transitive

closure. Then, given a presentationη∈ C overΣ of an automatic systemSη = 〈S,{→a

}a∈ACT〉 and NWAsA1, . . . ,An overΣ, the set Rec(L(A1), . . . ,L(An)) is regular.

Moreover, ifC is effectively closed under transitive closure with an ETC-witness

M , then an NWA recognizing Rec(L(A1), . . . ,L(An)) of size O(‖R ‖2n×Πn
i=1‖Ai‖2)

in time O(|Σ|n+1×‖R ‖3n×Πn
i=1‖Ai‖3).

Notice that if the numbern of target automata is fixed, then the algorithm runs in

polynomial time. We shall see in Proposition 4.3.4 that the complexity in the above

algorithm cannot be substantially lowered.

We now proceed with the proof of Theorem 4.3.1. Observe that,for eachs0 ∈ S,

it is the case thats0 ∈ Rec(L(A1), . . . ,L(An)) iff there exists a sequence{si}i∈N such

thatsi→+ si+1 for each integeri ∈N, andsnk+i ∈ L(Ai) for each pair of integersk≥ 0

andi ∈ [1,n]. Therefore, letR be the NWA overΣ⊥×Σ⊥ that accepts precisely→+.

Define a new binary relation→1⊆ S×S, where for eachs0,sn ∈ S

s0→1 sn⇔∃s1,s2, . . . ,sn−1 ∈ S

(
n−1̂

i=0

(si→+ si+1)∧
n̂

i=1

si ∈ L(Ai)

)
.

By transitivity of→+, we see that→1 is also a transitive relation. Furthermore, it is

clear that, for eachs∈ S,

s∈ Rec(L(A1), . . . ,L(An))[→+]⇔ s∈Rec(Σ∗)[→1].

By Proposition 3.1.2, the relation→1 is regular for which an NWA of sizeO(‖R ‖n×
Πn

i=1‖Ai‖) can be computed in timeO(|Σ|n + 1×‖R ‖n×Πn
i=1‖Ai‖). By Theorem

4.1.1, we can compute an NWA of sizeO(‖R ‖2n×Πn
i=1‖Ai‖2) for the set

Rec(L(A1), . . . ,L(An))[→+]

in timeO(|Σ|n+1×‖R ‖3n×Πn
i=1‖Ai‖3).

4.3.2 Tree-automatic systems

We now proceed to the tree analogue of Theorem 4.3.1.
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Theorem 4.3.2 Suppose thatC is a class of tree-automatic systems closed under tran-

sitive closure. Then, given a presentationη ∈ C over Σ of a TREEk(Σ)-automatic

systemSη = 〈S,{→a}a∈ACT〉 and NTAsA1, . . . ,An overTREEk(Σ), the set

Rec(L(A1), . . . ,L(An))

is tree-regular. Moreover, ifC is effectively closed under transitive closure with an

ETC-witnessM , then an NTA recognizing Rec(L(A1), . . . ,L(An)) of size O(‖R ‖2n×
Πn

i=1‖Ai‖2) in time O(|Σ|n+1×‖R ‖6n×Πn
i=1‖Ai‖6).

The proof of this theorem is identical to the proof of Theorem4.3.1 (except for using

the tree analogues of the results for word-automatic systems), and hence is omitted.

We shall see in Proposition 4.3.7 that the complexity in the above result cannot be

substantially improved.

4.3.3 Applications

We now apply Theorem 4.3.1 and Theorem 4.3.2 for deriving optimal algorithms

for recurrent reachability with generalized Büchi conditions over pushdown systems,

prefix-recognizable systems, and RGTRSs.

Pushdown systems and prefix-recognizable systems

An immediate application of Theorem 4.3.1 and Proposition 4.1.7 is the following

Theorem.

Theorem 4.3.3 Recurrent reachability with generalized Büchi conditions expressed as

NWAsA1, . . . ,An (over the appropriate alphabet) is solvable in exponentialtime over

pushdown systems. Furthermore, when the number n is fixed, then the problem can be

solved in polynomial time.

This result is now new, e.g., it can be derived using the techniques from [EKS03]. It

turns out that the complexity cannot be substantially lowered, as the following propo-

sition shows.

Proposition 4.3.4 The problem of checking recurrent reachability with generalized

Büchi conditions for the class of pushdown systems is PSPACE-hard.

The proof of this proposition, which can be found in the appendix, is via a simple

polynomial-time reduction from the emptiness of language intersections of DWAs,
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which is PSPACE-complete [GJ79]. This also shows that the time complexity for

Theorem 4.3.1. In fact, combining this proof with Birget’s [Bir92] lower bound for

the smallest size of NWAs recognizing the intersections ofn languages of DWAs,

it follows that the size of the NWA forRec(L(A1), . . . ,L(An)) from Theorem 4.3.1

cannot be substantially lowered for pushdown systems.

Another application of Theorem 4.3.1 is the following result for prefix-recognizable

systems.

Theorem 4.3.5 Recurrent reachability with generalized Büchi conditions over prefix-

recognizable systems isEXP-complete.

As we saw earlier, the problem was alreadyEXP-complete without generalized Büchi

conditions due to Göller’s recentEXP-completeness result for reachability for prefix-

recognizable systems [Göl08]. This theorem can also be alternatively derived using

the technique from [EKS03, KPV02].

Regular ground tree rewrite systems

We now apply Theorem 4.3.2 to answer Löding’s open question[Löd06] regarding

recurrent reachability with generalized Büchi conditions for regular ground tree rewrite

systems (it was also not known to be decidable even for groundtree rewrite systems).

Theorem 4.3.6 Recurrent reachability with generalized Büchi conditions expressed

as the NTAsA1, . . . ,An for RGTRSs is solvable in exponential time. Furthermore, the

problem is solvable in polynomial time if n is fixed.

It turns out this upper bound is essentially tight even for ground tree rewrite systems,

as the following proposition shows.

Proposition 4.3.7 Recurrent reachability with generalized Büchi conditions for GTRSs

is EXP-hard.

The proof of this proposition, which can be found in the appendix, is via a simple

reduction from the nonemptiness problem for the intersections of the languages ofn

NTAs, which isEXP-complete [CDG+07].
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4.4 Recurrent reachability via approximation

The transitive closure→+ of a regular relation→ is in general non-recursive (Propo-

sition 3.1.5). In the previous sections, we have shown that recurrent reachability could

be solved when→+ is effectively regular. In practice, we cannot always hope to be

able to obtain an NWA for→+ since deciding whether the transitive closure→+

is regular for a given regular relation is already undecidable. In this section, we

briefly consider the scenario when we have obtained an NWA representing an “un-

der/upper approximations” of a regular relation→. This scenario is reasonable since

semi-algorithms that aim to compute under/upper approximations of transitive clo-

sure relations have been developed in the area of regular model checking (e.g. see

[AJNS04, BLW03, Bou01, DLS02, Nil05]). More precisely, suppose that we are

given a regular relationR⊇→+, i.e., a regular relation that overapproximates the real

transitive closure relation. What can we say about the original recurrent reachability

problem? Similarly, we may ask the same question when we are instead given a reg-

ular relationR⊆→+, i.e., a regular relation that underapproximates the real transitive

closure relation. Note thatRmay not necessarily be transitive. In both cases, our tech-

niques in the previous sections can be easily adapted to givepartial answers for the

original recurrent reachability problem over the originalword/tree automatic transition

system. We shall first state the result for the word-automatic case.

Theorem 4.4.1 Given an NWAA over Σ and a presentationη of a Σ∗-automatic

systemSη = 〈S,{→a}a∈ACT〉, suppose that→+ is the strict reachability relation

of Sη and R is a regular relation, given as an NWAR , satisfying R⊇→+ (resp.

R⊆→+). Then, given a word v0 ∈ S, we may check whether v0 ∈ Rec(L(A))[R]

in time O(|Σ|2× 2O(‖R ‖) × ‖A‖2) and, whenever v0 /∈ Rec(L(A))[R] (resp. v0 ∈
Rec(L(A))[R]) it is the case that v0 /∈Rec(L(A))[→+] (resp. v0 ∈Rec(L(A))[→+]).

Recall from Section 2.5 thatRec(L(A))[R] is defined even when the relationR is

non-transitive. In other words, wheneverR is an upper-approximation of→+, we

have sound negative tests forv0 ∈ Rec(L(A))[→+]. In the case whenR is an under-

approximation of→+, we have sound positive tests forv0 ∈ Rec(L(A))[→+]. These

simply follow from the simple observations that:

R⊇→+ ⇒ Rec(L(A))[R]⊇ Rec(L(A))[→+],

R⊆→+ ⇒ Rec(L(A))[R]⊆ Rec(L(A))[→+].
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These observations hold even whenR is not transitive. In the case whenR is transitive,

Theorem 4.4.1 then follows from Theorem 4.1.1, in which casebetter computational

complexity that was stated in Theorem 4.4.1 is achievable (i.e. polynomial also in

‖R ‖).
In the case whenR is not transitive, it is also not difficult to prove Theorem 4.4.1.

For this, we will have to go through the proof of Theorem 4.1.1. Recall that in the

proof of Theorem 4.1.1 we first divided the setRec(L(A)) into two setsRec	(L(A))

andRec։(L(A)). We may generalize the definitions of these two sets even whenR

is not transitive in the obvious way. More precisely, we define v0 ∈ Rec	(L(A))[R]

iff there exists a sequence{vi}i∈N such that (1)vi ⊗v j ∈ R, for all integersj > i ≥ 0,

(2) vi ∈ L(A) for all integeri > 0, and (3)vi = v j for some j > i ≥ 0. Similarly, we

definev0∈Rec։(L(A))[R] iff there exists a sequence{vi}i∈N such that (1)vi⊗v j ∈R,

for all integers j > i ≥ 0, (2) vi ∈ L(A) for all integeri > 0, and (3)vi 6= v j for all

j > i ≥ 0. We may compute an NWA forRec	(L(A))[R] in the same way we proved

Lemma 4.1.2. In the case ofRec։(L(A))[R], a proof that is similar to our proof of

Lemma 4.1.3 can also be given. Recall that it suffices to consider only witnessing

infinite sequences of words with strictly increasing lengths (see Figure 4.2). Now

observe that the conditions on the runs ofR in Lemma 4.1.4 assume thatL(R ) is

transitive (see Condition 4). This can however be easily fixed by considering each pair

(αi,βiβi+1 . . .β j−1α j) of suffixes in the witnessing sequence, i.e., by asserting that R

acceptsαi ⊗ βiβi+1 . . .β j−1α j instead of onlyαi ⊗ βiαi+1. In addition, we use the

same definition ofω-chains and so Proposition 4.1.5 can be directly used. Now, in

the construction of the NBWAB, we will additionally have to make sure that, for all

integersj > i ≥ 0, the wordε⊗βi+1 . . .β j−1α j is accepted byR from an appropriate

state. Since there are only finite many states inR , we simply have to keep track of

every possible subset of the states inR to handle this causing an exponential blow-up

in the number of states inR .

We shall also state the tree analogue of Theorem 4.4.1, whichcan be proven in the

same way.

Theorem 4.4.2 Given an NTAA overTREEk(Σ) and a presentationη of a TREEk(Σ)-

automatic systemSη = 〈S,{→a}a∈ACT〉, suppose that→+ is the strict reachability

relation of Sη and R is a regular relation, given as an NTAR , satisfying R⊇→+

(resp. R⊆→+). Then, given a tree T0 ∈ S, we may check whether T0 ∈ Rec(L(A))[R]

in time O(|Σ|2× 2O(‖R ‖) × ‖A‖4) and, whenever T0 /∈ Rec(L(A))[R] (resp. T0 ∈
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Rec(L(A))[R]) it is the case that T0 /∈Rec(L(A))[→+] (resp. T0 ∈Rec(L(A))[→+]).

Remark 4.4.1 The proof of Theorem 4.4.1 also yields a proof of that “Ramseyan

quantifiers” preserve regularity over word-automatic structures, which was proven by

Rubin [Rub08]. For the tree case, the proof of Theorem 4.4.2 yields a proof of the

regularity-preserving property of Ramseyan quantifiers over tree-automatic structures.

This has been independently observed by Kartzow and Kuske this year3.

3Private communication with Kartzow (2010)



Chapter 5

Algorithmic metatheorems for logic

model checking

In the previous chapter, we proved algorithmic metatheorems for decidable recurrent

reachability over word/tree automatic systems and show that they can be used for de-

riving uniform proofs of decidability (with optimal complexity) for various recurrent

reachability problems for pushdown systems, prefix-recognizable systems, and regu-

lar ground tree rewrite systems. Although recurrent reachability by itself is a rather

weak property, in this chapter we shall see that the algorithmic metatheorems from

the previous chapter can be used to obtain algorithmic metatheorems for decidable

model checking with respect to various logics including LTL(and fragments thereof)

with “complex fairness constraints” and extensions of first-order logic. As we shall

see later in this chapter, they can be used to obtain optimal model checking algorithms

for pushdown systems, prefix-recognizable systems, and regular ground tree rewrite

systems (more applications can be found in the next chapter).

In Section 5.1, we study the problem ofLTL model checking over word/tree au-

tomatic systems with regular fairness constraints: given a presentationη of a Σ∗-
automatic (resp. TREEk(Σ)-automatic) systemSη = 〈S,{→a}a∈ACT〉, a configuration

s0∈S, an LTL formulaϕ overACT, and a “fairness” NWA (resp. NTA)A overΣ (resp.

TREEk(Σ)), decide whether, for each infinite path

π := s0→a1 s1→a2 s2→a3 . . .

in Sη satisfyingsi ∈ L(A) for infinitely many indicesi ∈ N, it is the case thatπ |= ϕ.

When〈η,s0,ϕ,A〉 is a positive instance of the problem, we write(Sη,s0,L(A)) |= ϕ
and say thatSη satisfiesϕ from s0 with fairness constraintA . Fairness constraints are

113
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natural conditions which allow the users of a model checker to specify which paths

clearly cannotoccur in the actual systems being modeled, i.e., occur only in theab-

stract models. Onlyfair paths then should be considered by the model checker (see

[BBF+01] for a more thorough discussion). As we shall see later, regular fairness con-

straints are powerful enough for modeling interesting fairness constraints. Unlike the

case of recurrent reachability properties, the condition of effective closure under tran-

sitive closure on a classC of automatic systems isnot sufficient to imply decidability

of LTL model checking overC even without the extra fairness constraint. On the other

hand, if we impose an extra condition that the classC is closed under products with

finite systems, decidability of LTL model checking with regular fairness constraints

overC can be retained. The time complexity of the algorithm is exponential in the size

of the formulaϕ and polynomial in the size of the presentationη of the system and the

initial configurations0, assuming an oracle for computing the reachability relations.

We shall also present an extension of this metatheorem to theproblem of LTL model

checking withmulti-regular fairness constraints (i.e. when we have several regular

constraintsA1, . . . ,An akin to generalized Büchi conditions), in which case we obtain

the same complexity as the single-regular constraint case but exponential in the number

n of regular constraints. We shall see in Section 5.4 that the condition of closure under

products with finite systems is satisfied by the class of pushdown systems and prefix-

recognizable systems, which yields decidability (with optimal complexity) of LTL with

multi-regular fairness constraints over pushdown systemsand prefix-recognizable sys-

tems.

Closure under products with finite systems is a rather strongcondition, which is

not satisfied by many classes of infinite-state systems (e.g.ground-tree rewrite sys-

tems). Such classes of infinite-state systems often have undecidable LTL model check-

ing. In Section 5.2, we propose a weakening of the condition of closure under prod-

ucts with finite systems that could still be used to obtain algorithmic metatheorems

of fragmentsof LTL with decidable model checking over word/tree automatic sys-

tems. This relaxed condition is calledclosure under taking “subsystems”: a classC

of presentations of word/tree automatic systems isclosed under taking subsystemsif

η = 〈AS;{Aa}a∈ACT〉 ∈ C andACT′ ⊆ ACT implies that〈AS;{Aa}a∈ACT′〉 ∈ C . In

other words, thesubsystemof Sη that is obtained by removing some transition rela-

tions is still presented by some presentation in the classC . This is a rather innocuous

condition which is satisfied by virtually every natural class of infinite-state systems that
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is considered in the literature1. We show that, when this condition is satisfied together

with effective closure under transitive closure, two commonly considered fragments of

LTL called LTL(Fs,Gs) and LTLdet have decidable model checking with multi-regular

fairness constraints. In this case, we show that these modelchecking problems have

polynomial time data complexity (when the number of constraints is fixed), assuming

an oracle for computing the reachability relations. We shall see in Section 5.4 that

the class of RGTRSs is closed under taking subsystems and therefore have decidable

LTL(Fs,Gs) and LTLdet model checking with multi-regular fairness constraints (in

fact, with polynomial-time data complexity). In addition,we show that multi-regular

fairness constraints are sufficiently powerful for modelling natural fairness constraints

when we use RGTRSs as abstract models of concurrent programswith an unbounded

number of processes.

Finally, we conclude this chapter with a result which strongly suggests that obtain-

ing algorithmic metatheorems for model checking branching-time logics over word

or tree automatic transition systems with good computational complexity is difficult.

More precisely, we show that model checking HM-logic (i.e. the simplest branching-

time logic) is already nonelementary over a fixed word-automatic system.

Parts of the results in this chapter have previously appeared in [TL10] and [To09a].

5.1 Model checking LTL

In this section, we present our algorithmic metatheorems for decidable LTL model

checking over word/tree automatic systems with regular fairness constraints. Ob-

serve first that this problem is more general than the problemof checking recurrent

reachability since the latter can be easily reduced to the former: given a presenta-

tion η of a word/tree automatic systemSη = 〈S,{→a}a∈ACT〉, an initial configuration

s0 ∈ S, and a target automatonA , we haves0 ∈ Rec(L(A)) iff it is not the case that

(Sη,s0,L(A)) |= ⊥. Therefore, a natural question is whether effective closure un-

der transitive closure over a classC is sufficient to ensure decidability of LTL model

checking with regular fairness constraints overC . It turns out that this is not the case

even for LTL model checking without regular fairness constraints, as the following

proposition shows.

Proposition 5.1.1 There exists a presentationη of a fixed automatic systemSη such

1Similar remark has been made in [May01]
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that:

1. {η} is closed under transitive closure, but

2. LTL model checking overSη is undecidable.

Proof. We shall give a reduction from the acceptance problem for the universal Turing

machine. Fix a universal Turing machineM = (Σ,Γ,Q,δ,q0,qF ,2) and its automatic

presentationη = 〈AS,Aa〉 of the transition systemSM = 〈S,→a〉 generated byM

from Example 3.1.5, whereS= Γ∗(Q×Γ)Γ∗ and→a the one-step reachability relation

of M . Define a new transition relation→acc⊆ S×S as follows: from any accepting

configuration of the formw(qF ,a)w′, it is the case thatw(qF ,a)w′ →acc w(qF ,a)w′

(i.e. a self-loop). Observe that→acc is a regular relation. In addition, we introduce

a “cheat” transition relation→b ⊆ S×S that can take any configurationc ∈ S to an-

other configurationc ∈ S, i.e.,→b= S×S. Observe that→b is a regular relation.

Therefore, the transitive closure of→ :=→a ∪ →acc ∪ →b = →b is also regular.

Let Aacc andAb be NWAs that recognize, respectively,→acc and→b. Define a new

automatic presentationη′ = 〈AS,Aa,Ab〉 which generates the automatic transition sys-

temSη′ := 〈S,→a,→acc,→b〉. Therefore, the class{η′} of automatic presentations is

closed under transitive closure.

Now consider the LTL formulaϕ := a U acc. It is easy to see that, for eachw∈ Σ∗,
it is the case thatSη,(q0,2)w |= ϕ iff w is accepted byM . 2

We shall now introduce the condition of closure under products with finite systems

for a classC of word/tree automatic systems and show that decidability of LTL model

checking with regular fairness constraints can be retainedwhen this extra condition

is imposed. Let us begin with word-automatic systems. Givena finite systemF =

〈Q,{Ra}a∈ACT〉 and anΣ∗-automatic systemSη = 〈S,{→a}a∈ACT〉 presented by a

presentationη, theirproductis the systemF⋉Sη = 〈S′,{→′a}a∈ACT〉 where

• S′ is the languageQS= {qv : q∈Q,v∈ S} over the alphabetQ∪Σ, and

• →′a is such thatqv→′a pw iff (p,q) ∈Ra andv→a w.

Obviously, the systemF⋉Sη is (Q∪Σ)∗-automatic, for which a presentation is com-

putable in timeO(‖F‖× ‖η‖). Although there are non-unique presentations of the

systemF ⋉Sη, for convenience we will define the condition of closure under prod-

ucts with finite systems in such a way that the computation of the product system is

efficient.
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Definition 5.1.1 (Closure under products with finite systems) A class of automatic

presentationsC is said to be(effectively) closed under products with finite systemsif

there exists an algorithm which, given a finite systemF over ACT and an automatic

transition systemSη = 〈S,{→a}a∈ACT〉 presented by someη ∈ C , computes a pre-

sentationη′ ∈ C for the systemF⋉Sη in time O(‖F‖×‖η‖).

We now state our algorithmic metatheorem for decidable LTL model checking with

regular fairness constraints over word-automatic systems.

Theorem 5.1.2 Suppose thatC is a class of word-automatic presentations that are ef-

fectively closed under transitive closure with an ETC-witnessM and are closed under

products with finite systems. Then, there exists an algorithm which, given a presen-

tation η of a Σ∗-automatic systemSη = 〈S,{→a}a∈ACT〉, a word v0 ∈ S, an NWAA

overΣ, and an LTL formulaϕ overACT, decides whether(Sη,v0,L(A)) |= ϕ in time

linear in |v0| and polynomial in TIMEM (2O(‖ϕ‖)×‖η‖) and‖A‖.

Observe that when the formulaϕ is fixed, we obtain the same complexity as for our

algorithmic metatheorem for recurrent reachability (up toa polynomial).

Proof. Let Sη = 〈S,{→a}a∈ACT〉 be the system presented by the input automatic

presentationη. We apply Vardi-Wolper’s algorithm (i.e. Proposition 2.5.2) on the

negation¬ϕ of the given LTL formulaϕ yielding an NBWAB = (ACT,Q,δ,q0,F) of

size 2O(‖ϕ‖) such thatL(B) = [[¬ϕ]]. The algorithm runs in time 2O(‖ϕ‖). It is clear

that B can be treated as a finite transition system (e.g. by omittingthe initial state

q0 and setF of final states). We then use the assumption of closure under products

with finite systems to obtain in timeO(‖B‖×‖η‖) an automatic presentationη′ of the

systemB ⋉Sη = 〈QS,{→′a}a∈ACT〉 ∈ C . We may then apply the algorithmM onη′

to obtain the transitive closure→+ of
S

a∈ACT (→′a) in time

TIMEM (‖B‖×‖η‖) = TIMEM (2O(‖ϕ‖)×‖η‖).

Then, for eachv0 ∈ S, we have(Sη,v0,L(A)) 6|= ϕ iff it is the case that there exists an

infinite path

π := v0→a1 v1→a2 . . .

in Sη such thatvi ∈ L(A) for infinitely many indicesi ∈ N and thata1a2 . . . /∈ [[ϕ]]

(or equivalentlya1a2 . . . ∈ L(B)). The latter in turn is true iff it is the case thatv0 ∈
Rec(FS,L(A))[→+]. It is easy to see that an NWAN for FS can be constructed in

timeO(‖B‖×‖η‖). By Theorem 4.3.1, we may compute an NWAA ′ recognizing the
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setRec(FS,L(A))[→+] in time polynomial in TIMEM(‖B‖×‖η‖) and‖A‖. Testing

whetherv0∈L(A ′) can then be done inO((|Σ|+ |Q|)×|v0|×‖A ′‖), where|Q| ≤ ‖B‖.
This immediately implies the theorem.2

This proof also shows that the decidability in Theorem 5.1.2holds for any logic that

can be converted to Büchi automata, e.g., Regular LTL and its extension with past

operators [LS07, SL10]. Theorem 5.1.2 can also be extended to LTL model checking

with multi-regular constraints over word-automatic systems: given a presentationη of

aΣ∗-automatic systemSη = 〈S,{→a}a∈ACT〉, a configurations0 ∈ S, an LTL formula

ϕ over ACT, and a sequence of “fairness” NWAsA1, . . . ,An over Σ, decide whether,

for each infinite path

π := s0→a1 s1→a2 s2→a3 . . .

in Sη satisfying∃∞i(si ∈ L(A j)) for each j ∈ N, it is the case thatπ |= ϕ. When

〈η,s0,ϕ,{Ai}ni=1〉 is a positive instance of the problem, we write(Sη,s0,{L(Ai)}ni=1) |=
ϕ and say thatSη satisfiesϕ from s0 with fairness constraintsA1, . . . ,An. This prob-

lem can be defined in a similar way for tree-automatic systems. The following theorem

is now immediate from the proof of Theorem 5.1.2 and Theorem 4.3.1.

Theorem 5.1.3 Suppose thatC is a class of word-automatic presentations that are

effectively closed under transitive closure with an ETC-witnessM and are closed

under products with finite systems. Then, there exists an algorithm which, given a

presentationη of a Σ∗-automatic systemSη = 〈S,{→a}a∈ACT〉, a word v0 ∈ S, a se-

quence of NWAs{A}ni=1 over Σ, and an LTL formulaϕ over ACT, decides whether

(Sη,v0,{L(Ai)}ni=1) |= ϕ in time linear in|v0| and polynomial in TIMEM (2O(‖ϕ‖)×
‖η‖) and∏n

i=1‖Ai‖.

Observe that Theorem 5.1.2 is the restriction to Theorem 5.1.3 ton = 1. Also, observe

that Theorem 5.1.3 when the formulaϕ is fixed, we obtain the same complexity as for

recurrent reachability with generalized Büchi conditions (i.e. Theorem 4.3.1.

We now proceed to the tree case. Given a finite systemF = 〈Q,{Ra}a∈ACT〉 and

an TREEk(Σ)-automatic systemSη = 〈S,{→a}a∈ACT〉 presented by a presentationη,

theirproductis the systemF⋉Sη = 〈S′,{→′a}a∈ACT〉 where the following conditions

are satisfied:

• S′ is the language containing treesT = (D,τ)∈ TREEk(Σ∪Q) for which there is
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a treeT ′ = (D′,τ′) ∈ TREEk(Σ) and a stateq∈Q satisfyingD = 1D′∪{ε} and

τ(w) =

{
q if w = ε,

τ(1w) otherwise.

For convenience, we shall writeT ′ = q(T) in the sequel.

• q1(T1)→′a q2(T2) iff (q1,q2) ∈ Ra andT1→a T2.

Obviously, the systemF ⋉ Sη is TREEk(Σ∪Q)-automatic, for which a presentation

is computable in timeO(‖F‖×‖η‖). As for the word-automatic case, there are non-

unique presentations for the systemF⋉Sη. For convenience, we will define the con-

dition of closure under products with finite systems that ensures efficient computation

of the product systems.

Definition 5.1.2 (Closure under products with finite systems; tree case) A classC

of tree-automatic presentations is said to be(effectively) closed under products with

finite systemsif there exists an algorithm which, given a tree-automatic transition

systemSη = 〈S,{→a}a∈ACT〉 presented by someη ∈ C and a finite systemF over

ACT, computes a presentationη′ ∈ C for the systemF⋉Sη in time O(‖F‖×‖η‖).

We directly state our algorithmic metatheorem for decidable LTL model checking with

multi-regular fairness constraints over tree-automatic systems.

Theorem 5.1.4 Suppose thatC is a class of tree-automatic presentations that are

effectively closed under transitive closure with an ETC-witnessM and are closed

under products with finite systems. Then, there exists an algorithm which, given a

presentationη of a TREEk(Σ)-automatic systemSη = 〈S,{→a}a∈ACT〉, a tree T0 ∈
S, a sequence of NTAs{Ai}ni=1 over TREEk(Σ), and an LTL formulaϕ over ACT,

decides whether(Sη,T0,{L(Ai)}ni=1) |= ϕ in time linear in |T0| and polynomial in

TIMEM (2O(‖ϕ‖)×‖η‖) and∏n
i=1‖Ai‖.

Observe that when the formulaϕ is fixed, we obtain the same complexity as for our al-

gorithmic metatheorem for recurrent reachability with a generalized Büchi conditions

(up to a polynomial). In addition, the subcase of LTL model checking with single-

regular constraints can be obtained whenn is restricted to 1. The proof of Theorem

5.1.4 is essentially identical to the proof of Theorem 5.1.3and so is omitted. As in the

word-automatic case, this theorem holds for any logic that can be converted to Büchi

automata, e.g., Regular LTL and its extension with past operators [LS07, SL10].
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5.2 Model checking LTL fragments

Closure under product with finite systems is a strong condition that is not satisfied

by many classes of infinite-state systems (e.g. ground-treerewrite systems). In this

section, we study a weakening of the condition of closure under products with finite

systems calledclosure under taking subsystems, and which fragments of LTL still

have decidable model checking over word/tree automatic systems when this relaxed

condition is imposed. Let us first start with the definition ofthis relaxed condition.

Definition 5.2.1 (Closure under taking subsystems)A class of word/tree automatic

presentationsC is said to beclosed under taking subsystemsif, given an automatic pre-

sentation〈AS,{Aa}a∈ACT〉 ∈ C and a subsetACT′ ⊆ ACT, the automatic presentation

〈AS,{Aa}a∈ACT′〉 is also inC .

As we previously mentioned, this condition is rather weak and is satisfied by virtually

every class of infinite-state systems that is considered in the literature. In this section,

we shall show that this condition, combined with effective closure under transitive clo-

sure, is sufficient to guarantee decidability of two following fragments of LTL: LTLdet

and LTL(Fs,Gs). To this end, we shall first show an algorithmic metatheorem for de-

cidable recurrent reachability checking on word/tree automatic transition systems with

an extraalmost linear B̈uchi automatonconstraint.

5.2.1 Almost linear Büchi automata

As we saw from Proposition 2.5.2, LTL formulas can alternatively be represented as

NBWAs. Model checking a given LTL formula then can be reducedto checking recur-

rent reachability of the original system with an additionalNBWA constraint encoding

the negation of the LTL formula. We shall now consider a subclass of NBWAs called

almost linear NBWAs[BŘS09], which are sufficiently powerful to represent the nega-

tions of formulas in the fragments of LTL that we will consider in this section.

To define almost linear NBWAs, we shall first define the notion of linear NBWAs.

An NBWA A = (Σ,Q,δ,q0,F) is calledlinear (a.k.a. 1-weak) if there exists a par-

tial order� ⊆ Q×Q such thatq′ ∈ δ(q,a) implies q � q′. Intuitively, the partial

order ensures that onceA leaves a stateq, it will never be able to come back toq. In

other words, graph-theoreticallyA looks like a dag possibly with self-loops, i.e., each

strongly connected component (SCC) inA contains only a single state. Observe that
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every accepting run ofA must eventually self-loop in one final stateq∈ F , i.e.,sinkat

q. In the sequel, thedepthof A refers to the length of the longest simple path inA .

Definition 5.2.2 ([BŘS09]) An almost linear NBWAA over the alphabetΣ is a pair

of a linear NBWAB = (Σ,Q,δ,q0,F) and a functionχ mapping each final state q∈ F

to an LTL formula overΣ of the form

^

i∈I

GFpi

where each pi is a disjunction of positive atomic formulas. The languageL(A) of A

contains all words w∈ Σω for which there is an accepting run ofB on w sinking at

some q∈ F which satisfies w|= χ(q). The size‖A‖ of A is simply the sum of‖B‖ and

∑q∈F ‖χ(q)‖.

Almost linear NBWAs are not more powerful than NBWAs in termsof expressive

power: there is a simple polynomial-time translation from almost linear NBWAs to

NBWAs [BŘS09] by a technique that is similar to the reduction from generalized

Büchi automata to standard Büchi automata (cf. [Wol00]).We shall now prove a

technical lemma that will be used to obtain algorithmic metatheorems for decidable

model checking of LTLdet and LTL(Fs,Gs) over word/tree automatic transition sys-

tems. First, let us fix the following notation: given a transition systemS = 〈S,{→a

}a∈ACT〉 over ACT, a sequence of subsetsσ = {Si}ni=1 of S, and an almost linear

NBWA A = (ACT,Q,δ,q0,F,χ), write [[A ]]∃S,σ to denote the set of all configurations

s0 ∈ S from which there exists an infinite path

π = s0→a1 s1→a2 . . .

satisfyinga1a2 . . . ∈ L(A) and∃∞i(si ∈ Sj) for eachj ∈ [1,n].

Lemma 5.2.1 Suppose thatC is a class of word-automatic presentations that is effec-

tively closed under transitive closure with an ETC witnessM and is closed under tak-

ing subsystems. Then, there exists an algorithm which, given a presentationη of aΣ∗-
automatic systemSη = 〈S,{→a}a∈ACT〉, a word v0 ∈ S, a sequence of NWAs{Ai}ni=1

overΣ, and an almost linear NBWAA overACT, decides whether v0∈ [[A ]]∃
Sη,{L(Ai)}ni=1

in time linear in|v0|, polynomial in TIMEM (‖η‖), ‖A‖, and∏n
i=1‖Ai‖, but exponen-

tial in the depth ofA .

Proof. Suppose thatA = (B,χ), whereB = (ACT,Q,δ,q0,F) is a linear NBWA over

ACT. Let d denote the depth ofA . Loosely speaking, this lemma can be proven by
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observing that each infinite paths0→a1 s1→a2 . . . witnessingv0 ∈ [[A ]]∃
Sη,{L(Ai)}ni=1

can be divided into an initial finite segment{s0}ri=1 and the remaining infinite segment

{si}ω
i=r+1 such that there exists a sequenceσ = {pi}mi=1 of states inB satisfying

(1) p0 = q0,

(2) pm∈ F,

(3) for everyi ∈ [1,m] it is the case that(pi ,ai, pi+1) ∈ δ for someai ∈ ACT,

(4) there is an accepting runp j0
0 . . . p jm

m (with each j i ∈ N) of B (when viewed as

automata over finite words) ona1 . . .ar ,

(5) ar+1ar+2 . . . |= G
(

V

a:pm∈δ(pm,a) a
)
∧χ(pm), and

(6) ∃∞i ≥ r +1(si ∈ L(A j)) for each j ∈ [1,n].

Conversely, given two such segments, we may glue them to obtain an infinite path

witnessingv0 ∈ [[A ]]∃
Sη,{L(Ai)}ni=1

. Our approach is to treat the finite segment and the

infinite segments separately for each pathσ of SCCs inB.

Fix a pathσ = {pi}mi=1 of SCCs inB satisfying the conditions (1)–(3). Of course,

it is the case thatm is at most the depthd of A . Combining the assumption of closure

under taking subsystems and effective closure under transitive closure ofC , given any

subsetACT′ ⊆ ACT, it is possible to compute NWAsR+

ACT′
andR∗

ACT′
overΣ2

⊥ for the

transitive closure relations→+

ACT′
and→∗

ACT′
for the transition systemSη. This can

be done in time polynomial in TIMEM (‖η‖) for each givenACT′ ⊆ ACT.

Consider now the relationRσ,1⊆ S×Scontaining tuples(s,s′) for which there ex-

ists a paths0→b1 . . .→br sr such thats0 = s, sr = s′, and there exists a run ofB on

b1 . . .br of the form p j0
0 . . . p jm

m for some j0, . . . , jm ∈ N. It is easy to compute a con-

junctive queryϕ1(x,y) with at most 2m= O(d) quantifiers and 2m= O(d) conjuncts,

each of the formR+

ACT′
or R∗

ACT′
, which expressesRσ,1. That is, we will chooseACT′

that expresses the set of labelsa that takespi to pi+1 (or that self-loops onpi). By

Proposition 3.1.2, we obtain an NWA forRσ,1 in time polynomial in TIMEM (‖η‖)
and‖A‖, but exponential in the depthd of A .

We now consider the relationRσ,2 ⊆ S consisting of elementss∈ S from which

there exists an infinite path

s0→a1 s1→a2 . . .

such thata1a2 . . . |= G
(

V

pm∈δ(pm,a) a
)
∧χ(pm), and∃∞i(si ∈L(A j)) for eachj ∈ [1,n].

Observe that it suffices to show that there exists an algorithm for computing an NWA
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overΣ for S that runs in time polynomial in TIMEM (‖η‖), ‖A‖, and∏n
i=1‖Ai‖, but

exponential in the depth ofA ; for, if this is the case, we would be able to easily put

togetherRσ,1 andRσ,2 by another conjunctive query with one conjunct and quantifier

(and appealing to Proposition 3.1.2), which will finish the proof since there are at most

O(‖A‖d) paths of SCCs inA satisfying (1)–(3).

Thus, it remains to show how to compute an NWA forRσ,2. Suppose thatχ(pm) =
Vk

i=1GFpi . Sincepi is a disjunction of positive atomic formulas, we may think ofthem

as a subset ofACT. We consider a modified transition systemS′ = 〈S′,{Ea}a∈ACT〉
defined as follows:

• S′ = {1, . . . ,k}×S,

• (iv, jw) ∈ Ea iff pm∈ δ(pm,a), v→a w, and wheneveri 6= j, thena∈ pi .

It is easy to come up with a presentationη′ in time polynomial in‖η‖ and‖A‖ such

thatS′ = Sη′. Suppose now thatE+ is the transitive closure of
S

a∈ACT Ea. Observe

now that

Rσ,2 = Rec(L(A1), . . . ,L(An),{1}×Σ∗, . . . ,{k}×Σ∗)[E+].

Therefore, by Theorem 4.3.1, it suffices to show that an NWA for E+ can be computed

in time polynomial in‖A‖ and TIMEM (‖η‖). To this end, observe first that for each

path(i0,s0)→a1 . . .→ar (ir ,sr) in S′, there exists a path from(i0,s0) to (ir ,sr) of the

form

(i0,s0)→a1 (i0,s1)→a2 . . .→ar−1 (i0,sr−1)→ar (ir ,sr).

In other words, to reach from(i,v) to ( j,w), we may always simply travel through

only configurations of the form{i}×S and only at the end switch to( j,w). Since

R∗{a:pm∈δ(pm,a)} can be computed in time polynomial in TIMEM (‖η‖), for each pair

(i, j) ∈ [1,k]× [1,k], we may easily compute a conjunctive queryψ(i, j)(x,y) with one

conjunct and one quantifier over the relations{R∗
ACT′

,R+

ACT′
: ACT′ ⊆ ACT} which

expresses precisely all pairs inE+ of the form(iv, jw). The relationE+ can then be

easily obtained by taking union ofk2 = O(‖A‖) NWAs which represent each[[ψ(i, j)]].

2

We shall now state the tree analogue of Lemma 5.2.1. The proofis completely identical

to the word case and therefore is omitted.
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Lemma 5.2.2 Suppose thatC is a class of tree-automatic presentations that is effec-

tively closed under transitive closure with an ETC witnessM and is closed under

taking subsystems. Then, there exists an algorithm which, given a presentationη of a

TREEk(Σ)-automatic systemSη = 〈S,{→a}a∈ACT〉, a tree T0∈S, a sequence of NTAs

{Ai}ni=1 over TREEk(Σ), and an almost linear NBWAA over ACT, decides whether

T0 ∈ [[A ]]∃
Sη,{L(Ai)}ni=1

in time linear in |T0|, polynomial in TIMEM (‖η‖), ‖A‖, and

∏n
i=1‖Ai‖, but exponential in the depth ofA .

5.2.2 LTLdet : Deterministic LTL

Deterministic LTL(or LTLdet) is logic proposed by Maidl [Mai00] that captures a com-

mon fragment of LTL and CTL. We start with the definition of thesyntax of LTLdet:

ϕ,ϕ′ := p | Xϕ | ϕ∧ϕ′ | (p∧ϕ)∨ (¬p∧ϕ′) |
(p∧ϕ)U(¬p∧ϕ′) | (p∧ϕ)W(¬p∧ϕ′).

Here p is a boolean combination ofACT. The semantics can be defined in the same

way as for LTL. For example,ϕWϕ′ is interpreted as the formulaGϕ∨ (ϕUϕ′), i.e.,

theweak untiloperator. Maidl [Mai00] showed that negations of LTLdet formulas can

be translated into linear NBWAs efficiently, which is in contrast to the general LTL

formulas.

Lemma 5.2.3 ([Mai00]) There exists a polynomial-time algorithm which, given an

LTLdet formula ϕ over Σ, computes a linear NBWAA¬ϕ of size O(‖ϕ‖) such that

L(A¬ϕ) = [[¬ϕ]].

To obtain our algorithmic metatheorems for LTLdet, we simply need to combine Maidl’s

result above with Lemma 5.2.1 or Lemma 5.2.2.

Theorem 5.2.4 Suppose thatC is a class of word/tree automatic presentations that

are effectively closed under transitive closure with an ETC-witnessM and are closed

under taking subsystems. Then, there exists an algorithm which, given a presentation

η of a Σ∗-automatic (resp.TREEk(Σ)-automatic) systemSη = 〈S,{→a}a∈ACT〉, a

configuration s0 ∈ S, a sequence of NWAs (resp. NTAs){Ai}ni=1 over Σ (resp. over

TREEk(Σ)) and an LTLdet formula ϕ, decides whetherSη,s0,{Ai}ni=1 |= ϕ in time

linear in |s0|, polynomial in TIMEM (‖η‖) and∏n
i=1‖Ai‖, and exponential in‖ϕ‖.

In fact, if we also assume closure under products with finite systems, a better complex-

ity can be obtained. The following theorem can be obtained byfollowing the proofs
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of Theorem 5.1.2 and replace the use of Vardi-Wolper’s construction by Maidl’s result

above.

Theorem 5.2.5 Suppose thatC is a class of word/tree automatic presentations that are

effectively closed under transitive closure with an ETC-witnessM and are closed un-

der products with finite systems. Then, there exists an algorithm which, given a presen-

tationη of aΣ∗-automatic (resp.TREEk(Σ)-automatic) systemSη = 〈S,{→a}a∈ACT〉,
a configuration s0 ∈ S, a sequence of NWAs (resp. NTAs){Ai}ni=1 over Σ (resp.

TREEk(Σ)) and an LTLdet formulaϕ overACT, decides whetherSη,s0,{A}ni=1 |= ϕ in

time linear in|s0| and polynomial in TIMEM (‖ϕ‖×‖η‖) and∏n
i=1‖Ai‖.

5.2.3 LTL(Fs,Gs): LTL with only strict future/global operators

We now proceed to the fragment LTL(Fs,Gs) of LTL with only modalitiesFs and

Gs. This fragment is strictly more expressive than the LTL fragment with the non-

strict versionsF andG of the modalitiesFs andGs as the former can be expressed

in terms of the latter, e.g.,Fϕ ≡ ϕ∨Fsϕ. Observe that the fragment LTL(Fs,Gs) is

closed under negation. We next recall a known translation from LTL(Fs,Gs) formulas

to almost linear NBWAs.

Lemma 5.2.6 ([Reh07, B̌RS09]) There exists a double-exponential time translation

from LTL(Fs,Gs) formulasϕ overACT to almost linear NBWAsA overACT such that

[[ϕ]] = L(A). Furthermore, the depth ofA is exponential in‖ϕ‖.

It is presently open whether the double-exponential time upper bound from [Reh07,

BŘS09] can be improved. To obtain our algorithmic metatheorems for LTL(Fs,Gs),

we simply need to combine this lemma with Lemma 5.2.1 and Lemma 5.2.2.

Theorem 5.2.7 Suppose thatC is a class of word/tree automatic presentations that

are effectively closed under transitive closure with an ETC-witnessM and are closed

under taking subsystems. Then, there exists an algorithm which, given a presentation

η of a Σ∗-automatic (resp.TREEk(Σ)-automatic) systemSη = 〈S,{→a}a∈ACT〉, a

configuration s0 ∈ S, a sequence of NWAs (resp. NTAs){Ai}ni=1 over Σ (resp. over

TREEk(Σ)) and an LTL(Fs,Gs) formulaϕ, decides whetherSη,s0,{Ai}ni=1 |= ϕ in time

linear in |s0|, polynomial in TIMEM (‖η‖) and∏n
i=1‖Ai‖, and double-exponential in

‖ϕ‖.
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The upper bound in terms of the size of the formula in this theorem seems not optimal.

To improve this upper bound, one has to first answer whether the upper bound from

Lemma 5.2.6 can be improved further, which we leave as an openproblem.

5.3 Model checking FOREG(Reach+EGF)

In this section, we give algorithmic metatheorems for showing decidability of an ex-

tension of the logicFOREG(Reach) andFO(Reach), calledFOREG(Reach+EGF) and

FO(Reach+EGF), over word/tree automatic systems.

We define the logicFOREG(Reach+EGF) as an extension ofFOREG(Reach) with

the generalized recurrent reachability operator withω-regular constraints on the way.

More precisely, the logicFOREG(Reach+EGF) overACT can be defined as follows:

• EachFOREG(Reach) formula overACT is anFOREG(Reach+EGF) formula over

ACT.

• Wheneverϕ1, . . . ,ϕn are each anFOREG(Reach+EGF) formula overACT with

one free variable andB is an NBWA over the alphabetACT, then

EGFB(ϕ1, . . . ,ϕn)

is anFOREG(Reach+EGF) formula overACT with one free variable.

• The logicFOREG(Reach+EGF) is closed under boolean combinations and first-

order quantification, with the standard rules for free variables.

We only need to provide the semantics for the second rule (therest is standard). Given

a transition systemS = 〈S,{→a}a∈ACT〉 ands∈ S, we define

• S |= EGFB(ϕ1, . . . ,ϕn)(s) iff there exists an infinite path

s→a1 s1→a2 s2→a2 . . .

in S such thata1a2a3 . . . ∈ L(B) and, for eachj = 1, . . . ,n, we havesi |= ϕ j for

infinitely manyi ∈ N.

Observe that the semantics of the operatorsEGFB are similar to recurrent reachability

with generalized Büchi conditions. We defineFO(Reach + EGF) as a sublogic of

FOREG(Reach+EGF) containing formulas in which each occurence of the reachability

operatorReachA(x,y) satisfiesL(A) = Γ∗ for someΓ ⊆ ACT, and each occurence of
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the recurrent reachability operatorEGFB satisfiesL(B) = Γω for someΓ⊆ ACT. We

now state our algorithmic metatheorem forFOREG(Reach+EGF).

Theorem 5.3.1 Suppose thatC is a class of word/tree automatic systems that are ef-

fectively closed under transitive closure and closed underproducts with finite systems.

Then, given anFOREG(Reach+EGF) formulaϕ(x̄) overACT and a presentationη∈ C

of a word/tree automatic systemSη = 〈S,{→a}a∈ACT〉, the set[[ϕ]] is effectively reg-

ular. That is, model checkingFOREG(Reach+EGF) overC is decidable.

The proof of this theorem can be easily done due to effective closures under first-order

operations for word/tree automatic systems (Proposition 3.1.1 and Proposition 3.2.1).

When seeing a predicateReachA(x,y), we first construct a product with the finite sys-

tem A and then apply the assumption of effective closure under transitive closure.

Similarly, when we encounter aEGFA operator, we first construct a product with finite

systemB and then applying our algorithmic metatheorem for recurrent reachability

with generalized Büchi conditions (Theorem 4.3.1 and Theorem 4.3.2). We may also

relax the condition of closure under products with finite systems and instead use the

much weaker condition of closure under taking subsystems. In this case, we obtain the

following theorem using a similar proof.

Theorem 5.3.2 Suppose thatC is a class of word/tree automatic systems that is effec-

tively closed under transitive closure and closed under taking subsystems. Then, given

a presentationη ∈ C of a word/tree automatic systemSη = 〈S,{→a}a∈ACT〉 and an

FO(Reach+EGF) formulaϕ(x̄) overACT, the set[[ϕ]] is effectively regular. That is,

model checkingFO(Reach+EGF) overC is decidable.

5.4 Several appetizer applications

In this section, we give applications of the algorithmic metatheorems that we proved

in this chapter on pushdown systems, prefix-recognizable systems, and regular ground

tree rewrite systems. More examples will be given in the nextchapter.

5.4.1 Pushdown systems

Consider the problem of model checking LTL over PDSs. This combined complexity

was initially shown to beEXP-complete by Bouajjani, Esparza, and Maler [BEM97].
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The lower bound in [BEM97] can also be adapted to showEXP-hardness for expres-

sion complexity. On the other hand, the problem is solvable in P for a fixed LTL

formula [BEM97]. These upper bounds also hold for LTL formulas withregular val-

uations[EKS03], which are powerful enough for encoding multi-regular fairness con-

straints. Different proofs for these upper bounds have alsobeen given (e.g. [PV04]).

Our techniques from the previous sections (Theorem 5.1.2 and Proposition 4.1.7) give

yet another proof for these upper bounds since PDSs are easily seen to be closed under

products with finite systems.

Proposition 5.4.1 Model checking LTL over pushdown systems with multi-regular fair-

ness constraints is inEXP. For a fixed formula and fixed number of regular constraints,

the problem is solvable inP.

In fact, using our techniques, better combined complexity can be immediately obtained

for LTLdet. The following proposition easily follows from Theorem 5.2.5 and Propo-

sition 4.1.7.

Proposition 5.4.2 Model checking LTLdet over pushdown systems with a fixed number

of regular constraints is inP.

Our algorithmic metatheorems forFOREG(Reach+EGF) can also be used to give de-

cidability of FOREG(Reach + EGF) model checking over PDSs, though this is rather

immediate from the decidability of model checking over PDSswith respect to MSO

formulas [MS85].

5.4.2 Prefix-recognizable systems

We now proceed to the problem of LTL model checking over prefix-recognizable

systems with multi-regular fairness constraints. This problem is known to beEXP-

complete, even for a fixed formula and no regular fairness constraints [KPV02]. Com-

bining Theorem 5.1.2 and Proposition 4.1.11, we give yet another proof of this result

since prefix-recognizable systems are easily seen to be closed under products with fi-

nite systems.

Proposition 5.4.3 Model checking LTL with multi-regular fairness constraints over

prefix-recognizable systems is solvable inEXP.
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On the other hand, our algorithmic metatheorem for LTLdet does not help lower the

complexity of the problem since model checking a fixed LTLdet formula (with no reg-

ular fairness constraint) over prefix-recognizable systemis alreadyEXP-hard, which

follows from theEXP-completeness of checking reachability over prefix-recognizable

systems [Göl08]. In addition, our algorithmic metatheorems forFOREG(Reach+EGF)

can also be used to give decidability ofFOREG(Reach + EGF) model checking over

prefix-recognizable systems, though this immediately follows from the decidability

of model checking over prefix-recognizable systems with respect to MSO formulas

[Cau03].

5.4.3 Regular ground tree rewrite systems

Let us now proceed to the problem of model checking RGTRSs. Wefirst start with a

negative result about model checking LTL over GTRSs.

Proposition 5.4.4 The problem of model checking a fixed LTL formula over GTRSs

(with no regular fairness constraints) is undecidable.

This proposition can be easily proved by an easy adaptation of the proof of the unde-

cidability of model checking LTL over PA-processes [BKRS09]. In fact, this unde-

cidability result holds for the fragment of LTL only with operatorU, or the fragment

with only operatorF andX. In addition, observe that the class of GTRSs (or RGTRSs)

is not closed under product with finite systems, which explains why our algorithmic

metatheorems for decidable LTL model checking over tree-automatic systems fail in

this case. On the other hand, we can still recover some decidable fragments as the

following theorem shows.

Theorem 5.4.5 Model checking LTLdet with multi-regular fairness constraints over

RGTRSs is inEXP. Model checking LTL(Fs,Gs) with multi-regular fairness con-

straints over RGTRSs is solvable in double exponential time. Furthermore, for fixed

formulas and a fixed number of regular fairness constraints,model checking LTLdet

and LTL(Fs,Gs) over RGTRSs is inP.

This theorem is a simple corollary of Theorem 5.2.4, Theorem5.2.7, and Proposition

4.2.5. In the case of non-fixed LTLdet or LTL(Fs,Gs) formulas but a fixed number of

regular fairness constraints, can the complexity of the problem be improved toP? For

example, this is the case for recurrent reachability as we showed in Theorem 4.3.6.
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This is unlikely to be the case for LTL(Fs,Gs) since the problem is alreadycoNP-

complete even for finite systems [SC85]. However, LTLdet model checking over finite

systems is solvable inP [Mai00]. Despite this, this is not the case for GTRSs even in

the absence of regular fairness constraints.

Proposition 5.4.6 Model checking LTLdet over GTRSs iscoNP-hard.

The proof of this proposition is by a simple reduction from the complement of the

hamiltonian path problem, which is given in the appendix. Weleave the precise com-

bined complexity of LTLdet and LTL(Fs,Gs) over GTRSs and RGTRSs for future

work.

An application of Theorem 5.4.5 is for model checking concurrent programs with

an unbounded number of processes in the presence of fairnessconstraints. GTRSs

are natural models for modeling concurrent programs with anunbounded number of

processes, but with only “local communications”. We may think of each node in a

tree as aprocessin our concurrent programs. Trees ensure a hierarchical structure

amongs the processes in the programs: a nodev with childrenv1, . . . ,vk means that

the processesv1, . . . ,vk aresubprocessesof theparentprocessv. GTRSs rules ensure

that communications only happen “locally”. Node labels in the trees then correspond

to the finite abstract domains that are obtained bypredicate abstractions[GS97] (in

the manner of how pushdown systems can be obtained from sequential programs, c.f.

[BMMR01, EK99]). A natural fairness constraint for concurrent programs is that there

is eachleaf processwill eventually be executed (i.e. there is some rewrite rulethat

will used to rewrite a subtree containing this node). This fairness constraint can be

modeled using multi-regular fairness constraints as follows. First introduce two extra

colors{1,2} for the leaf nodes, i.e., ifΣ is the original node alphabet, we useΣ′ :=
{1,2,?}×Σ for the new node alphabet. We then define a new GTRS which has the

same rule as the original GTRS, but ensures that internal nodes are labeled by{?}×Σ
while leaves are labeled by{1,2}×Σ. Each rule will then allow the color in the leaves

to stay the same or toggle. We then simply have to consider infinite runs where the set

of trees in which all the leaves are labeled by{1}×Σ and set of trees in which all the

leaves are labeled by{2}×Σ are both visited infinitely often, which can be modeled

using two regular fairness constraints.

We close this section by mentioning the application of Theorem 5.3.2 to RGTRSs.

Theorem 5.4.7 Model checkingFO(Reach+EGF) over RGTRSs is decidable.
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5.5 A nonelementary lower bound for HM-logic

In Section 5.3, we obtained algorithmic metatheorems for decidable model checking

of FOREG(Reach+EGF). The complexity that we obtained was nonelementary in the

size of the formula, which was optimal since there exists a fixed pushdown system (i.e.

the infinite binary tree) with a nonelementaryFO(Reach) theory. A natural question

is whether better upper bounds can be given for weaker logics, say,EF-logic. In this

section, we shall prove that this is not the case even for HM-logic. More precisely, we

shall show that there exists a fixed automatic transition system with a nonelementary

HM-logic model checking. In fact, the transitive closure ofthe union of the transition

relations in this system is also regular, which strongly suggests that any algorithmic

metatheorem for decidable branching-time logics (like CTLandEF-logic) must im-

pose much stronger restrictions for it to have nice computational complexity proper-

ties. Our nonelementary lower bound also strengthens Proposition 3.1.4 and answers

an open question from [BG09] on the expression complexity ofmodal logic over ra-

tional graphs.

Theorem 5.5.1 ([To09a])There exists a fixed word-automatic transition systemT =

〈S,{→a}a∈ACT〉 and a state s0 in S such that checking whether(S,s0) satisfies a

given HM-logic formula is nonelementary. Furthermore, thetransitive closure of
S

a∈ACT (→a) is regular.

We shall now give a proof for this theorem. Recall that〈{0,1}∗,succ0,succ1,�〉 is the

infinite binary tree with a descendant relation. We shall start with an observation that

theFO
4 theory of〈{0,1}∗,succ0,succ1,�〉 is nonelementary.

Proposition 5.5.2 TheFO
4 theory of〈{0,1}∗,succ0,succ1,�〉 is nonelementary.

Although the first-order theory of〈{0,1}∗,succ0,succ1,�〉 was proved to be nonele-

mentary in [CH90], it is not easy to see whetherFO
k suffices from the proof. Neverthe-

less, one can easily show thatFO
4 suffices using Stockmeyer’s result [Sto74], together

with a reduction from [CH90], as we shall sketch next. We start with a result which

is a simple corollary of Stockmeyer’s well-known result [Sto74] that equivalence of

star-free regular expressions over the alphabet{0,1} is nonelementary.

Proposition 5.5.3 TheFO
3 theory of the classC of finite linear orders with a unary

predicate is nonelementary.
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This proposition is a simple corollary of Stockmeyer’s result [Sto74] and Proposition

2.5.1. To deduce Proposition 5.5.2, we may simply use the polynomial time reduction

in [CH90] which, given a first-order sentenceϕ overC , outputs a first-order sentence

ψ with one extra variable such thatϕ is true inC iff (〈{0,1}∗,succ0,succ1,�〉,ε) |= ψ.

By Proposition 5.5.3, the proof for Proposition 5.5.2 is complete.

Now define the transition system

T := 〈{0,1}∗×{0,1}∗×{0,1}∗×{0,1}∗;
{≺i

0}4i=1,{≺i
1}4i=1,{<i}4i=1,{=i, j}1≤i< j≤4,{Gi}4i=1〉.

where the transition relations are defined as follows:

• ≺i
0 := {

(
w,w′

)
: w′i = wi0 and∀ j 6= i(w j = w′j)}. This relation takes theith com-

ponent to its left child.

• ≺i
1 := {

(
w,w′

)
: w′i = wi1 and∀ j 6= i(w j = w′j)}. This relation takes theith com-

ponent to its right child.

• <i := {
(
w,w′

)
: wi ≺w′i and∀ j 6= i(w j = w′j)}. This relation takes theith com-

ponent to its descendant.

• =i, j := {
(
w,w′

)
: wi = w j and∀k(wk = w′k)}. This relation simply loops if the

ith component equals thejth component.

• Gi := {
(
w,w′

)
: ∀ j 6= i(w j = w′j)}. This relation takes theith component to any

other word (i.e. global modality).

It is not difficult to give a word-automatic system that is isomorphic toT with a regular

transitive closure relation (since we have the global modalitiesGi).

Lemma 5.5.4 The transition systemT is automatically presentable with a regular

transitive closure relation.

Proof. Let Γ := {0,1,#} and Σ := Γ4. Given wordsv1, . . . ,v4 ∈ {0,1}∗, we define

v1⊗′ . . .⊗ v4 to be the wordv1⊗ . . .⊗ v4 but using # (instead of⊥) as the padding

symbol, e.g., 0⊗′ 11⊗′ 1⊗′ 101 is simply



0

1

1

1







#

1

#

0







#

#

#

1

.



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Let S := {v1⊗′ . . .⊗′ v4 : v1, . . . ,v4 ∈ Σ∗}. We then define a relationRa over S for

each relationa in T in the obvious way. For example, the relationR≺i
0

is defined as the

relation{(v,v′)∈S×S: (v,v′)∈≺i
0 }. LetT′ be the system with domainSand relations

Ra, wherea is a relation inT. It is easy to give an NWAAS overΣ recognizing the

set S. Similarly, it is easy to construct an NWAAa over the alphabetΣ⊥× Σ⊥ for

the relationsRa. [These NWAs are very similar to the automata in Example 3.1.1.]

Therefore,T′ is a word-automatic system isomorphic toT. Finally, observe that the

transitive closure of the transition relations inT′ coincides with the regular relation

S×S, which completes the proof.2

The following lemma is now sufficient to deduce Theorem 5.5.1.

Lemma 5.5.5 Checking whether a given HM-logic formulaϕ over T is satisfied by

(T,(ε,ε,ε,ε)) is nonelementary.

Proof. We give a poly-time reduction from theFO
4 theory of〈{0,1}∗,succ0,succ1,�

〉. More precisely, we give a polynomial time computable function λ from FO
4 for-

mulasϕ(x1, . . . ,x4) to HM-logic formulasλ(ϕ) over the vocabulary ofT such that, for

eachv1, . . . ,v4 ∈ {0,1}∗,

〈{0,1}∗,succ0,succ1,�〉 |= ϕ(v1, . . . ,v4) ⇔ T,(v1, . . . ,v4) |= λ(ϕ) (∗)

The functionλ is defined by induction onFO
4 formulas over〈{0,1}∗,succ0,succ1,�〉.

First consider the three base cases:

• We setλ(xi ≺0 x j) := 〈≺i
0〉〈=i, j〉⊤.

• We setλ(xi ≺1 x j) := 〈≺i
1〉〈=i, j〉⊤.

• We setλ(xi < x j) := 〈<i, j〉〈=i, j〉⊤.

It is easy to check that the statement (*) hold for these. Now consider the inductive

cases:

• We setλ(ϕ∧ϕ′) := λ(ϕ)∧ λ(ϕ′). It is easy to see that (*) holds by inductive

hypothesis.

• We setλ(¬ϕ) := ¬ϕ. Clearly, the statement (*) holds by inductive hypothesis.



Chapter 5. Algorithmic metatheorems for logic model checking 134

• We setλ(∃xiϕ) := 〈Gi〉λ(ϕ). We now show that (*) holds in this case. Without

loss of generality, leti = 1 (the other cases are similar). Letψ := ∃x1ϕ. Given

v1, . . . ,v4 ∈ {0,1}∗, we have〈{0,1}∗,succ0,succ1,�〉 |= ψ(v1, . . . ,v4) iff there

existsv′1 ∈ {0,1}∗ such that〈{0,1}∗,succ0,succ1,�〉 |= ϕ(v′1,v2,v3,v4). By in-

ductive hypothesis, the latter statement is true iffT,(v′1,v2,v3,v4) |= λ(ϕ), which

is true iff T,(v1,v2,v3,v4) |= 〈Gi〉λ(ϕ) by the definition ofGi relation. This fin-

ishes the proof that (*) holds in this case.

2



Chapter 6

More applications of algorithmic

metatheorems

In this chapter, we will give other applications of our algorithmic metatheorems from

the previous chapters. In particular, we will apply our algorithmic metatheorems to

model checking problems over PA-processes, subclasses of Petri nets (e.g. reversible

Petri nets and 2-dimensional vector addition systems), andreversal-bounded counter

systems with discrete clocks and one free counter. There areother applications that we

do not mention in this chapter, e.g., for deriving decidability of LTL with multi-regular

fairness constraints over order-2 collapsible pushdown systems (combining with Kart-

zow’s recent result [Kar10]).

Notation. We define a notation for LTL model checking with multiple fairness con-

straints. Given an LTL formulaϕ overACT, a transition systemS = 〈S,{→a}a∈ACT〉,
and subsets{Si}ni=1 of S, we write[[ϕ]]S,{Si}ni=1

to denote the set of configurationss∈ S

satisfying(S,s,{Si}ni=1) |= ϕ, i.e., for each infinite pathπ = s0→a1 s1→a2 . . . in S

satisfying∃∞i(si ∈ Si) for eachj ∈N, it is the case thatπ |= ϕ. �

6.1 PA-processes

PA [BW90, May98] is a well-known process algebra allowing sequential and parallel

compositions, but no communication. It generalizes basic parallel processes (BPP),

and context-free processes (BPA), but is incomparable to pushdown systems and Petri

nets (e.g. see [May98]). PA has found applications in the interprocedural dataflow

analysis of parallel programs [EP00].

135
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We review the basic definitions, following the presentationof [LS02]: we ini-

tially distinguish terms that are equivalent up to simplification laws. Fix a finite set

Var = {X,Y,Z, . . .} of process variables.Process termsoverVar, denoted byFVar, are

generated by the grammar:

t, t ′ := 0 | X, X ∈ Var | t.t ′ | t‖t ′

where 0 denotes a “nil” process, andt.t ′ andt‖t ′ are sequential and parallel compo-

sitions, respectively. Process terms can be viewed asΣ-labeled binary trees, where

Σ = Var∪{0,‖, ·}. In particular, inner nodes are always labeled by ‘.’ or ‘ ‖’, while

leaves are labeled by elements inVar∪{0}. Observe thatFVar is a regular tree lan-

guage, for which a small NTA can be easily computed from any given Var. A PA

declarationoverACT is a tupleP = (ACT,FVar,∆), where∆ is a finite of rewrite rules

of the form(X,a, t), whereX ∈ Var, a ∈ ACT, andt ∈ FVar. We setDom(∆) = {X :

(X→ t) ∈ ∆, for somet ∈ FVar}, andVar/0 = Var−Dom(∆). A PA declarationP gen-

erates a transition relationSP = 〈S,{→a}a∈ACT〉, whereS= FVar and→a is defined

by the following inference rules:
t1→a t ′1

t1‖t2→a t ′1‖t2
t1→a t ′1

t1.t2→a t ′1.t2 X→a t
(X,a, t)∈ ∆

t2→a t ′2
t1‖t2→a t1‖t ′2

t2→a t ′2
t1.t2→a t1.t ′2

t1 ∈ IsNil

Here IsNil is the set of “terminated” process terms, i.e., those in which all variables

are inVar/0. It is easy to give an NTARa over TREE2(Σ⊥) for→a, whose size is linear

in the size‖P‖ of P . It is defined in the same way as for GTRSs, except that when

it guesses a leaf nodev at which a rule is applied, it must further ensure thatv has no

‘.’-labeled ancestoru such thatv is a descendant ofu2 and that the subtree rooted at

u1 is not a terminated process term. See [LS05a] for further details.The following

proposition is a well-known result concerning PA.

Proposition 6.1.1 ([LS02, LS05a, EP00])Given a PA declaration∆ and a NTAA

describing a set of process terms over Var, the sets pre∗(L(A)) and post∗(L(A)) are

regular, for which NTAs can be computed in time O(|Var|×‖P‖×‖A‖), and one can

construct an NTAR + overTREEk(Σ⊥) for→+ in poly-time1.

In this section, we consider only tree languages that are interpreted as regular sub-

sets ofFVar. From Proposition 6.1.1, Theorem 5.2.4, and Theorem 5.2.7,the following

1Lugiez and Schnoebelen first proved this in [LS02] for a notion of tree transducers, but later in
[LS05a] realized that regular relations suffice
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theorem is immediate.

Theorem 6.1.2 Model checking LTLdet and LTL(Fs,Gs) with multi-regular fairness

constraints over PA are solvable inEXP and 2-EXP, respectively. For fixed formulas

and fixed number of fairness constraints, these problems aresolvable inP.

In the study of PA processes, it is common to use a structural equivalence on process

terms. We now extend our results to PA modulo structural equivalence. Let≡ be the

smallest equivalence relation onFVar that satisfies the following:

t.0 ≡ t 0.t ≡ t t‖0 ≡ t t‖t ′ ≡ t ′‖t
(t‖t ′)‖t ′′ ≡ t‖(t ′‖t ′′) (t.t ′).t ′′ ≡ t.(t ′.t ′′)

We let [t]≡ stand for the equivalence class oft and[L]≡ for
S

t∈L[t]≡. We writeL/ ≡
for {[t]≡ : t ∈ L}. It was shown in [LS02] that, for eacht ∈ FVar, [t]≡ is a regular tree

language, although the set[L]≡ need not be regular even for regularL. Given a PA

declarationP and the transition systemSP = 〈S,{→a}a∈ACT〉 generated byP , the

equivalence≡ generates a new transition system(SP /≡) = 〈S′,{⇒}a∈ACT〉, where

S′ = [S]/≡, and[t]≡⇒a [u]≡ iff there existt ′ ∈ [t]≡ andu′ ∈ [u]≡ such thatt ′→a u′.

We need the following result:

Lemma 6.1.3 ([LS02]) The relation≡ is bisimulation: for all t, t ′,u∈ FVar, if t ≡ t ′

and t→a u, then there exists u′ ∈ FVar such that t′→a u′ and u≡ u′.

Using this lemma, we may easily show that, for every sequence{Ai}ni=1 of NTAs

such that eachL(Ai) is closed under≡, and every LTL formulaϕ overACT, the set

[[ϕ]]SP ,{L(Ai)}ni=1
is also closed under≡. This also implies that

[[ϕ]]SP ,{L(Ai)}ni=1
= [[[ϕ]]SP ,{L(Ai)}ni=1

]≡ = {t : t ∈ [[ϕ]](SP /≡),{L(Ai)/≡}ni=1
}.

The following theorem is then a direct consequence of Theorem 6.1.2.

Theorem 6.1.4 Given a PAP = (ACT,Var,∆), a sequence of NTAs{Ai}ni=1 such that

eachL(Ai) is closed under≡, an LTLdet (resp. LTL(Fs,Gs)) formulaϕ overACT, and

a process term t∈FVar, it is possible to decide whether(SP/≡, [t]≡,{L(Ai)}ni=1) |= ϕ
in timeEXP (resp. 2-EXP). Furthermore, for a fixed formula and a fixed number of

fairness constraints, the problem is solvable inP.

To see this, since[[ϕ]]SP ,{L(Ai)}ni=1
= [[[ϕ]]SP ,{L(Ai)}ni=1

]≡, we need only test whether

SP , t,{L(Ai)}ni=1 |= ϕ, which can be done by appealing to Theorem 6.1.2.



Chapter 6. More applications of algorithmic metatheorems 138

The decidability result of Theorem 6.1.4 is known in the absence of multi-regular

fairness constraints, but without complexity analysis [BKRS09, Reh07]. A natural

question regarding Theorem 6.1.4 is whether multi-regularfairness constraints are use-

ful since we need each constraint to be closed under≡. The answer is positive. Recall

from Section 5.4 that multi-regular fairness constraints can be used to encode some

natural fairness constraint considered in the verificationof ground tree rewrite sys-

tems, e.g., that each leaf process will eventually be executed. The encoding of this

constraint is by additionally coloring the leaf processes by the color ‘1’ or ‘2’. We then

use two regular fairness constraintsL1 andL2, whereL1 encodes the set of all trees all

of whose leaves are colored 1, whileL2 encodes the set of all trees all of whose leaves

are colored 2. This encoding also works for PA since bothL1 andL2 will be closed

under≡.

6.2 Reversal-bounded counter systems

In this section, we combine our algorithmic metatheorems from the previous chapter

with known results in the literature to obtain new results onmodel checking problems

over reversal-bounded counter systems and their extensions with discrete clocks and

one free counter, which were extensions of Ibarra’s reversal-bounded counter systems

[Iba78] that were introduced in [DIB+00]. We first start with reversal-bounded counter

systems with one free counter, and then extend the result when the systems have dis-

crete clocks.

6.2.1 Basic model with one free counter

We first define the notion of reversal-bounded counter systems [Iba78]. First, the reader

should review the definition of counter systems from Example3.1.4. Consider now a

k-counter systemM = (ACT,X,Q,∆), the transition systemSM generated byM , and

a path

π := s0→ s1→ . . .→ sm

in SM , wheresi = (qi,n1,i , . . . ,nk,i). Intuitively, the number of reversals on a counter

j in π is defined to be the number of switches from a non-increasing mode to a non-

decreasing mode (or vice versa) of the value of the counterj in π. For example, if the

values of f j are 1,1,1,2,3,4,3,2,2,3, then the number of reversals on the jth counter is

2. Let us make this definition more precise. For eachj ∈ [1,k], consider the function



Chapter 6. More applications of algorithmic metatheorems 139

f j : [0,m]→ N defined byf j(i) = n j ,i. Observe thatf simply records the value of the

counterj in configurationsi . Thenumber of reversals on a counter j inπ is the number

of indicesi ∈ [1,m−2] for which there existsi′ > i satisfying either

• (i) n j ,i+1 = n j ,i +1, (ii) n j ,i+1 = . . . = n j ,i′, and (iii) n j ,i′+1 = n j ,i′−1, or

• (i) n j ,i+1 = n j ,i−1, (ii) n j ,i+1 = . . . = n j ,i′, and (iii) n j ,i′+1 = n j ,i′+1.

We define thenumber of reversalsin π to be the maximum number of reversal on all

countersj in π. We say thatM is r-reversal boundedif the number of reversals ofM

on all pathsπ in SM is at mostr. In addition, anr-reversal bounded counter system

M is said to have a free counter if there is no bound on the numberof reversals made

by the first counter.

We are interested in the problem of model checking LTL formulas over reversal-

boundedk-counter systemsM = (ACT,X,Q,∆), whereQ = {q1, . . . ,qn}, with multi-

regular fairness constraints (again, see Example 3.1.4 forthe representation of sets of

configurations ofM using automata). Note that regular relations are more expressive

than Presburger-definable relations as we have noted in Example 3.1.6.

Theorem 6.2.1 Model checking an LTL formulaϕ with multi-regular fairness con-

straints over r-reversal bounded k-counter system with n states and one free counter

can be done in time polynomial in the size of each fairness constraint, exponential in

n and in the number of fairness constraints, but double exponential in r, k, and‖ϕ‖.

In the case of a single Presburger arithmetic fairness constraint, this problem was al-

ready known to be decidable [DIP01], but without any complexity analysis. In the next

chapter, we shall lower the above upper bound complexity by one exponential when

there is no extra free counter.

Before we apply our algorithmic metatheorems for proving Theorem 6.2.1, let us

make a simple observation that the class ofr-reversal bounded counter systems with

one free counter (for any fixedr ∈ N) is closed under products with finite systems.

Lemma 6.2.2 Given an r-reversal bounded k-counter systemM =(ACT,X,Q,∆) with

one free counter and a finite systemF over ACT, the productF ⋉SM can be repre-

sented by an r-reversal bounded k-counter systemM ′ with one free counter, which can

be computed in polynomial time.

Let us now consider the reachability relations of reversal bounded counter systems with

one free counter. We shall first discuss how we may represent the reachability relations
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of a k-counter systemM with statesQ = {q1, . . . ,qn} as subsets ofN2k. For each pair

qi ,q j ∈ Q of states, we may define the 2k-ary relationRi, j such that(l1, . . . , l2k) ∈
Ri, j iff the configuration(q j , lk+1, . . . , l2k) is reachable from(qi, l1, . . . , lk) in SM . In

other words,Ri, j encodes the reachability relations ofM from configurations of the

form (qi,v) to configurations of the form(q j ,w). In the sequel, if we say that the

reachability relation ofM is semilinear, we mean that eachRi, j is semilinear. We need

the following result on the reachability relations of reversal-bounded counter systems.

Proposition 6.2.3 ([Iba78, ISD+02]) The reachability relations of r-reversal bounded

k-counter systemsM with one free counter are semilinear.

Let us briefly discuss the proof ideas of this proposition. Todo so, we must first define

the notion of reversal-bounded counter automata, which canbe understood as reversal-

bounded counter systems used as language recognizers (the difference is similar to

the difference between pushdown automata and pushdown systems). More precisely,

an r-reversal bounded k-counter automatonover Σ is an r-reversal bounded counter

systemM = (Σε,X,Q,δ), whereΣε = Σ∪{ε}, with an initial stateq0 and a setF of

final states. ThelanguageL(M ) recognized byM contains the set of wordsw ∈ Σ∗

for which there exists a path

(p0,v0)→a1 . . .→am (pm,vm)

in the transition systemSM generated byM satisfyingp0 = q0, pm ∈ F , andw =

a1 . . .am. Such a path is said to beacceptingand thatw is said to beacceptedby M .

Similar notions can be defined for reversal-bounded counterautomata with one free

counter. The first step in the proof is the following lemma from [ISD+02].

Lemma 6.2.4 ([ISD+02]) There exists a polynomial-time algorithm which, given an

r-reversal-bounded k-counter system with states Q= {q1, . . . ,qn} with (resp. with-

out) one free counter, computes a r-reversal bounded k-counter automaton with (resp.

without) one free counter such that the Parikh image of its language coincides with the

reachability relations{Ri, j}i, j∈[1,n].

The Parikh images of the language ofr-reversal boundedk-counter automata with one

free counter have been shown by Ibarra [Iba78] to be effectively semilinear, which

immediately implies Proposition 6.2.3. We shall state Ibarra’s result as a proposition

since we will refer to it in the sequel.
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Proposition 6.2.5 ([Iba78]) Given a reversal-bounded counter automaton with one

free counter, the Parikh image of its language is effectively semilinear.

We now offer a slight modification of Ibarra’s algorithm for computing the Parikh

image of reversal-bounded counter automata to obtain an acceptable complexity up-

per bound. It is well-known that semilinear sets overN
k coincide with subsets ofNk

that are definable in Presburger arithmetic [GS66]. If we represent semilinear sets as

existential Presburger formulas with homogenous linear (in)equations of the form

a1x1 + . . .+amxm∼ b,

wherea1, . . . ,am,b ∈ Z and∼∈ {=, 6=,<,>,≤,≥}, as atomic formulas, it turns out

that we can obtain the following upper bounds.

Proposition 6.2.6 We can compute a representation of the Parikh image of the lan-

guage of a given r-reversal bounded k-counter automatonM with n states and one

free counter as existential positive Presburger formulas with linear (in)equations (with

unary representation of numbers) in time polynomial in n, and exponential in k and r.

The complexity analysis of this proposition can simply be derived by replacing the

use of the original proof of Parikh’s Theorem [Par66] in Ibarra’s proof of Proposition

6.2.5 by the polynomial-time algorithm from [VSS05] computing an existential posi-

tive Presburger formula with linear (in)equations which represents the Parikh image of

a given context-free grammar (equivalently, pushdown automata).

Remark 6.2.1 In [Iba78], Ibarra did not provide complexity analysis of his algorithm.

This complexity analysis, however, can be easily inferred by analyzing the algorithm

from [Iba78] after using the algorithm from [VSS05] insteadof [Par66].�

Using this proposition, it is immediate that the Parikh images of the language of

reversal-bounded counter automata with one free counter are regular (in the sense given

in Example 3.1.4) since linear (in)equations can always be replaced by Presburger for-

mulas. In order to obtain compact automata representations, we will instead use the

following translation from linear (in)equations to automata representations.

Proposition 6.2.7 ([BC96, WB00])Given a homogeneous linear (in)equation of the

form

a1x1+ . . .+amxm∼ b
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where a1, . . . ,am,b∈Z,∼∈ {=, 6=,<,≤,>,≥}, the subset ofNm containing valid val-

uations(i1, . . . , im) of the variables(x1, . . . ,xm) can be represented as an NWAA over

{0,1}m (in the sense of Example 3.1.4) with O(∑n
i=1 |ai |+ log(|b|)) states. Further-

more, this can be computed in time polynomial in∑n
i=1 |ai|+ log(|b|).

In other words, NWAs representing linear (in)equations canbe represented polynomi-

ally in the size of the numbers (with unary representations), but exponentially in the

number of summands. In fact, it is known that this upper boundcannot be substan-

tially improved for DWAs [Kla08], which was recently shown to hold also for NWAs

[DGH]. Proposition 6.2.7 can be combined with Proposition 3.1.3 from Chapter 3

to obtain a complexity bound on the size of NWA for existential positive Presburger

formulas with linear (in)equations. The following proposition can be derived by com-

bining Proposition 6.2.7, Proposition 3.1.3, Proposition6.2.6, and Lemma 6.2.4.

Proposition 6.2.8 There exists an algorithm which, given an r-reversal bounded k-

counter systemM with n states and one free counter, computes an NWAA representing

the reachability relation ofM . Furthermore, the algorithm runs in time exponential in

n but double exponential in r and k.

Theorem 6.2.1 is then an immediate corollary of Proposition6.2.8 and our algorithmic

metatheorem for LTL model checking over word-automatic transition systems.

6.2.2 Extension with discrete clocks

We now give an extension of Theorem 6.2.1 with discrete clocks with no increase in

computational complexity.

Let us first recall the definition of counter systems with discrete clocks [DIB+00].

An atomic clock constrainton clocksY = {y1, . . . ,yt} is simply an expression of the

form yi ∼ y j or yi−y j ∼ c, where∼∈ {<,>,=}, 1≤ i, j ≤ t andc∈ Z is a constant.

Herec is given inbinary. In the sequel, we shall call this constantc aclock comparison

constant. An atomic counter constrainton countersX = {x1, . . . ,xk} is simply an

expression of the formxi ∼ 0, where∼∈ {=,>}. A counter-clock (CC) constraintθ
on(X,Y) is simply a conjunction of a clock constraint onY and a counter constraint on

X. Given a valuationν : X∪Y→ N to the counter/clock variables, we can determine

whetherθ[ν] is true or false in the obvious way. Ak-counter system with t discrete

clocks overACT is a tupleM = (ACT,X,Y,Q,∆), where

• X = {x1, . . . ,xk} is a set ofk counter variables,
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• Q is a set of states,

• Y = {y1, . . . ,yt} is a set oft clock variables,

• ∆ is a finite set ofinstructionsof the form((q,θ(X,Y)),a,(q′,v,Y′)), where:

– q,q′ ∈Q,

– a∈ ACT,

– θ(X,Y) is a CC constraint on(X,Y),

– v∈ {−1,0,1}k, and

– Y′ ⊆Y is a set ofclock resets.

A configurationof M is a tuple(q,v,w) ∈ Q×N
k×N

t expressing the stateM is

in, the current values of thek counter, and the current values of thet clocks. The

k-counter system witht discrete clocksM also generates a transition systemSM =

〈S,{→a}a∈ACT〉 defined as follows:

• S= Q×N
k×N

t contains all configurations ofM .

• Given two configurationsc = (q,v,w) andc′ = (q′,v′,w′), we havec→a c′ iff

there exists an instruction((q,θ(X,Y)),a,(q′,u,Y′)) ∈ ∆ such that

– θ[v,w] holds,

– v′ = v+u, and

– If Y′ = /0, then each clock progresses by one time unit:w′ = w + 1. If

Y′ 6= /0, then the value of the clocks inY′ are reset, while the values of other

clocks stay the same: for eachyi ∈Y′ andy j ∈Y \Y′, w′i = 0 andw′j = w j .

We may define the notions of reversal-bounded counter systems with one free counter

and discrete clocks in the same way.

In order to apply our algorithmic metatheorems, first observe that the class of

reversal-bounded counter systems with one free counter anddiscrete clocks are closed

under products with finite systems. This observation is verysimilar to Lemma 6.2.2.

We next consider their reachability relations. First recall the following proposition

from [DIB+00].

Proposition 6.2.9 Suppose thatM is an r-reversal bounded k-counter systems with t

discrete clocks and with (resp. without) one free counter. Let n be the number of states
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of M and l be the size (in binary) of the maximum absolute values ofclock comparison

constants inM . Then, we may compute a r+1-reversal bounded(k+ t +1)-counter

automataM ′ with (resp. without) one free counter such thatP (L(M ′)) coincides with

the reachability relation ofM . Furthermore, the procedure runs in time polynomial in

n, k, and r, but exponential in l and t.

In fact, in the paper [DIP01] Danget al. only gave the proof of this proposition when

there is only one free counter and no reversal bounded counters, though they remarked

that this can easily be extended with reversal bounded counters which can indeed be

easily checked. Therefore, we may proceed as for the case without discrete clocks and

obtain the following theorem.

Theorem 6.2.10Model checking an LTL formulaϕ with multi-regular fairness con-

straints over r-reversal bounded k-counter systemM with n states, t discrete clocks,

and one free counter can be done in time polynomial in the sizeof each fairness con-

straint, exponential in n and in the number of fairness constraints, but double expo-

nential in r, k, t,‖ϕ‖, and the size (in binary) of the maximum absolute value of clock

comparison constant inM .

This theorem also answers an open question by Danget al. [DIP01] whether recurrent

reachability with one Presburger-definable fairness constraint over reversal-bounded

counter systems with discrete clocks and one free counter isdecidable.

6.3 Subclasses of Petri nets

In this section, we shall apply our algorithmic metatheorems from earlier chapters to

subclasses of Petri nets: (1) 2-dimensional vector addition systems with states, (2)

reversible Petri nets, and (3) conflict-free Petri nets. Another subclass of Petri nets on

which we can apply our algorithmic metatheorems is called basic parallel processes,

which are a subclass of PA-processes which we considered earlier in this chapter.

Let us first recall the definition of vector addition systems with states. For our

purpose, avector addition system with states (VASS)is a tupleP = (ACT,X,Q,δ),

where

• X = {x1, . . . ,xk} is a set ofplaces, and

• δ is a finite subset ofQ×ACT×Z
k×Q each of whose member is atransition.
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The transition systemSP = 〈S,{→a}a∈ACT〉 generated byP is defined as follows:

• S= Q×N
k, and

• for each action symbola ∈ ACT, and pair of configurations(q1,v1),(q2,v2) ∈
Q×N

k, define(q1,v1)→a (q2,v2) iff there exists a transition(q1,a,u,q2) ∈ δ
such thatw = v+u.

Observe that this definition enforces that no place could be made negative in any exe-

cution of the system. We definePetri netsto be vector addition systems with one state,

in which case we will omit the state component when defining Petri nets. It is not hard

to show that the transition systems generated by VASS and Petri nets are the same, i.e.,

for any given VASSP , we can come up with one-state VASS that simulatesP . Finally,

observe that VASS can be thought of as counter systems with noguard formulas.

6.3.1 Two-dimensional vector addition systems with states

Two-dimensional (2-dim) vector addition systems with states are simply VASS with

two places. Leroux and Sutre [LS04] recently showed that thereachability relations of

2-dim VASS are effectively semilinear.

Proposition 6.3.1 ([LS04]) The reachability relations of 2-dim VASS are effectively

semilinear.

This result generalizes an earlier result by Hopcroft and Pansiot [HP79] on the effective

semilinearity ofpost∗ andpre∗ for 2-dim VASS. Nonetheless, no complexity analysis

was provided in [LS04].

Observe now that VASS are word-automatic using the same encoding of counter

systems as automata (see Example 3.1.4). Furthermore, we have remarked that semi-

linear sets (or equivalently Presburger-definable subsetsof N
k) can also be interpreted

as regular languages using the same encoding of tuples of numbers. Since 2-dim VASS

are closed under product with finite systems, our algorithmic metatheorem for decid-

able LTL model checking with multi-regular fairness constraints imply the following

theorem.

Theorem 6.3.2 Model checking LTL with multi-regular fairness constraints over 2-

dim VASS is decidable.
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For this theorem, we could also replace regular fairness constraints with fairness con-

straints expressed as first-order formulas over Büchi Arithmetic (see Example 3.1.6),

which generalizes Presburger Arithmetic. In addition, although it is known that model

checking LTL over all VASS isEXPSPACE-complete [Yen92] (when only infinite

paths are considered), to the best of our knowledge it is openwhether the problem is

decidable in the presence of semilinear (let alone, multi-regular) fairness constraints.

At any rate, this problem is easily seen as hard as reachability for Petri nets, which is

decidable but not known to be primitive recursive (cf. [May84]). As we remarked, the

complexity of the construction of the reachability relations from [LS04] was not given.

Therefore, we leave it as an open problem to pinpoint the precise complexity of this

problem.

6.3.2 Conflict-free Petri nets

Let us briefly recall the definition of conflict-free Petri nets; for more details, the reader

is referred to [Esp96]. LetP = (ACT,X,δ) be a Petri net withk places. Given a

configurationv of P , and a transitiont = (a,u) of P , we say thatt is enabled atv if

there existsw ∈ N
k such thatw = v+u. In this case, we writev t→ w or simplyv t→

if w is not important. We say thatP is conflict freeif, for eachv ∈ N
k, and pairst1, t2

of transitions ofP , we havev
t1→ andv

t2→ impliesv
t1→ w

t2→ for somew ∈ N
k. The

reachability relations of conflict-free Petri nets are known to be effectively semilinear.

Proposition 6.3.3 ([LS05a]) The reachability relations of conflict-free Petri nets are

effectively semilinear.

Combining this with our algorithmic metatheorem for recurrent reachability with gen-

eralized Büchi conditions, we obtain the following theorem.

Theorem 6.3.4 Checking recurrent reachability with multi-regular fairness constraints

over conflict-free Petri nets is decidable.

Since no complexity analysis was provided in [LS05a], we leave the complexity of

this problem for future work. Finally, since it is easy to seethat conflict free Petri

nets are closed under taking subsystems, our algorithmic metatheorems for LTLdet and

LTL(Fs,Gs) imply the following theorem.

Theorem 6.3.5 Model checking LTLdet and LTL(Fs,Gs) with multi-regular fairness

constraints over conflict-free Petri nets is decidable.
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6.3.3 Reversible Petri nets

A Petri netP = (ACT,X,δ) is said to bereversibleif for each transitiont ∈ δ, there

exists a transitiont ′ ∈ δ such that
t→ is an inverse of the relation

t ′→, i.e.,

t→= {(v,w) : w t ′→ v}.

For a more thorough treatment of reversible Petri nets, we refer the reader to [Esp96].

The reachability relations of reversible Petri nets are known to be effectively semilin-

ear.

Proposition 6.3.6 ([LS05a]) The reachability relations of reversible Petri nets are ef-

fectively semilinear.

Combining this with our algorithmic metatheorem for recurrent reachability with gen-

eralized Büchid conditions, we obtain the following theorem.

Theorem 6.3.7 Checking recurrent reachability with multi-regular fairness constraints

over reversible Petri nets is decidable.

Again, since no complexity analysis was provided in [LS05a], we leave the complexity

of this problem for future work.
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Chapter 7

Reversal-bounded counter systems

and their extensions

Minsky’s counter systems are well-known Turing-powerful models of computation.

Hence, to obtain decidability, restrictions need to be imposed. We have seen in Chap-

ter 6 that reversal-bounded counter systems, which were initially proposed by Ibarra

[Iba78], are not Turing-powerful since they have decidablereachability and LTL model

checking with complex fairness constraints. Furthermore,we saw that this is true even

in the presence of one free counter and any number of discreteclocks. In this chap-

ter, we shall investigate such models more thoroughly, especially with regards to the

precise complexity of model checking problems.

We saw in Chapter 6 that our algorithmic metatheorem for LTL model checking

with fairness constraints, combined with the result of [DIB+00, ISD+02, Iba78], yields

decidability of LTL with fairness constraints overr-reversalk-counter systems witht

discrete clocks and one free counter, which was left open by by Danget al. [DIP01]. In

fact, the complexity upper bound that we obtained was doubleexponential time, even

for a fixed LTL formula. This is far worse than the best known complexity lower bound

for the problem, which is PSPACE-hard due to the presence of an unbounded number

of clocks or binary representation of numbers in the clock constraints [CY92] (also see

[AM04]). In this chapter, we shall rectify this problem in the case of reversal-bounded

counter systems with discrete clocks, but without one free counter.

Recall from Chapter 6 that the results of [DIB+00, ISD+02, Iba78] yield a double-

exponential time procedure for computing an NWA representing the reachability re-

lation of a givenr-reversalk-counter systemsP with t discrete clocks and one free

counter. More precisely, ifn is the number of states ofP , the complexity of this pro-

151
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cedure is exponential inn, and double exponential inr (in unary),k, t, and the size of

the binary representation of the maximum number appearing in clock constraints inP .

We observe that the constructions from [DIB+00, ISD+02, Iba78] substantially rely on

Ibarra’s original algorithm [Iba78] for the computation ofsemilinear sets representing

the Parikh image of the language recognized by reversal-bounded counter machines.

Ibarra’s original algorithm [Iba78] has been observed by Gurari and Ibarra [GI81]

to give non-optimal algorithms for solving various problems (e.g. nonemptiness) for

reversal-bounded counter machines. Gurari and Ibarra proposed a new technique for

deriving a PSPACE upper bound for nonemptiness (and therefore reachability) for

reversal-bounded counter machines. In fact, the procedureof [GI81] runs in polynomial-

time when the parametersr andk are fixed constants. Later, Howell and Rosier [HR87]

improved both the upper bound and lower bound for nonemptiness of reversal-bounded

counter machines even in presence of one free counter. They showed that the problem

is NP-complete when at least one of the parametersr andk is not fixed. Again, the

technique of Howell and Rosier’s avoids the use of Ibarra’s original algorithm from

[Iba78].

A careful look at Ibarra’s algorithm [Iba78] reveals that the bottleneck of its run-

ning time is due to the use of Parikh’s Theorem [Par66]. It canbe easily checked that

Parikh’s construction of the Parikh images for CFGs (or, equivalently pushdown au-

tomata) runs in exponential time and may output a union ofexponentiallymany linear

sets in the worst case. In the case ofr-reversalk-counter machines without one free

counter, Parikh’s construction was applied in [Iba78] to anNWA that is obtained from

the input reversal-bounded counter machine of size exponential in r andk, and polyno-

mial in the numbern of states of the counter machine. The exponentiallity of Parikh’s

construction then gives double exponential complexity inr andk, and exponential in

n for computing the Parikh images of reversal-bounded counter machines. Although

several different proofs for Parikh’s Theorem with different flavours and techniques

exist in the literature (e.g. see [Esp97b, Koz97, SSMH04, VSS05]), it can be easily

checked that all of these constructions could produce at least exponentially many linear

sets in the worst caseeven when the size of the alphabet is restricted to one.

The first hint that better upper bounds could be obtained for NWAs is due to

Chrobak [Chr86] and Martinez [Mar02], who showed that thereexists a polynomial-

time algorithm which, given an NWAA over an alphabetΣ of size 1, computes a union
Sm

i=1{ai + tbi : t ∈ N} of polynomially many arithmetic progressions — whose offsets

ai and periodsbi are bounded polynomially in the number of states — representing
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the Parikh imageP (A) of A . [Unfortunately, the proofs in [Chr86, Mar02] contain

a subtle error, which were recently fixed by the author in [To09b].] A generaliza-

tion of Chrobak-Martinez’s Theorem has been recently discovered independently by

Kopczynski [Kop10] and the author [To10] with different proofs (see also the merged

paper [KT10]). These results give an algorithm which, givenan NWA with n states

over an alphabet of sizek≥ 1, computes a union of linear sets with at mostk peri-

ods and total size 2O(k2 logn) (with unary representation of numbers in the output), i.e.,

polynomial for all fixedk. Previously, it was not even known whether the number of

periods in the linear sets could be made independent ofn except for the special cases

whenk = 1 [Chr86] andk = 2 [Abe95]. Furthermore, the running time of our algo-

rithms is polynomial inn and exponential ink, i.e., polynomial whenk is fixed. This

chapter primarily aims to present the author’s proof [To10]of this normal form theo-

rem for NWAs, and show how they can be applied to obtain optimal model checking

complexities of reversal-bounded counter systems and their extensions with discrete

clocks.

This chapter is organized as follows. In Section 7.2, we prove a “Caratheodory-

like” theorem for linear sets.Caratheodory’s Theorem for convex conesis a well-

known result from the study of convex sets [Zie07] that overR
k theconvex conegen-

erated by the vectors inV = {v1, . . . ,vm} ⊆R
k could be subdivided into convex cones

that are generated by subsetsS⊆V of size at mostk. More precisely, this fact can be

written as

cone(V) =
[

S⊆V,|S|≤k

cone(S),

where, ifS= {w1, . . . ,wr}, we definecone(S) := {∑r
i=1 tiwi : t1, . . . , tr ∈ R≥0}. Ob-

serve that the number of cones on the right is only exponential in k (and polynomial

in m). Our Caratheodory-like theorem for linear sets simply says that, given the set

V = {v1, . . . ,vm} ⊆ N
k, the linear setP(0;V) can be written as a union ofr linear

setsP(w1;S1), . . . ,P(wr ;Sr), where eachSi is a subset ofV of size at mostk and

the parameterr, as well as each number in each offsetwi, is bounded exponentially

in the dimensionk, but polynomially inm and the maximum numbera occuring in

vectors inV. Furthermore, the linear setsP(w1;S1), . . . ,P(wr ;Sr) can be computed

in polynomial time provided that the dimensionk is fixed. In fact, we shall prove

a more general version of this Caratheodory-like forZ-linear sets. In Section 7.3,

we shall use this Caratheodory-like theorem for linear setsto obtain a normal form

theorem for Parikh images of NWAs. We shall also show in this section that the up-
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per bound complexity given by this normal form theorem is tight and that the same

upper bound doesnot hold for CFGs even over the fixed alphabetΣ = {a}. Before

showing how the normal form theorem can be used to improve model checking com-

plexities of reversal-bounded counter systems and their extensions, in Section 7.4 we

give three simple applications of our Caratheodory-like theorem for linear sets and

normal form theorem for Parikh images of NWAs: (1) polynomial-time fragments of

integer linear programming, (2) decision problems for Parikh images of NWAs, and

(3) Presburger-constrained graph reachability. In Section 7.5, we use our normal form

theorem to obtain optimal complexity for the problem of model checking LTL with

complex fairness constraints andEF-logic over reversal-bounded counter systems and

their extensions with discrete clocks. Moreoever, we shallshow that model checking

CTL is undecidable over reversal-bounded counter systemswithoutdiscrete clocks.

7.1 Preliminaries

In this section, we shall define notations that will be used throughout this chapter. Fix

an NWAA over some alphabetΣ. Given a pathπ = p0a1 . . . pm in an NWAA , we shall

write P (π) to denote the Parikh imageP (a1 . . .am) of the path labelsa1 . . .am.

We shall now fix some matrix notations. Given twon-by-n 0-1 matricesM =

[mi, j ]n×n and M′ = [m′i, j ]n×n, we write M •M′ to denote the matrixM′′ = [m′′i, j ]n×n

with m′′i, j =
Wn

k=1(mi,k∧m′k, j). The operator• is often referred to asboolean matrix

multiplication, which can easily be evaluated inO(n3). We also writeM∨M′ to denote

the application of the boolean operation∨ component-wise, i.e., resulting in a matrix

M′′ = [m′′i, j ]n×n with m′′i, j = mi, j ∨m′i, j . In the sequel, we shall also writeM[i, j] for the

(i, j)-componentmi, j of M.

Above we have defined the notions of convex cones. We now definea similar

notion when the coefficients of the linear combinations are naturals (instead of non-

negative reals). Given a finite subsetS of vectors overZk, let coneN(S) denote the

linear setP(0;S). We now state a very simple fact about arithmetic on semilinear sets

which we will frequently use in this chapter.

Fact 7.1.1 Suppose that S1 =
Sr

i=1P(vi ;Vi)⊆N
k and S2 =

St
j=1P(w j ;Wj)⊆N

k. Then,

it is the case that S1 + S2 =
Sr

i=1
St

j=1P(vi + w j ;Vi ∪Wj). In addition, we have

P(v;S) = v+coneN(S).
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7.2 A Caratheodory-like theorem for linear sets

In this section, we shall prove a Caratheodory-like theoremfor linear sets of the form

coneN(V). This will also imply a Caratheodory-like theorem for general linear sets

P(v;V) = v+coneN(V).

Theorem 7.2.1 Let V := {v1, . . . ,vm} ⊆ Z
k \ {0} with m> 0. Let a∈ N be the max-

imum absolute value of numbers appearing in vectors of V . Then, it is possible to

compute in time2O(k log(m)+k2 log(ka)) a sequence ofZ-linear bases〈w1;S1〉, . . . ,〈wµ;Sµ〉
such that

coneN(V) =
µ

[

i=1

P(wi ;Si)

where the maximum absolute value of entries of eachwi is O(m(k2a)2k+3), each Si is

a subset of V with|Si | ≤ k, and µ= O(m2k(k2a)2k2+3k). Furthermore, if V⊆ N
k, we

have{w1, . . . ,wµ} ⊆N
k.

Observe that this theorem causes only an exponential blow-up in the dimensionk.

Moreover, each setSi contains at mostk generators. To prove this theorem, we start

with a slight strengthening ofthe conical version of Caratheodory’s theoremfrom the

theory of convex sets [Zie07, Proposition 1.15]. The proof is given in the appendix.

Lemma 7.2.2 Let V := {v1, . . . ,vm}⊆Z
k\{0}with m> 0. Let a∈N be the maximum

absolute value of numbers appearing in vectors of V . Then, itis possible to compute

in time2O(k logm+logloga), a sequence S1, . . . ,Sr of distinct linearly independent subsets

of V with d elements, where d∈ {1, . . . ,k} is the rank of V , and

cone(V) =
r

[

i=1

cone(Si).

Let us first explain the idea behind the rest of the proof of Theorem 7.2.1. Intuitively,

Lemma 7.2.2 says thatcone(V) ⊆ R
k can be subdivided into smaller subcones with

exactlyd ∈ {1, . . . ,k} generators whered is the rank ofV. This lemma immediately

gives anupper boundfor coneN(V) as the union of theinteger pointsin cone(Si); in

general, the latter contains many more points thanconeN(V). On the other hand, we

have
Sr

i=1coneN(Si)⊆ coneN(V), where the inclusion is strict in general. It turns out

that an equality can be achieved by first making a “few”duplicatesof eachconeN(Si)

and thenshiftingthem appropriately by some “small” integer vectors.
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We now prove Theorem 7.2.1. First invoke Lemma 7.2.2 onV and obtain lin-

early independentd-subsetsS1, . . . ,Sr of V, whered = rank (V) andr ≤mk, satisfying

cone(V)=
Sr

j=1cone(Sj). Then, it follows thatcone(V)∩Z
k =

Sr
j=1

(
cone(Sj)∩Z

k
)
.

To compute the integer vector “shifts”, we shall need to define the notions ofcanonical

andminimalvectors.

Characterization via canonical and minimal vectors

Suppose now thatv ∈ cone(Sj)∩Z
k andSj = {u1, . . . ,ud}. We make several simple

observations:

(O1) There exists auniquevector [v] ∈ {−ka, . . . ,ka}k∩ cone(Sj) anduniquenon-

negative integerss1, . . . ,sd such that: 1)v = [v]+Σd
i=1siui , and 2)[v] = Σd

i=1tiui

for some (unique) 0≤ t1, . . . , td < 1. To see this, observe that by linear inde-

pendence ofSj there exist some uniqueλ1, . . . ,λd ∈R≥0 such thatv = Σd
i=1λiui .

Simply letsi := ⌊λi⌋, ti := λi−si , and[v] := Σd
i=1tiui . Uniqueness is immediate

from uniqueness ofλ1, . . . ,λd.

(O2) Givenv′ ∈ cone(Sj)∩Z
k, we writev∼ v′ iff [v] = [v′]. It is easy to see that∼ is

an equivalence relation of finite index (there are at most(2ka+1)k equivalence

classes). If[v] = v, the vectorv is said to be acanonical representativeof the

equivalence class{u ∈ cone(Sj)∩Z
k : [u] = v}. In this case, we will also callv

anSj -canonical vector, or simplycanonical vectorwhenSj is understood.

(O3) If v is in coneN(V)∩ cone(Sj), thenv + Σd
i=1siui ∈ coneN(V)∩ cone(Sj) for

everys1, . . . ,sd ∈N.

We shall now use these observations to define a natural well-founded partial order� j

onconeN(V)∩cone(Sj); note thatconeN(V)∩cone(Sj) 6= /0. Givenv,w∈ coneN(V)∩
cone(Sj), we write v � j w iff, for some (unique)Sj -canonical vectorv0 and some

(unique) coefficientss1, . . . ,sd ∈ N andt1, . . . , td ∈ N, it is the case that: 1)v = v0 +

Σd
i=1siui , 2) w = v0 +Σd

i=1tiui, and 3)(s1, . . . ,sd)� (t1, . . . , td). The following simple

lemma shows that� j is a well-founded partial order, and characterizes� j -minimal

elements.

Lemma 7.2.3 The relation� j is a well-founded partial order onconeN(V)∩cone(Sj).

Furthermore, a vectorv ∈ coneN(V)∩cone(Sj) is � j -minimal iff none of the vectors

(v−u1), . . . ,(v−ud) are in coneN(V)∩cone(Sj).
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Proof. That� j is a partial order is due to:

• Observations(O1) and (O2): the uniqueness of choice of canonical vectorv0

and coefficientss1, . . . ,sd ∈ N for each vectorv satisfyingv = v0+Σd
i=1siui .

• That� is a partial order onNk.

To see that� j is well-founded, assume that there exists a strictly decreasing sequence

v1� j v2� j . . .. Let vi = v0+Σd
j=1si

jui for some unique canonical vectorv0 = [vi ] and

unique coefficientsai = (si
1, . . . ,s

j
d)∈N

d. In this way, we generate a strictly decreasing

sequencea1 ≻ a2 ≻ . . . for the well-founded partial order≻ on N
k, and therefore a

contradiction. Thus,� j is a well-founded partial order onconeN(V)∩cone(Sj).

Given a� j -minimal vectorv ∈ coneN(V)∩cone(Sj), it is obvious that none of the

vectors(v−u1), . . . ,(v−ud) cannot be inconeN(V)∩cone(Sj). Conversely, given a

vectorv∈ coneN(V)∩cone(Sj) which is not� j -minimal, we could find another vector

v′ ∈ coneN(V)∩cone(Sj) such thatv′� j v. Using Observation(O3), it is easy to show

that at least one of the vectors(v−u1), . . . ,(v−ud) is in coneN(V)∩cone(Sj). 2

Lemma 7.2.3 and Observation(O3) immediately implies thatconeN(V) is a union of

linear setsP(v;Sj) taken over allj = 1, . . . , r and� j -minimal vectorsv.

Lemma 7.2.4 The following equality holds

coneN(V) =
r

[

j=1

[

v
P(v;Sj),

wherev is taken over all� j -minimal vectors.

Proof. (⊇) Obvious.

(⊆) If v ∈ coneN(V), thenv ∈ cone(Sj)∩Z
k for some j ∈ {1, . . . , r}. By Lemma

7.2.3, there exists a� j -minimal vectorv′ satisfyingv′� j v. Observation(O3) implies

thatv ∈ P(v′;Sj). 2

Note also that ifV ⊆N
k, then all� j -minimal vectors (1≤ j ≤ r) are also nonnegative.

A roadmap for rest of the proof is as follows. We shall show that each� j -minimal

vectors cannot be too large and can be efficiently enumerated. This will immediately

give us the desired sequence of linear bases. The proof of this will require connections

to integer programming, and the use of dynamic programming.
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Bounds via integer programming

For eachSj = {u1, . . . ,ud}, we shall now show that all� j -minimal vectorsv cannot

be too large. To this end, for each canonical vectorv0 ∈ cone(Sj)∩Z
k, consider the

integer linear programAx = vT
0 (x � 0), whereA is thek× (m+ d) matrix consist-

ing of columnsv1,v2, . . . ,vm,−u1,−u2, . . . ,−ud (in this order) andx is the column

(m+d)-vector consisting of the variablesx1, . . . ,xm,y1, . . . ,yd (in this order). The fol-

lowing simple lemma shows that�-minimal solutions to such integer programs — as

we shall see, they cannot be too large as well — provide upper bounds for how large

� j -minimal vectors can be.

Lemma 7.2.5 For every� j -minimal vectorv∈ coneN(V)∩cone(Sj), letv0 := [v] and

t = (t1, . . . , td) ∈ N
d be the unique coefficients such thatv = v0 + Σd

i=1tiui . Suppose

also thatc = (c1, . . . ,cm) is a�-minimal solution to the integer programΣm
i=1xivi = v

(x � 0). Then, the vectorw := (c, t) ∈ N
m+d is a�-minimal solution to the integer

program Ax = v0 (x� 0).

Proof. Thatw is a solution is immediate. To show�-minimality, consider a vector

u = (c′1, . . . ,c
′
m, t ′1, . . . , t

′
d) ∈ N

m+d such thatu � w andAuT = v0. Definev′ := v0 +

Σd
i=1t

′
i ui and thusv′ = Σm

i=1c′ivi . This means thatv′ ∈ coneN(V)∩ cone(Sj) and, by

� j -minimality of v, it follows thatv′ = v and thust ′i = ti for every 1≤ i ≤ d. Thatc is

a�-minimal solution to the integer programΣm
i=1xivi = v (v � 0) implies thatc′i = ci

for every 1≤ i ≤m and, thus,u = w. 2

Consider the setU of all vectorsv0 + Σd
i=1siui, wherev0 ranges over all canon-

ical vectors ands1, . . . ,sd ranges over alld-tuples of nonnegative integers such that

(c1, . . . ,cm,s1, . . . ,sd) is a�-minimal solution to the integer programAx = v0, for

somec1, . . . ,cm∈N. We shall see now that the maximum absolute valueB of numbers

appearing inU exists, which immediately gives an upper bound for the maximum ab-

solute value of entries of� j -minimal vectors. The following general lemma, whose

proof is a straightforward adaptation of the proof of [Pap81, Theorem p. 767], yields

an upper bound forB.

Lemma 7.2.6 Let A be a k×n integer matrix andb a k-vector, both with entries in

[−t, t]∩Z, where t∈ N. Then, every�-minimal solutionx ∈ N
n to Ax = b (x � 0) is

in {0,1, . . . ,n(kt)2k+1}n.
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Notice that the maximum absolute value of numbers appearingin our integer programs

cannot exceedt := ak (which could appear on the right hand side of the equation). If

M := (m+k)(kt)2k+1, it follows thatB≤ akM+ak≤N := (m+k)(k2a)2k+2+ak. This

completes the proof ofexistencefor Theorem 7.2.1 and gives us the desired bounds for

the parameterµ and the maximum absolute value of entries of eachwi in Theorem

7.2.1. It remains to show how to make this algorithmic.

Computing canonical and minimal vectors

We first show how to compute all the canonical vectors. Since Gaussian-elimination

over rational numbers can be implemented to run in time polynomial in the total

number of bits in the input matrix [Edm67] and that eachSj is linearly indepen-

dent, we could easily compute allSj -canonical vectors (for allj ∈ {1, . . . , r}) in time

2O(k log(ka)+k logm) by going through all candidate vectorsv∈{−ka, . . . ,ka}k and check-

ing whether there exist 0≤ t1, . . . , td < 1 such thatΣd
i=1tiui = v. [Transform into row-

reduced echelon form to compute theuniquesolution, if exists. SinceSj ∪{v} ⊆ Z
k,

the coefficientst1, . . . , td will be rational.]

For each fixedj ∈ {1, . . . , r} and each fixedSj -canonical vectorv0, we now show

how to compute the set of all� j -minimal vectorsv such that[v] = v0 by dynamic

programming in time 2O(k logm+k2 log(ka)). Observe that since there are at mostr(2ak+

1)k = 2O(k log(kam)) possiblev0, doing this forall canonical vectors would take time

2O(k logm+k2 log(ka)), which is also the total complexity of the algorithm. To thisend, we

first fill out in stagesa tableT1 which keeps track of all vectorsv ∈ {0,1, . . . ,N}k∩
coneN(V). At stageh = 1,2, . . . ,m, we collect all vectorsv that can be written as

Σh
i=1civi , where 0≤ ci ≤ M. Since the size of the table is at mostNk(k logN) —

k logN bits are used to identify each element in the table with an associatedk-tuple —

this could be carried out in timeO(m(Nk(k logN))2) = 2O(k logm+k2 log(ka)). We then

fill out in stages another tableT2, which keeps track of all vectorsv ∈ {0,1, . . . ,N}k∩
P(v0;Sj). This could be done ind stages, similar to the computation ofT1, and could be

implemented to run in timeO(k(Nk(k logN))2) = 2O(k logm+k2 log(ka)). We then simply

compute a new tableT3 = T1∩T2, from which we eliminate vectors that are not� j -

minimal by using the characterization of� j -minimal vectors from Lemma 7.2.3. All

in all, this could be implemented to run in time 2O(k logm+k2 log(ka)).
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7.3 Parikh images of regular languages

7.3.1 A normal form theorem

In this section, we shall apply Theorem 7.2.1 to obtain a normal form theorem for

Parikh images of NWAs.

Theorem 7.3.1 Let A be an NWA with n states over an alphabetΣ of size k. Then,

there exists a representation of the Parikh imagesP (L(A)) of A as a union of linear

sets P(v1;S1), . . . ,P(vm;Sm), where the maximum entry of eachvi is O(n3(k+1)k4k+6),

each Si is a subset of{0, . . . ,n}k with |Si | ≤ k, and m= O(nk2+3k+3k4k+6). Further-

more, this is computable in time2O(k2 log(kn)).

Observe that this theorem causes an exponential blow-up only in the size of the alpha-

bet. Efficiency could be improved by outputting numbers in binary.

We shall now prove this theorem. LetA = (Σ,Q,δ,q0,qF) be a given NWA, where

|Q|= n andΣ = {a1, . . . ,ak}. Throughout the proof, we shall use the notion of “cycle

type”. A cycle typeis a Parikh imagev ∈ N
k of any wordw∈ Σ≤n such that there is

a pathπ of A on w from some (not necessarily initial) statep to itself. The cycleπ is

said towitnessv. Observe that the sum of the components of any cycle type cannot

exceedn.

Characterization of P (L(A))

We start with a characterization of the Parikh image ofA in terms of Parikh images of

“short” paths together with some cycle types. Given a pathπ = p0a1p1 . . .ar pr of A

from the statep0 to the statepr , let Sπ ⊆ {0, . . . ,n}k be the set of all the cycle types

that are witnessed by some cyclesC = p′0p′1 . . . p′t p
′
0 in A such thatp′i = p j for some

i ∈ {0, . . . , t} and j ∈ {0, . . . , r}. That is,C andπ meetat statep′i = p j ; see Figure 7.1.

Now defineTπ to be the linear setP(P (π);Sπ).

Lemma 7.3.2 The following identity holds:

P (L(A)) =
[

π
Tπ,

whereπ is taken over all accepting runs ofA of length at most(n−1)2.

To prove this lemma, we shall make use of the following simplefact, whose proof (in

Appendix) is to a large extent similar to the well-known factfrom graph theory that
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π

C

p′i = pj

Figure 7.1: The path π (solid line) meets with the cycle C (broken line) at the state

p′i = p j (filled circle).

q2

π′ C1

C2

q0 q3

q1

Figure 7.2: The path π is defined as follows: from q0 it walks to q1, continues to q2 (via

half of cycle C1), takes the cycle C2 once, and then proceeds to q1 (via the rest of cycle

C1) and straight to q3. The decomposition is π′ (in solid line) and the cycles C1 and C2

(in broken lines).

the existence of a path between two given points implies the existence of asimplepath

between the same given points.

Fact 7.3.3 Given an NWAA with n states and a pathπ in A from q to q′, there exist

a simple pathπ′ from q to q′ and finitely many simple cycles C1, . . . ,Ch (possibly with

duplicates) such that

P (π) = P (π′)+
h

∑
i=1

P (Ci).

An illustration of this simple fact is given in Figure 7.2.

Proof of Lemma 7.3.2. (⊆) Assume thatv ∈ P (L(A)) and letσ = p0a1p1 . . .ar pr be

an accepting run inA such thatP (σ) = v. We shall construct another accepting run

σ′ in A of length at most(n−1)2. For each stateq occuring inσ, let l(q) be thelast

(i.e. maximum) indexi ∈ {0, . . . , r} such thatpi = q. Let us write down all suchl(q)

in an increasing order, e.g.,i0 < i1 < .. . < is = r. Note thats < n. By Fact 7.3.3,

each subpathσ[i j , i j+1] of σ can be decomposed into a simple pathπ j from pi j to

pi j+1 of length at mostn−1 and finitely many simple cycles (possibly with duplicates)
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C1, . . . ,Ch each of length at mostn such thatP (π[i j , i j+1]) = P (π j)+Σh
i=1P (Ci). Such

a decomposition result, however, might allow some cycleCi to avoid (i.e. not meet

with) π j . For example, in Figure 7.2 the cycleC2 does not meet with the pathπ′. On

the other hand,Ci mustvisit some states ofpi0, . . . , pis as this sequence contains all

states inσ. Thus, we simply defineσ′ to be the accepting pathπ0⊙π1⊙ . . .⊙πs−1 of

length at most(n−1)2. It follows thatv ∈ Tσ′.

(⊇) Conversely, letv∈ Tπ for some accepting runπ in A of length at most(n−1)2.

Then, ifSπ = {v1, . . . ,vs}, thenv = P (π)+Σs
i=1tivi for somet1, . . . , ts∈ N. LetCi be

a cycle inA that meets withπ and satisfiesP (Ci) = vi. We can construct an accepting

pathσ in A with P (σ) = v as follows: start fromπ as the “base” path, and for each

i ∈ {1, . . . ,s}, attachti copies ofCi to one pre-selected common state ofCi andπ. 2

As an immediate corollary of Lemma 7.3.2, we have:

Proposition 7.3.4 Let A be an NWA with n states over an alphabetΣ of size k. Then,

P (L(A)) can be represented as a union of linear sets P(v1;S1), . . . ,P(vm;Sm), where

vi ∈ {0, . . . ,(n−1)2}k and the components of each vector in Si cannot exceed n.

Remark: A slightly stronger version of this proposition was claimedin [SSM07],

where the maximum component of eachvi cannot exceedn. Their proof turns out

to have a subtle error that also occurs in the proof of Chrobak-Martinez Theorem

[Chr86, Mar02], which was recently fixed in [To09b]. In fact,we show in Propo-

sition 7.3.10 below that our quadratic bound is essentiallyoptimal, i.e., it cannot be

lowered too(n2). (End Remark)

Observe now that the proof of existence in Theorem 7.3.1 is essentially immedi-

ate from Proposition 7.3.4 and Theorem 7.2.1. We will next show that an algorithm

for computing the desired semilinear basis can be obtained using a dynamic program-

ming.

Dynamic programming algorithm

We first show how to compute all the cycle types ofA . More precisely, letQ =

{q0, . . . ,qn−1}, whereqn−1 := qF , and let I = {(t1, . . . , tk) ∈ N
k : Σk

i=1ti ≤ n}. For

each vectorv ∈ N
k, we writeMv = [ai, j ]n×n for then-by-n 0-1 matrix whereai, j = 1

iff there exists a pathπ from qi to q j with P (π) = v. We are interested in computing

all matricesMv for eachv ∈ I . Observe that the naive algorithm, which runs through

all paths ofA from qi to q j with P (π) = v, has time complexity that is exponential



Chapter 7. Reversal-bounded counter systems and their extensions 163

in n. We will give an algorithm for computing these in time 2O(k logn) using dynamic

programming. To this end, let us derive a recurrence relation for computingMv based

on Mv′ with v′ � v. As a base case, we first observe thatM0 is then-by-n identity

matrix. Furthermore, each matrixMei could be constructed easily from the transition

relationδ of A . [Recall that{ei}ki=1 is the standard basis forRk.]

Lemma 7.3.5 Let v = (r1, r2, . . . , r i−1, r i +1, r i+1, . . . , rk) with each ri ∈ N. Then, the

following identity holds:

Mv =
_

u,w
Mu •Mei •Mw

whereu ranges over all vectors� v whose ith entry is 0, andw is the vectorv−ei−u.

Intuitively, this recurrence relation can be derived by observing that a pathπ with

P (π) = v can beuniquelydecomposed into three consecutive path segmentsπ1, π2,

andπ3 with P (π1) = u, P (π2) = ei , andP (π3) = w, for someu andw satisfying the

prescribed condition. The path segmentπ2 contains thefirst occurence of the letterai

in the pathπ. The proof of this lemma can be found in the appendix. The following

lemma, whose proof is also in the appendix, is a simple application of Lemma 7.3.5

and dynamic programming.

Lemma 7.3.6 We can compute{Mv}v∈I in time2O(k logn).

For eachi ∈ {0, . . . ,n−1}, let Γi be the set of all cycle typesv witnessed by some

cycleπ = p0p1 . . . p0 in A with p j = qi. Since{Mv}v∈I have been computed, all sets

Γi could be computed withinO(nk+1) extra time.

We now show how to computeP (L(A)) in time 2O(k2 log(kn)). To this end, we shall

use another application of dynamic programming based on Lemma 7.3.2, Theorem

7.2.1, and the sets{Γi}n−1
i=0 , which we already computed. For each 0≤ i ≤ (n−1)2

and each 0≤ j < n, let Ti, j :=
S

π Tπ whereπ is taken over all paths inA of length i

from q0 to q j . By Lemma 7.3.2, it is the case thatP (L(A)) =
S(n−1)2

i=0 Ti,n−1; recall

thatqn−1 = qF by definition. We shall now derive a recurrence relation forTi, j .

Lemma 7.3.7 It is the case that T0,0 = {0} and T0, j = /0 for each j∈ {1, . . . ,n−1}.
Whenever i> 0 and j∈ {0, . . . ,n−1}, we have

Ti, j =
n−1
[

h=0


Ti−1,h+

[

1≤l≤k,(qh,al ,q j)∈δ
P(el ,Γ j)


 .
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This recurrence relation can be derived by observing that every pathπ of lengthi from

q0 to q j can be decomposed into the pathπ[0, i−1] ending at some stateqh and the

pathπ[i− 1, i] = qhalq j . The cycle typesΓ j can be “used” sinceq j is visited. The

proof is in the appendix.

To finish the proof of Theorem 7.3.1, it suffices to give an algorithm with running

time 2O(k2 log(kn)) for computing a desired semilinear basisPi, j for each setTi, j . The

algorithm runs in(n−1)2 + 1 stages, where at stagei = 0, . . . ,(n−1)2 the setPi, j is

computed. Obviously, we first setP0,0 = {0} andP0, j = /0 for each j ∈ {1, . . . ,n−
1}. Inductively, suppose thatPi,h = {〈vh

s;Sh
s〉}mh

s=1 has been computed for eachh ∈
{0, . . . ,n−1}. We will show how to computePi+1, j for any given j ∈ {0, . . . ,n−1}.
For eachh∈ {0, . . . ,n−1}, let Jh denote the set of numbersl ∈ {1, . . . ,k} such that

(qh,al ,q j) ∈ δ. Therefore, we havePi,h +
S

l∈Jh
P(el ;Γ j) =

Smh
s=1

S

l∈Jh
P(vh

s +el ;Sh
s∪

Γ j). We use the algorithm from Theorem 7.2.1 to compute another semilinear basis for

eachP(vh
s +el ;Sh

s∪Γ j) and then compute unions in the obvious way to obtainPi+1, j

(note: duplicates is removed). The output of this algorithmis P =
S(n−1)2

i=1 Pi,n−1. The

correctness of the algorithm is immediate from Lemma 7.3.7.

We now analyze the time complexity of this algorithm. By induction, it is easy

to see that at every stage of the algorithmSh
s ∪ Γ j ⊆ {0, . . . ,n}k holds for eachh ∈

{0, . . . ,n−1} ands∈ {1, . . . ,mh}. Therefore, the maximum component over all offsets

in the semilinear basisPi+1, j is at mosta+O(n3(k+1)k4k+6), wherea is the maximum

entry in eachvh
s +el over allh∈ {0, . . . ,n−1}, l ∈ Jh, ands∈ {1, . . . ,mh}. Note that

the summandO(n3(k+1)k4k+6) is due to an application of Theorem 7.2.1. By induction,

at stagei the maximum component over all offsets in{Pi, j}n−1
j=0 is i×O(n3(k+1)k4k+6).

This means that the maximum entry of each offset inP is O(n3k+5k4k+6), and the num-

ber of linear bases inP is O(nk2+3k+5k4k+6) (since duplicates are always removed). It

is also easy to see that at each stagei, the algorithm runs in time 2O(k2 log(nk)), primar-

ily spent in the algorithm from Theorem 7.2.1. All in all, ouralgorithm runs in time

2O(k2 log(nk)), which is also the complexity of the entire procedure.

7.3.2 Complementary lower bounds

We shall now prove three lower bounds to complement earlier results in this section.

We start by proving thateverysemilinear basis for the Parikh image of a DWA can be

large in the size of the alphabet.

Proposition 7.3.8 For each k∈ Z>0 and each integer n> 1, there exists a DWAAn,k
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over the alphabetΣk := {a1, . . . ,ak} with n+1 states whose Parikh image contains at

least nk−1/(k−1)! linear sets.

Proof. Let An,k = (Q= {q0, . . . ,qn},δ,q0,qn) with δ(qi,a) = qi+1 for eacha∈ Σk and

0≤ i < n. This automaton has a finite languageL(An,k) with Parikh imageP (L(An,k))

containing precisely allordered integer partitionsof n into k parts, i.e., all tuples

(n1, . . . ,nk) with ∑k
i=1nk = n. Since the setP (L(An,k)) is finite, each ordered inte-

ger partition(n1, . . . ,nk) of n must appear in precisely one linear set. Finally, it is easy

to check (e.g. see [vLW01, Chapter 13]) that the number of ordered partitions ofn into

k parts equals
(n+k−1

k−1

)
≥ nk−1/(k−1)!. 2

This proposition implies that, for every fixedk≥ 1, there exists infinitely many DWAs

{An} over an alphabet of sizek whereAn has sizeO(n) but P (L(An)) must contain

Ω(nk−1) linear bases. Therefore, this shows thatk cannotbe removed from the expo-

nent in Theorem 7.3.1. In addition, observing that the DWAs that we constructed have

equivalent regular expressions of sizeO(n), Proposition 7.3.8 also gives lower bounds

for Parikh images of regular expressions.

Next, we show that Theorem 7.3.1cannot be extended to languages of CFGs

(equivalently, PDAs). More precisely, we show that the number of linear sets for Parikh

images of CFGs could be exponential in the size of the CFGs.

Proposition 7.3.9 There exists a small constant c∈ Z>0 such that, for each integer

n > 1, there exists a CFGGn of size at most cn over the alphabetΣ := {a} whose

Parikh image contains precisely2n linear sets.

Proof. We will construct a CFGΣn such thatP (L(Gn)) = {0,1, . . . ,2n−1}, each of

whose elements will appear in precisely one linear set. Our construction uses the lower

bound technique in [PSW02].

Our CFGGn contains nonterminalsS,{Ai}n−1
i=0 , and{Bi}n−1

i=0 , and consists precisely

of the following rules:

S → A0 . . .An−1

Ai → ε for each 0≤ i < n

Ai → Bi for each 0≤ i < n

Bi → Bi−1Bi−1 for each 0< i < n

B0 → a
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The initial nonterminal is declared to beS. It is easy to prove by induction that, for

each wordw∈ Σ∗, Bi ⇒∗ w iff w = a2i
. This implies thatAi generates eitherε or a2i

.

Thus, we see thatL(Gn) = {ai : 0≤ i < 2n}, which easily yields the desired result.2

Finally, we give a lower bound proving the tightness of quadratic upper bound in

Proposition 7.3.4, even when restricted to DWAs.

Proposition 7.3.10For each positive integer n> 2, there exists a DWAAn with 2n+3

states such that ifP (L(An)) =
Sr

i=1P(vi ;Si), then one entry in somevi is at least

n(n+1)/2.

This proof is given in the appendix. In fact, the constructedDWA An has an equivalent

regular expression of sizeO(n) as well, therefore yielding the same quadratic lower

bound for regular expressions.

7.4 Three simple applications

In this section, we shall give three simple applications of our main results in pre-

vious sections not all of which are related to model checking: (1) polynomial-time

fragments of integer linear programming, (2) decision problems for Parikh images of

NWAs, and (3) Presburger-constrained graph reachability.As we shall see in the next

section, some of these results will be used to obtain better complexity upper bounds for

model checking over reversal-bounded counter systems and their extensions with dis-

crete clocks. Other applications of the main results in the previous sections including

polynomial PAC-learnability of semilinear sets (with unary representation of numbers)

can be found in [To10].

7.4.1 Integer programming

Integer programming(IP) is the problem of checking whether a given integer program

Ax = b (x� 0), whereA is ak-by-m integer matrix andb∈Z
k, has an integral solution.

This problem is a standard NP-complete problem in computational complexity (cf.

[PS98]). We shall mention two well-known polynomial-time fragments of IP and then

give a generalization that subsumes both.

The first polynomial-time fragment of IP, due to Lenstra [Len83], is obtained by

fixing the numberm of variables in the integer programs. More precisely, Lenstra

showed that IP is solvable in time polynomial in the size of the input and exponential
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in m. The complexity of Lenstra’s algorithm has been improved byKannan [Kan83] to

mlogmL logL, whereL is the input length. Let us now mention the second polynomial-

time fragment, due to Papadimitriou [Pap81]. Firstly, observe that whenk = 1 is fixed,

IP reduces to the well-known NP-complete knapsack problem (cf. [PS98]). On the

other hand, the knapsack problem is easily seen to be pseudopolynomial-time solvable

(cf. [PS98]), i.e., solvable in polynomial-time when numbers in the input are repre-

sented in unary. The second polynomial-time fragment of IP is obtained by restricting

the numberk of equations in the integer programs and enforcing the numbers in the

input to be represented in unary. Therefore, it is a generalization of the knapsack prob-

lem when numbers in the input are represented in unary. Papadimitriou [Pap81] gave

an algorithm for solving IP that runs in time 2O(k logm+k2 log(ka)), wherea is the max-

imum absolute value of numbers appearing in the input. This immediately yields a

polynomial-time algorithm for the second fragment of IP. Notice that the complexity

of the algorithm is exponential unlessa is represented in unary andk is fixed.

We now present a generalization of the two aforementioned polynomial-time frag-

ments of IP. LetIPk,m be the problem of deciding whether an integer programAx = b

has a non-negative integral solution, whereb ∈ Z
k′ is represented in unary andA is a

k′-by-m′ integer matrix of the form

A =

[
A1 A2

A3 0

]
(7.1)

for a k-by-m matrix A1 and a(k′−k)-by-m matrix A3 where numbers are represented

in binary, and ak-by-(m′−m) matrixA2 where numbers are represented in unary. The

bottom right block ofA is simply a(k′−k)-by-(m′−m) matrix full of zeros.

Proposition 7.4.1 For fixed integers k> 0 and m> 0, the problemIPk,m is solvable in

polynomial-time.

Proof. Let Ax = b be the given integer program, whereA is of the form given in

Equation 7.1 above. Letm1 = m′−m. Write the given integer programAx = b in an

equational form:

a1,1x1 + . . . + a1,mxm + c1,1y1 + . . . + c1,m1ym1 = b1
...

. . .
...

...
. . .

...
...

ak,1x1 + . . . + ak,mxm + ck,1y1 + . . . + ck,m1ym1 = bk

ak+1,1x1 + . . . + ak+1,mxm = bk+1
...

. . .
...

...

ak′,1x1 + . . . + ak′,mxm = bk′ .
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For eachi = 1, . . . ,m1, let us writeci for theith column vector ofA2, i.e., the transpose

of the row vector(c1,i , . . . ,ck,i). Let V = {c1, . . . ,cm1} and denote bya be the max-

imum absolute value of numbers inV. By Theorem 7.2.1, we may compute in time

2O(k logm1+k2 log(ka)) a sequenceP(w1;S1), . . . ,P(wr ;Sr) of linear sets with

coneN(V) =
r

[

i=1

P(wi ;Si),

where the maximum absolute value of entries of eachwi is O(m1(k2a)2k+3), eachSi is

a subset ofV with |Si|= rank (V)≤ k, andr = O(m2k
1 (k2a)2k2+3k). Let d = rank (V),

which we can compute in polynomial time using Gaussian elimination. Therefore,

Ax = b has a non-negative integral solution iff for someP(w j ;Sj), say withw j =

(s1, . . . ,sk) andSj = {ci1, . . . ,cid}, the following integer programPj in equational form

has a non-negative integral solution:

a1,1x1 + . . . + a1,mxm + c1,i1y1 + . . . + c1,idyd = b1−s1
...

. . .
...

...
. . .

...
...

ak,1x1 + . . . + ak,mxm + ck,i1y1 + . . . + ck,idyd = bk−sk

ak+1,1x1 + . . . + ak+1,mxm = bk+1
...

. . .
...

...

ak′,1x1 + . . . + ak′,mxm = bk′.

Note that the size of eachw j when the numbers are given in binary representation is

at mostkL, whereL is the size of the original integer program. Hence, the size of the

integer programPj is at mostkL. Therefore, Kannan’s algorithm [Kan83] can solve

each integer programPj in timeO((m+k)9(m+k)kLlog(kL)), whereL is the size of the

input. In the worst case, we will have to run Kannan’s algorithm on eachPj . All in all,

the total running time is

2O(k logm1+k2 log(ka)) +O(m2k
1 (k2a)2k2+3k× (m+k)9(m+k)kLlog(kL)),

which is polynomial whenk andm are fixed constants, anda is represented in unary.

2

7.4.2 Decision problems for Parikh images of NWAs

We now give another application of the main results from the previous sections to the

following decision problems for Parikh images of NWAs: membership, disjointness,

universality, and equivalence. The result for membership was independently proven by
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Kopczynski [Kop10] and the author [To10]. The results for disjointness, universality,

and equivalence were initially shown by Kopczynski [Kop10], different proofs are

given below.

Membership

Themembership problem for Parikh images of NWAsis defined as follows: given an

NWA A over Σ = {a1, . . . ,ak} and a tupleb ∈ N
k given in binary, decide whether

b ∈ P (L(A)). Similar problems can be easily defined for DWAs, regular expressions,

CFGs, and PDAs. It is known that the membership problem for Parikh images of

NWAs is solvable in NP (e.g. see [Esp97b, Huy83, VSS05]). It turns out that this

upper bound is tight.

Proposition 7.4.2 The membership problems for Parikh images of DWAs and regular

expressions are NP-hard, even when numbers in the input are given in unary.

The proof is given in the appendix. The lower bound for DWAs isobtained by a

reduction from the well-known NP-complete hamiltonian path problem. On the other

hand, NP-hardness for regular expressions is obtained by a reduction from a variant

of 3SAT. The lower bound for DWAs was also independently proven by Kopczynski

[Kop10].

In contrast to Proposition 7.4.2, the membership problem for Parikh images of

NWAs becomes solvable in polynomial time when the sizek of the alphabet is fixed.

Proposition 7.4.3 ([Kop10, KT10, To10]) Given an NWAA with n states over the al-

phabetΣ = {a1, . . . ,ak} and a tupleb = (b1, . . . ,bk) ∈ N
k written in binary with b:=

max1≤i≤k{bi}, checking whetherb∈P (L(A)) can be done in time2O(k2 log(kn)+log logb).

This proposition can be obtained almost in the same way as in Proposition 7.4.1. That

is, we first use Theorem 7.3.1 to compute a union of linear setsP(w1;S1), . . . ,P(wr ;Sr)

with at mostk periods that such thatP (L(A)) =
Sr

i=1P(wi ;Si). Then, we simply need

to test whether there existsi = 1, . . . , r such thatb ∈ P(wi ;Si), which can be done by

Kannan’s polynomial-time algorithm (as in Proposition 7.4.1).

Let us finally remark that Proposition 7.4.3 cannot be extended to CFGs (or equiv-

alently PDAs).
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Proposition 7.4.4 ([Kop10, KT10, To10]) The membership problem of CFGs over the

alphabetΣ = {a} is NP-hard.

This proposition improves the known NP-hardness lower bound for the problem over

a non-fixed alphabet (e.g. see [Esp97b, Huy83]). The proof ofthis proposition is by a

simple reduction from the knapsack problem using the succinct encoding of numbers

given in the proof of Proposition 7.3.9. In fact, the lower bound is optimal since the

membership problem of CFGs is solvable in NP [Esp97b, Huy83].

Disjointness

Thedisjointness problem for Parikh images of NWAsis defined as follows: given two

NWAs A andB overΣ = {a1, . . . ,ak}, decide whetherP (L(A))∩P (L(B)) = /0. Sim-

ilar problems can be easily defined for CFGs. First of all, it is a simple corollary

of the result of [VSS05] that the disjointness problem for Parikh images of CFGs is

in coNP. This is because there exists a polynomial time algorithm which, given two

CFGsG1 andG2 over the alphabetΣ = {a1, . . . ,ak}, computes an existential Pres-

burger formulaϕ1(x1, . . . ,xk) andϕ2(x1, . . . ,xk) such that, for eachi = 1,2 and num-

bersm1, . . . ,mk ∈ N,

〈N,+〉 |= ϕi(m1, . . . ,mk)⇔ (m1, . . . ,mk) ∈ P (L(Gi)).

Testing whetherP (L(G1))∩P (L(G2)) 6= /0 then corresponds to checking whether

〈N,+〉 |= ∃x1, . . . ,xk(ϕ1(x1, . . . ,xk)∧ϕ2(x1, . . . ,xk)),

which can be done in NP since checking existential Presburger formulas is in NP

[GS78]. It follows that checking whetherP (L(G1))∩P (L(G2)) = /0 is in coNP. In

fact, a matching coNP lower bound has been shown by Kopczynski [Kop10] even for

CFGs over the fixed alphabet{a}. This simple proof technique also gives an easy

polynomial-time upper bound for disjointness problem for Parikh images of NWAs for

a fixed alphabet size, which was first shown by Kopczynski [Kop10] using a different

technique, i.e., by observing that Theorem 7.3.1 holds for NWAs with negative inputs.

Proposition 7.4.5 The disjointness problem for Parikh images of NWAs over a fixed

alphabetΣ = {a1, . . . ,ak} can be decided in polynomial-time.

We now sketch a proof of this proposition. Given two NWAsA1,A2 over Σ with

(respectively)n1 andn2 states, we may apply Theorem 7.3.1 onA1 andA2 to obtain
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in polynomial time two semilinear basesB1 := {〈v1;S1〉, . . . ,〈vm1;Sm1〉} and B2 :=

{〈w1;S′1〉, . . . ,〈wm2;S
′
m2
〉} for, respectively, the Parikh images ofL(A1) and L(A2)

such that|Si | ≤ k and |S′j | ≤ k. We shall now state an easy fact relating semilinear

bases and existential Presburger formulas.

Fact 7.4.6 Given a semilinear basisB = {〈v1;S1〉, . . . ,〈vr ;Sr〉} overNk with |Si|= m

for each1≤ i ≤ r, there exists an existential Presburger formulaϕ(x1, . . . ,xk) of the

form

ϕ(x1, . . . ,xk) = ∃y1, . . . ,ymψ(x̄, ȳ)

such thatψ is quantifier-free and, for each sequence i1, . . . , ik of nonnegative integers,

it is the case that

〈N,+〉 |= ϕ(i1, . . . , ik)⇔ (i1, . . . , ik) ∈ P(B).

Furthermore,‖ϕ‖ is linear in ‖B‖ (even with binary representation of numbers) and

that ϕ can be computed in linear time.

Example 7.4.1 We shall give an example of how the translation from Fact 7.4.6 is

performed. Suppose we have the semilinear basis

B = {〈(10,3);{(1,2),(8,7)}〉,〈(5,5);{(7,1),(25,13)}〉}.

The existential Presburger formula that representsP(B) is simply

ϕ(x1,x2) := ∃y1,y2(ψ1(x̄, ȳ)∨ψ2(x̄, ȳ)),

where

ψ1(x̄, ȳ) := (x1 = 10+y1+8y2)∧ (x2 = 3+2y1+7y2)

and

ψ2(x̄, ȳ) := (x1 = 5+7y1+25y2)∧ (x2 = 5+y1+13y2).

♣

Therefore, we compute existential Presburger formulasϕ1(x1, . . . ,xk) andϕ2(x1, . . . ,xk)

each with at mostk quantifiers, which representB1 andB2, respectively. Hence, we

have

P(B1)∩P(B2) 6= /0⇔ 〈N,+〉 |= ∃x1, . . . ,xk(ϕ1(x̄)∧ϕ2(x̄)).

Clearly, we can move the existential quantifiers inϕ1 andϕ2 to the front of the formula

(after introducing new variable names) yielding an existential formulaθ with 3k quan-

tifiers. That is, the formulaθ has a fixed number of quantifiers regardless of the input
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automataA1 andA2. Since checking existential Presburger formulas with a fixed num-

ber of quantifiers can be done in polynomial time [Len83, Sca84] (also see [Grä88]), it

follows that checkingP(B1)∩P(B2) 6= /0 can be done in polynomial time. Proposition

7.4.5 immediately follows.

As a final remark, Proposition 7.4.5 is tight in the sense thatallowing unbounded

alphabet size makes the problem coNP-complete [Kop10].

Universality and equivalence

The universality problem for Parikh images of NWAsis defined as follows: given an

NWA A overΣ = {a1, . . . ,ak}, decide whetherP (L(A)) = N
k. Theequivalence prob-

lem for Parikh images of NWAsis defined as follows: given two NWAsA1 andA2 over

Σ = {a1, . . . ,ak}, decide whetherP (L(A1)) = P (L(A2)). Kopczynski [Kop10] was

the first to observe that Theorem 7.3.1 yields coNP upper bounds for these two prob-

lems in the case of a fixed alphabet size. In fact, there is a matching coNP lower bound

for these two problems even in the case of alphabet of size 1, which was first shown by

Stockmeyer and Meyer [SM73]. The precise complexity in the case of unbounded al-

phabet size is only known to be in between coNEXP and coNP [Kop10, KT10]. In the

following, we shall employ the same technique that we use forthe disjointness problem

above to rederive Kopczynski’s coNP upper bound for universality and equivalence.

Proposition 7.4.7 Universality and equivalence problems for Parikh images ofNWAs

over a fixed alphabet{a1, . . . ,ak} are in coNP.

Our proof is similar to the proof of Proposition 7.4.5, but instead uses Grädel’s result

[Grä88] that evaluating Presburger formulas of the form∀x̄∃ȳψ(x̄, ȳ) is coNP-complete

provided that the number of variables in ¯x andȳ is fixed. For example, for the univer-

sality problem, we invoke the algorithm from Theorem 7.3.1 to compute in polynomial

time a semilinear basis (each of whose linear bases has at most k periods) that repre-

sents the Parikh imageP (L(A)) of the given automatonA . Using Fact 7.4.6, we may

then compute an existential Presburger formulaϕ(x1, . . . ,xk) with k quantifiers that

representsP (L(A)). Checking universality ofP (L(A)) then amounts to checking

whether〈N,+〉 |= ∀x̄ϕ(x1, . . . ,xk), which is in coNP by [Grä88] since the number of

quantifiers in this formula is at most 2k. The coNP upper bound for the equivalence

problem can be derived in the same manner.



Chapter 7. Reversal-bounded counter systems and their extensions 173

7.4.3 Presburger-constrained graph reachability

Presburger-constrained graph reachabilityis a simple extension of the standard graph

reachability problem: given a transition systemS = 〈S,{→a}a∈ACT〉 over the action

alphabetACT = {a1, . . . ,ak}, two configurationss, t ∈ S, and an arbitrary Presburger

formula (a.k.a.constraint) ϕ(xi1, . . . ,xir ) (with 1≤ i1 < .. . < ir ≤ k), decide whether

there exists a path

s0→ai1
. . .→aim

sm

such that, if(i1, . . . , ik) = P (ai1 . . .aim), then〈N,+〉 |= ϕ(i1, . . . , ik). Problems related

to Presburger-constrained graph reachability have been studied in the context of path-

queries over graph-structured databases (cf. [BHLW10, HPW09b, HPW09a, MW95]).

Presburger constraints are natural since in many cases we donot care about the order of

actions in the path we are interested in. For example, consider a graph which models

a transportation network, where the vertices are locationsin the network (e.g. city

attractions, bus stops, and so forth) and the edges are labeled bymeans of transport

(e.g. bus, walk, airplane, subway). The reader is referred to [HPW09b, Figure 1] for

a specific example. One could, for example, be interested in reaching a pointt from a

point s in such a graph by taking at most one subway and avoiding busesaltogether.

Observe that the order in which the actions take place is not important for such a query,

which can therefore be expressed as a Presburger formula.

In general, Presburger-constrained graph reachability has the same complexity as

evaluating Presburger formulas.

Proposition 7.4.8 Presburger-constrained graph reachability is complete for the class

STA(∗,22nO(1)

,n)).

To show this proposition, recall that the precise complexity of evaluating Presburger

formulas is preciselySTA(∗,22nO(1)

,n), due to Berman [Ber80] (also see [Koz06]). To

derive the upper bound in Proposition 7.4.8, suppose that the input transition system is

S over the action alphabetACT = {a1, . . . ,ak} with initial configurations∈Sand final

configurationt ∈ S. We treatS as an NWAA with initial states and final statet, for

which we can compute an existential Presburger formulaψ(x1, . . . ,xk) for P (L(A))

in polynomial time using the result of [VSS05]. If the input Presburger formula is

ϕ(xi1, . . . ,xir ), then the problem reduces to checking whether

〈N,+〉 |= ∃x1, . . . ,xk(ψ(x1, . . . ,xk)∧ϕ(xi1, . . . ,xir )),
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which can be solved by the procedure for evaluating Presburger formulas. This imme-

diately yields the desired upper bound. Hardness forSTA(∗,22nO(1)

,n) can be easily

obtained by a polynomial reduction from the evaluation of Presburger formulas. In

fact, hardness easily holds even for a fixed transition system over the action alphabet

Σ = {a} with one configuration (both of which are initial and final).

The high complexity in Proposition 7.4.8 can be lowered by, for example, con-

sidering only existential Presburger formulas, in which case the complexity becomes

NP-complete (cf. [BHLW10]). Another way of lowering the complexity in Proposi-

tion 7.4.8 is by observing that the Presburger constraint isusually small in real life, i.e.,

practically fixed. In this case, it turns out that the complexity of Presburger-constrained

graph reachability becomes polynomial-time solvable.

Proposition 7.4.9 Presburger-constrained graph reachability is polynomial-time solv-

able for any fixed Presburger constraint.

Proof. Suppose that the fixed Presburger constraint isϕ(x1, . . . ,xr). Then, the classical

result of Ginsburg and Spanier [GS66] says that there existsa semilinear basisB such

that, for all(i1, . . . , ir) ∈ N
k, it is the case that

〈N,+〉 |= ϕ(i1, . . . , ir) ⇔ (i1, . . . , ir) ∈ P(B).

Therefore, using Fact 7.4.6, we may assume an existential Presburger formulaϕ′(x̄)
that is equivalent withϕ(x̄). Let h be the (fixed) number of quantifiers ofϕ′.

Given a transition systemS = 〈S,{→a}a∈ACT〉 over ACT = {a1, . . . ,ak} (where

r < k), an initial configurations ∈ S, and a final configurationt ∈ S, let ACT′ =

{a1, . . . ,ar ,?} and define the automatonA = (ACT′,Q,δ,q0,qF) as follows:

• Q = S,

• δ = (
Sr

i=1→ai)∪{(q,?,q′) : ∃ j ∈ (r,k](q→a j q′)},

• q0 = s, and

• qF = t.

In other words, we relabel the actiona j ( j = r +1, . . . ,k) with the new action symbol

’?’. Sincer is fixed, the NWAA has a fixed alphabet size. Therefore, using Theorem

7.3.1 and Fact 7.4.6, we obtain in polynomial time an existential Presburger formula
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ψ(x1, . . . ,xr+1) with a fixed numberr +1 of quantifiers for the Parikh imageP (L(A)).

Hence, the input〈S,s, t〉 is a positive instance of the problem iff

〈N,+〉 |= ∃x1, . . . ,xr+1(ψ(x1, . . . ,xr+1)∧ϕ′(x1, . . . ,xr)).

By moving the existential quantifiers to the front of the formula (after variable renam-

ing), we obtain an existential formula with a fixed number 2r +2+h of quantifiers and

of size polynomial in the size of the input (recall thatϕ′ has a fixed size), which can be

evaluated in polynomial time by Lenstra-Scarpellini’s algorithm [Len83, Sca84] (also

see [Grä88]).2

7.5 Applications to model checking

In this section, we shall show how the earlier results in thischapter can be used to

obtain better model checking complexities for reversal-bounded counter systems and

their extensions with discrete clocks.

7.5.1 LTL with complex fairness

We shall first state our main result of LTL model checking withmulti-regular fairness

constraints over reversal-bounded counter systems with discrete clocks.

Theorem 7.5.1 Model checking an LTL formulaϕ with multi-regular fairness con-

straints over r-reversal bounded k-counter systemM with n states and t discrete clocks

can be done in time polynomial in the size of each fairness constraint and in n, but ex-

ponential in the following parameters: the number of fairness constraints, r, k, t,‖ϕ‖,
and the size (in binary) of the maximum absolute value of clock comparison constant l

in M .

Observe that this theorem improves Theorem 6.2.10 by a single exponential for almost

all parameters at the expense of not allowing a single free counter. In fact, the time

complexity of this algorithm cannot be improved for the following reasons. If we fix

all the parameters butϕ andn, we obtain LTL model checking over finite systems,

which is PSPACE-complete [SC85, VW86a]. If we fix all the parameters butt and

n, we may still reduce in polynomial time the emptiness of discrete-timed automata,

which arePSPACE-complete [CY92]. The same goes if we fix all parameters butl

andt, since emptiness of timed automata isPSPACE-complete already for three clocks
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[CY92]. What if we fix all parameters except for onlyn and r or only n andk? It

turns out that this problem is stillNP-hard, as can be shown be a polynomial reduction

from theNP-complete emptiness problem of reversal-bounded counter automata with

a fixed number of reversals or with a fixed number of counters [HR87].

Let us now proceed to the proof of Theorem 7.5.1. This theoremcan be proved

by simply observing that Theorem 7.3.1 can be used to refine Proposition 6.2.6 when

there is no free counter:

Proposition 7.5.2 We can compute a representation of the Parikh image of the lan-

guage of a given r-reversal bounded k-counter automatonM with n states as a union

of conjunctive queries over〈N,+〉 with linear equations consisting of at most O(rk)

summands (numbers are given in unary) such that each conjunctive query has at most

O(rk) conjuncts and O(rk) variables. Furthermore, this can be done in time polyno-

mial in n, and exponential in k and r.

Notice that the complexity in this proposition is the same asthe complexity in Proposi-

tion 6.2.6, but the output existential Presburger formulashave some further structures,

which we have already seen in Fact 7.4.6. The crucial component of Proposition 7.5.2

is that the number of conjuncts and the number of existentialquantifiers in every con-

junctive query is at mostO(rk) and does not depend on the numbern of states of

M . To prove this theorem, one simply replaces the use of the polynomial-time algo-

rithm from [VSS05] in the modified Ibarra’s algorithm by Theorem 7.3.1 following a

slightly more precise analysis of the structure of existential Presburger formulas ob-

tained in Fact 7.4.6 (i.e. by using the fact that existentialquantifiers distribute across

disjunctions). The following proposition is now a direct corollary of Proposition 7.5.2,

Proposition 3.1.2, Proposition 6.2.7, and Proposition 6.2.9.

Proposition 7.5.3 The reachability relation of a given n-state r-reversal bounded k-

counter systemsM with t discrete clocks is regular, for which an NWA can be computed

in time polynomial in n, but exponential in r, k, t, and the size (in binary) of the

maximum absolute value of the clock comparison constants inM .

Combining this proposition with our algorithmic metatheorem for decidable LTL model

checking over word-automatic systems, Theorem 7.5.1 is nowimmediate.
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7.5.2 Branching-time logics

We now apply Theorem 7.3.1 toEF-model checking over reversal-bounded counter

systems. Our main theorem is a kind of fixed-parameter tractability result:

Theorem 7.5.4 Fix an EF-logic formula ϕ and positive integers r,k. Then, model

checkingϕ over r-reversal bounded k-counter systems is solvable inPH.

The same result holds in the presence of finitely many discrete clocks, where clock

comparison constants are represented in unary. To prove this theorem, we first apply

Proposition 7.5.2 and Lemma 6.2.4 to obtain the following corollary.

Proposition 7.5.5 The reachability relation of a given n-state r-reversal bounded k-

counter systemsM can be represented by an existential Presburger formula with O(rk)

quantifiers. Furthermore, this can be computed in time polynomial in n, and exponen-

tial in r, k.

In particular, this algorithm runs in polynomial time for fixed values ofr andk. Ob-

serve also that the number of quantifiers isO(rk) (i.e. independent on the number of

states inM ) since each of the conjunctive queries in the union of conjunctive queries

that we obtain from Proposition 7.5.2 hasO(rk) quantifiers and that, ify andz contain

the same number of variables, we can use the standard logicalequivalence

∃yϕ(x,y)∨∃zϕ′(x,z)≡ ∃y(ϕ(x,y)∨ϕ′(x,y)).

To complete the proof of Theorem 7.5.4, we shall recall the following result by

Grädel [Grä88].

Proposition 7.5.6 ([Grä88]) Fix a number d> 0. Checking whether a Presburger

formulaϕ in prenex-normal form with at most d quantifiers can be done inPH. Fur-

thermore, this still holds in the presence of linear (in)equations and numeric constants

represented in binary.

We are now ready to prove Theorem 7.5.4. The goal is to reduce the originalEF

model checking problem into evaluating Presburger formulas in prenex-normal form

with a fixed number of quantifiers. This can be achieved as follows. Convert the

fixed EF-formula ϕ into an equivalentFO(Reach) formula ϕ′(x) in prenex normal

form. We then translate each formula of the formReachΓ(y,z) into an existential

Presburger formula with at mostO(rk) quantifiers using Proposition 7.5.5. In doing
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so, we also replace each variable inϕ′ with a tuple ofO(rk) variables (recall that

each configuration consists of counter values). Again, we may move all the quantifiers

outside resulting in a formula with at mostO(rk‖ϕ′‖) quantifiers (i.e. a fixed number).

Formulas of the form→a can be translated into a quantifier-free Presburger formula.

Altogether, we obtain a Presburger formulaψ(x) with a fixed number of quantifiers

in polynomial time to which our original problem is reduced.Theorem 7.5.4 is then

immediate from Grädel’s result above.

Remark 7.5.1 It is possible to give a matchingPH lower bound for this problem in the

sense that, for eachn∈N, there exists two positive integersr andk, and anEF formula

ϕ such that the problem of model checkingϕ overr-reversalk-counter systems is hard

for Σp
n. This can be easily shown using the lower bound technique in Chapter 9.�

Finally, what about the problem of model checking CTL over reversal-bounded

counter systems? It turns out that this problem is undecidable. In fact, this already

holds for 1-reversal 3-counter systems and very simple CTL formulas.

Proposition 7.5.7 Model checking CTL over 1-reversal 3-counter systems is undecid-

able.

This can be proven by a reduction from the undecidability problem of checking empti-

ness of languages of deterministic 0-reversal 3-counter systems thatmay test equality

of the current values of two counters[ISD+02]. The proof can be found in the ap-

pendix.



Chapter 8

One-counter processes

In this chapter, we shall study another decidable restriction of Minksy’s counter ma-

chines. It is well-known that two-counter machines are sufficient to obtain Turing-

powerful models of computation [Min67]. On the other hand, this is not the case when

we restrict the number of counters to one since such machinescan now be viewed as

a special case of pushdown systems with just one stack symbol, plus a non-removable

bottom symbol which indicates an empty stack (and thus allows to test the counter for

zero). Such machines are often referred to asone-counter processes (OCPs). The aim

of this chapter is to obtain a precise computational complexity of the EF-logic model

checking problem over one-counter processes and show how this can be used to derive

an optimal complexity for the problem ofweak-bisimilarity checking of one-counter

processes against finite systems.

Recall that, although our generic approach is able to derivedecidability ofEF-logic

over PDSs (and hence OCPs), Theorem 5.5.1 shows that this approach will not provide

an elementary upper bound for the problem. In contrast, the precise complexity of

EF-logic model checking over PDSs is onlyPSPACE-complete [BEM97, Wal00]. The

PSPACE lower bound was first proven by Bouajjani, Esparza andMaler [BEM97]

even for a fixedEF formula, and only later thePSPACE upper bound was provided

by Walukiewicz [Wal00]. This immediately gives aPSPACE upper bound for the

combined complexity ofEF-logic model checking over OCPs. On the other hand, the

best lower bound known for this problem was onlyDP-hard [JKMS04], which is below

the second level of the polynomial hierarchy.

The first hint that the computational complexity of model checking over OCPs

could be easier than the same problem considered over PDSs isSerre’s result [Ser06]

that µ-calculus model checking over OCPs isPSPACE-complete. This is lower than

179
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theEXP complexity of the same problem over PDSs due to Walukiewicz [Wal01]. In

the case of equivalence checking, it is known that strong-bisimilarity checking against

finite systems is solvable in polynomial time for OCPs [Kuc00], which is lower than

the PSPACE complexity of the same problem when considered over PDSs [KM02,

May00].

In this chapter, we shall present the recent result of Göller, Mayr, and the author

[GMT09] that the problem of model checkingEF-logic over OCPs is inPNP, which

is below the second level of the polynomial hiearachy. They also showed thatPNP-

hardness can be obtained when the formula is represented as adag, although this

lower bound has recently been superseded by the recent Göller and Lohrey’sPNP lower

bound [GL10] for the standard representation ofEF formulas. ThePNP upper bound

is derived by establishing a close correspondence of the problem with the membership

problem of a fragment of Presburger arithmetic, which we call Min-Max Arithmetic

(MMA), which we also show to bePNP-complete. We shall present this Min-Max

Arithmetic in Section 8.2 and prove that it has aP
NP membership problem. In Sec-

tion 8.3, we show how to efficiently transform OCPs into a suitable normal form. In

Section 8.4, we provide a polynomial-time translation fromthe model checking prob-

lems of OCPs in this normal form to the membership problem of MMA. Combining

this translation with thePNP upper bound for the membership problem of MMA, we

immediately obtain aPNP upper bound forEF model checking over OCPs.

One of the most interesting applications of thePNP upper bound for the problem

of EF-logic model checking over OCPs is an immediate applicationto the problem

of weak-bisimilarity checking of OCPs against finite systems. In Section 8.5, we

show how aPNP upper bound for the latter can be derived. We shall show in Sec-

tion 8.6 a matchingPNP lower bound for this problem. This complexity is lower than

the complexity for the corresponding problem for PDSs, which is PSPACE-complete

[KM02, May00]. Finally, we shall conclude Section 8.6 withPNP[log] lower bounds

for weak-bisimilarity checking of OCPs against afixed finite system, and for model

checking afixedEF formula against OCPs.

8.1 Preliminaries

In this section, we shall fix some notations that we will use throughout this chapter.
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One-counter processes

We shall first use a more conveninent notation for one-counter processes.

Definition 8.1.1 A one-counter process (OCP)is a tupleP = (Q,δ0,δ>0), where Q is

a finite set ofstates(a.k.a. control locations), δ0 ⊆ Q×ACT×Q×{0,1} is a finite

set ofzero transitions, andδ>0 ⊆ Q×ACT×Q×{−1,0,1} is a finite set ofpositive

transitions. Thesizeof a one-counter process is defined as‖P‖= |Q|+ |δ0|+ |δ>0|. A

one-counter netis a one-counter process that additionally satisfiesδ0⊆ δ>0.

An OCPP = (Q,δ0,δ>0) defines a transition systemSP = 〈S,{→a}a∈ACT〉, where

S= Q×N and(q,n)→a (q′,n+k) if and only if eithern = 0 and(q,a,q′,k) ∈ δ0, or

n > 0 and(q,a,q′,k) ∈ δ>0. If (q1,n1)→a (q2,n2) for somea∈ ACT, we also write

(q1,n1)→P (q2,n2) (or even(q1,n1)→ (q2,n2) if P is understood). Notice that this

definition coincides with the definition of 1-counter systems from Example 3.1.4.

EF dag-formulas

We now formalize the intuitive notion ofEF formulas represented as directed acyclic

graphs (dag). AnEF dag-formulaover ACT is a finite sequence of definitionsϕ =

(ϕi)i∈[l ] for somel ∈ N, where for eachi ∈ [l ] the definitionϕi is exactly one of the

following, either:

1. ϕi =⊤,

2. ϕi = ¬ϕ j for somej ∈ [i−1],

3. ϕi = ϕ j ∧ϕk for somej,k∈ [i−1],

4. ϕi = 〈a〉ϕ j for somea∈ ACT and somej ∈ [i−1], or

5. ϕi = EFΓϕ j for somej ∈ [i−1] andΓ⊆ ACT.

For eachi ∈ [l ], we define thesize‖ϕi‖ = 1 if ϕi = ⊤ and‖ϕi‖ = ⌈logi⌉ otherwise.

Thesizeof ϕ is defined as‖ϕ‖ = ∑l
i=1‖ϕi‖. Define the partial order≺ϕ⊆ [l ]× [l ] as

( j, i) ∈≺ϕ if and only if ϕ j appears in the definition ofϕi . If j ≺+
ϕ i, we say thatϕ j

is a subformulaof ϕi . Note thati is minimal with respect to≺+
ϕ wheneverϕi = ⊤.

Observe that([l ],≺ϕ) is a dag. The standard definition ofEF formulas coincide with

this definition when([l ],≺ϕ) is a directed tree. In this chapter, we shall call them

EF tree-formulasto emphasize this fact. Next, we define the semantics. For this, let
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S = 〈S,{→a}a∈ACT〉 be a transition system. Let us define[[ϕi ]]S ⊆ S for eachi ∈ [l ]

by induction on≺+
ϕ as follows:

1. [[⊤]]S = S,

2. [[¬ϕ j ]]S = S\ [[ϕ j ]]S,

3. [[ϕ j ∧ϕk]]S = [[ϕ j ]]S∩ [[ϕk]]S,

4. [[〈a〉ϕ j ]]S = {s∈S | ∃t ∈ [[ϕ j ]]S : s→a t}, and

5. [[EFΓϕ j ]]S = {s∈ S| ∃t ∈ [[ϕ j ]]S : s→∗Γ t}.

We define[[ϕ]]S = [[ϕl ]]S. We also writeS,s |= ϕi whenevers∈ [[ϕi]]S. We deal

with themodel checking problem forEF-logic over one-counter processesdefined as

follows:

MODEL CHECKING EF-LOGIC OVER OCPS

Instance: An OCP P , a configuration(q,n) of SP with n in binary, and anEF

dag/tree-formulaϕ.

Question: SP ,(q,n) |= ϕ?

.

8.2 Min-Max Arithmetic

In this section we introduce a suitable representation of natural numbers in terms of a

logic that we call MMA forMin-Max Arithmetic. In fact, the sets definable in MMA

equal the sets definable in Presburger Arithmetic with one free variable or equivalently

the one-dimensional semilinear sets. MMA can be seen as a syntactic variant of Pres-

burger Arithmetic that is tailored towards having a fairly low complexity (PNP) of the

membership problem.

8.2.1 The definition

Formally, an MMA dag-formulais a sequence of definitionsα = (αi)i∈[l ] for some

l ≥ 1, where for eachi ∈ [l ] thedefinitionαi is precisely one of the following, where

j,k∈ [i−1] and where∼∈ {≤,≥}:

1. ≡m modn, wheren > 0 andm∈ Z/nZ,



Chapter 8. One-counter processes 183

2. ∼ n, wheren∈ N,

3. ¬α j ,

4. α j ∧αk,

5. ∼minα j ,

6. n∼minα j , wheren∈ N,

7. ∼max(α j ,n), wheren∈ N, or

8. m∼max(α j ,n), wherem,n∈ N.

We callαi atomicin case it is of type (1) or (2). We will introduce usual abbreviations

<, >, and= with expected meanings. We formally put min/0 = ∞, max/0 =−1. More-

over we putk≤ ∞ andk 6≥ ∞, k 6≤ −1, andk≥ −1 for eachk∈ N. Define the binary

relation≺α⊆ [l ]× [l ] as j ≺α i if and only if α j occurs in the definition ofαi for each

i, j ∈ [l ]. Note that([l ],≺α) is a dag and hence([l ],≺+
α ) is a strict partial order. Recall

that i is minimal with respect to≺+
α if and only if αi is atomic. We sayα is a MMA

tree-formulaif ([l ],≺α) is a directed tree. Let us now define the semantics of MMA

dag-formulas. For eachαi we define the set[[αi]] ⊆ N by induction oni w.r.t. ≺+
α as

follows:

1. [[≡m modn]] = {k∈ N | k≡m modn},

2. [[∼n]] = {k∈N | k∼ n},

3. [[¬α j ]] = N\ [[α j ]],

4. [[α j ∧αk]] = [[α j ]]∩ [[αk]],

5. [[∼minα j ]] = {k∈N | k∼min[[α j ]]},

6. [[n∼minα j ]] =





N if n∼min[[α j ]]

/0 otherwise
,

7. [[∼max(α j ,n)]] = {k∈ N | k∼max([[α j ]]∩ [0,n])},

8.

[[m∼max(α j ,n)]] =

{
N if m∼max([[α j ]]∩ [0,n])

/0 otherwise.
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Observe that MMA can be seen as a fragment of Presburger Arithmetic. We de-

fine [[α]] = [[αl ]]. We call α valid if [[α]] = N, for example≥ 0 is valid. Define the

size‖αi‖ by case distinction as follows:‖≡m modn‖= ‖∼n‖ = ⌈logn⌉, ‖¬α j‖ =

⌈log j⌉, ‖α j ∧αk‖= ⌈log j⌉+⌈logk⌉, ‖∼minα j‖= ⌈log j⌉, ‖n∼minα j‖= ⌈logn⌉+
⌈log j⌉, ‖∼max(α j ,n)‖= ⌈log j⌉+⌈logn⌉, and finally‖m∼max(α j ,n)‖= ⌈logm⌉+
⌈log j⌉+ ⌈logn⌉. Define thesizeof α as‖α‖= ∑i∈[l ]‖αi‖. For better readability, we

will allow more complex definitions such as e.g.αi = ¬α j ∧ (x≡ 3 mod 5).

8.2.2 Syntactic sugar: extended MMA

In order to ease our reduction from model checking OCP to evaluating MMA formulas,

we introduceextendedMMA formulas. Extended MMA formulas allow definitions

of the kindαi = α j −1 andαi = α j + 1. For⊙ ∈ {+,−}, the semantics is defined

as [[α j ⊙1]] = ([[α j ]]⊙1)∩N. Observe that, in general, the two operators cannot be

interchanged, i.e. we generally donot have[[(α− 1)+ 1]] = [[(α + 1)−1]]. On the

other hand, observe that[[α]] = [[(α+1)−1]]. Define thesizeof ‖α j +1‖= ‖α j−1‖=

⌈log j⌉+1. For each naturalk defineα j ⊙k to be the abbreviation for

(· · ·(α j⊙1) · · ·)⊙1︸ ︷︷ ︸
k many times

for each⊙ ∈ {−,+}.

8.2.3 Basic properties of MMA and extended MMA

We shall now prove basic properties that are satisfied by MMA and extended MMA

dag-formulas. We shall first prove a periodicity lemma for extended MMA dag-

formulas, i.e., sufficiently large numbers which are satisfied by extended MMA dag-

formulas have nice periodic behaviors. We shall also show that extended MMA are

neither more expressive nor more succinct by providing a polynomial-time translation

from extended MMA dag-formulas to equivalent MMA dag-formulas. Using these

results, we shall show that the membership problem for extended MMA dag-formulas

can be solved inPNP.

We shall start with a simple but important periodicity lemmafor extended MMA

dag-formulas. Letα = (αi)i∈[l ] be an extended MMA dag-formula. Defineνi to be

maximal numbern such thatα j is∼ n or∼max(α j ,n) for some j ∈ [i]. DefineLi to

be the least common multiple of alln > 0 such that the definition ofα j is≡m modn
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for somej ∈ [i−1] and somem∈ Z/nZ, and 1 if no such formula exists. Observe that

i < j impliesLi |L j and moreoverLi ∈ exp(‖α‖), thus polynomially (in‖α‖) many bits

suffice to represent eachLi .

Lemma 8.2.1 (Periodicity Lemma for extendedMMA ) Let i ∈ [l ] and assume that

n1,n2 > i ·Li +νi . Then the following implication holds:

n1≡ n2 modLi ⇒ (n1 ∈ [[αi]]⇔ n2 ∈ [[αi]])

Proof. We prove the lemma by induction on≺+
α . For the induction base, assume that

i is minimal with respect to≺+
α , i.e. αi is atomic.

Caseαi is≡m modn, for somen > 0 and somem∈ Z/nZ. Observe that the implica-

tion holds sinceLi is a multiple ofn by definition.

Caseαi is∼ n, where∼∈ {≤,≥} and wheren∈N. By definition we haveνi ≥ n. The

implication clearly holds since natural numbers exceedingn are either all contained in

[[αi]] or are all not contained in[[αi]].

For the induction step, assume thati is not minimal with respect to≺+
α . For this,

we make a case distinction according toαi .

Caseαi = ¬α j for some j ∈ [i−1]. The required implication holds trivially due to

induction hypothesis and the fact thatj ·L j +ν j ≤ i ·Li +νi andLi = L j .

Caseαi = α j ∧αk for somej,k∈ [i−1]. First, we have that bothLk andL j divideLi .

Second, bothj ·L j +ν j andk ·Lk +νk are at mosti ·Li +νi . Now letn1,n2 > i ·Li +νi

and assumen1 ≡ n2 modLi . Then we haven1 ∈ [[αi]] if and only if n1 ∈ [[α j ]] and

n1 ∈ [[αk]]. By induction hypothesis, the latter is equivalent ton2 ∈ [[α j ]] andn2 ∈ [[αk]]

which is in turn equivalent ton2 ∈ [[αi]].

Caseαi is∼minα j for some∼∈ {≤,≥} and for somej ∈ [i−1]. We claim that the

implication holds fori by distinguishing if[[α j ]] is empty or not. In case[[α j ]] = /0,

(recall min/0 = ∞), then[[αi]] either equalsN or /0, depending on∼. The implication

obviously holds in this case. In case[[α j ]] 6= /0, then there exists somen∈ [[α j ]] with

n≤ j ·L j +ν j +L j by induction hypothesis. Observe that the latter is less than or equal

to (i−1) ·Li + νi + Li = i ·Li + νi . Again, depending on∼, all naturals exceedingn

(in particular naturals exceedingi ·Li +νi) are either all in[[αi]] or are all not in[[αi]].

Thus, the implication holds.

Caseαi = n∼minα j for somen∈ N, some∼∈ {≤,≥}, and somej ∈ [i−1]. Since

[[αi]] either equalsN or /0, the implication trivially holds.
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Caseαi is∼max(α j ,n) for some∼∈ {≤,≥}, somej ∈ [i−1], and somen∈ N. First

observe thatn≤ νi by definition. Second, all naturals exceedingn (in particular those

exceedingνi) either all satisfyαi or all do not, depending on∼. Thus, the implication

holds.

Caseαi is m∼max(α j ,n) for some∼∈ {≤,≥}, somej ∈ [i−1], and somem,n∈N.

Since[[αi]] either equalsN or /0, the implication holds trivially.

Caseαi = α j ⊙ 1 for somej ∈ [i−1] and some⊙∈ {+,−}. The implication follows

directly from j ·L j +ν j +1≤ (i−1) ·Li +νi +Li = i ·Li +νi and induction hypothesis.

2

It turns out that extended MMA formulas are neither more expressive nor more

succinct than MMA formulas.

Lemma 8.2.2 The following problem is computable in polynomial time:

INPUT: An extendedMMA dag-formulaα.

OUTPUT: AMMA dag-formulaβ such that[[α]] = [[β]].

The proof of this lemma, which is not difficult but rather tedious, is given in the ap-

pendix. Now, by a bottom-up computation and combining Lemma8.2.1 and Lemma

8.2.2, we can deduce aPNP upper bound for the membership problem for extended

MMA.

Proposition 8.2.3 The following problem is inPNP:

INPUT: n0 ∈ N in binary and an extendedMMA dag-formulaα.

QUESTION: n0 ∈ [[α]]?

Proof. First, it is easy to see that ifα is an MMA dag-formula with no occurrence of

min and max then checking whethern0 ∈ [[α]] can be done is polynomial time. We

shall make use of this basic fact in the proof. In a first step, we apply Lemma 8.2.2 and

compute in polynomial time an MMA dag-formula formulaβ such that[[β]] = [[α]].

Assumeβ = (βi)i∈[l ]. In a second step, we eliminate min and max operators that occur

in β inductively on≺+
β .

For this, leti ∈ [l ] be minimal with respect to≺+
β such that the definitionβi contains

either min or max. In caseβi is ∼ minβ j , we know that for eachn1,n2 > j ·L j + ν j

with n1≡ n2 modL j we haven1 ∈ [[β j ]] if and only if n2 ∈ [[β j ]] by Lemma 8.2.1. This

implies that min[[β j ]]∈ [0,( j +1) ·L j +ν j ]∪{∞}. Moreover, observe that( j +1) ·L j +

ν j can represented using polynomially many bits in‖β‖. Furthermore, note that we
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can decide deterministically in polynomial time whether, for a givenmgiven in binary,

we havem∈ [[β j ]], since neither the definition ofβ j nor the definition ofβk contains

min or max, for eachk≺+
β j. Via a binary search method, we can compute

µ = min{m∈ [0,( j +1) ·L j +ν j ] |m∈ [[β j ]]}

by some deterministic polynomial time bounded Turing machine that has access to an

NP oracle. After that, we “symbolically” modifyβ by replacingβi ’s previous definition

∼ minβ j by ∼ µ. The cases whenβi = n∼ minβ j , βi =∼ max(β j ,n), or βi = m∼
max(β j ,n) can be dealt with analogously.

We repeat this replacement process untilβ does not contain any min or max oper-

ator. Finally, we check ifn0 ∈ [[β]] in polynomial time.2

8.3 Saturations and small arithmetic progressions

For the rest of this section, let us fix some one-counter processP = (Q,δ0,δ>0). For

technical reasons, we add a new transition labelλ ∈ ACT that does not previously oc-

cur in δ0∪δ>0 and which we fix for the rest of this section. Our goal is to “saturate”

P with λ-labeled transitions so that we only have to considernormalized paths, i.e.

paths, where the sequence of counter values of the involved configurations are first

non-increasing and then non-decreasing. LetP ′ denote the resulting OCPafter satu-

ration. Our saturation construction has the following motivation: (1) We can compute

in polynomial time all information needed for representingnormalized paths inSP ′

in terms of few “small” arithmetic progressions, and (2) foreveryEF dag-formulaϕ
in which λ does not occur we haveSP ,s |= ϕ if and only if SP ′,s |= ϕ for every

configurations∈Q×N.

8.3.1 Saturation construction

Given a nonempty pathπ = (q1,n1)→P (q2,n2) · · · →P (qk,nk) in SP , we callπ
mountain, if n1 = nk andni ≥ n1 for eachi ∈ [k]. We callπ zero, if ni = 0 for some

i ∈ [k], otherwise we callπ positive. Let (q1,n1),(q2,n2) ∈ Q×N be configurations.

Then, we write(q1,n1) ↓P (q2,n2) (resp. (q1,n1) ↑P (q2,n2)) whenever(q1,n1)→P

(q2,n2) andn2≤ n1 (resp. andn2≥ n1). We now present a saturation construction that

allows us to shortcut mountain paths by addingλ-transitions.
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Choosing control locationsq,q′ ∈Q andδ ∈ {δ0,δ>0}, we now present rules (R1)

to (R4) that can be applied only if(q,λ,q′,0) 6∈ δ. In this case, we can add the transition

(q,λ,q′,0) to δ if at least one of the following conditions holds:

(R1) (q,a,q′,0) ∈ δ for somea∈ ACT.

(R2) (q,a1,q1,+1) ∈ δ and(q1,a2,q′,−1) ∈ δ>0 for someq1 ∈Q and somea1,a2 ∈
ACT.

(R3) (q,a1,q1,+1)∈ δ, (q1,λ,q2,0)∈ δ>0, and(q2,a2,q′,−1)∈ δ>0 for someq1,q2∈
Q and somea1,a2 ∈ ACT.

(R4) (q,λ,q1,0) ∈ δ and(q1,λ,q′,0) ∈ δ for someq1 ∈Q.

Formally, letP ′ = (Q,δ′0,δ
′
>0) denote the unique one-counter process that we obtain

from P by applying rules (R1)–(R4) until it is no longer possible. The following

lemma, whose proof is in the appendix, shows that reachability in this saturated OCP

P ′ can be witnessed by a path, in which the changes in the countervalues is extremely

simple: monotonically non-increasing and then monotonically non-decreasing.

Lemma 8.3.1 Let s, t ∈ Q×N be configuration. Then, the following three statements

are equivalent:

1. s→∗P t.

2. s→∗P ′ t.

3. There exists some configuration u∈Q×N such that s↓∗P ′ u and u↑∗P ′ t.

8.3.2 Computing small arithmetic progressions

Observe that if(q1,n1) ↑∗P ′ (q2,n2) andn1 > 0, then also(q1,n1 + i) ↑∗P ′ (q2,n2 + i)

for eachi ∈ N. Similarly, if (q1,n1) ↓∗P ′ (q2,n2) andn2 > 0, then also(q1,n1 + i) ↓∗P ′
(q2,n2+ i) for eachi ∈N. This motivates us to define, for eachq1,q2∈Q, the following

sets of differences of counter values of monotone positive paths:

∆>0
↑ (q1,q2) = {d ∈ N | (q1,1) ↑∗P ′ (q2,d+1)}

∆>0
↓ (q1,q2) = {d ∈ N | (q1,d+1) ↓∗P ′ (q2,1)}
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Analogously, we collect the sets of differences of counter values of monotone zero

paths:

∆=0
↑ (q1,q2) = {d ∈ N | (q1,0) ↑∗P ′ (q2,d)}

∆=0
↓ (q1,q2) = {d ∈ N | (q1,d) ↓∗P ′ (q2,0)}

It turns out that these sets can be expressed as a union of a small number of arithmetic

progressions whose offsets and periods are also small. Furthermore, the computation

of these arithmetic progressions fromP ′ can be done efficiently.

Lemma 8.3.2 Each of the sets∆>0
↑ (q1,q2), ∆>0

↓ (q1,q2), ∆=0
↑ (q1,q2), ∆=0

↓ (q1,q2) can

be represented as a union of O(|Q|2) arithmetic progressions with offsets bounded by

O(|Q|2) and periods bounded by O(|Q|) that are moreover computable in polynomial

time.

This lemma can be proven by treatingP ′ as NWAs over a unary alphabet and applying

the special case of Theorem 7.3.1 over a unary alphabet.

Proof. To obtain better polynomial upper bounds, we recall Chrobak-Martinez’s The-

orem [Chr86, Mar02, To09b], which is a previously known special case of Theorem

7.3.1 over unary alphabets: given an NWAA over the alphabet{♯} with n states, the

set P ((L(Aut))) of the lengths of words inL(A) can be represented as a union of

O(n2) arithmetic progressions with offsets bounded byO(n2) and periods bounded by

O(n); moreover, this can be computed in polynomial time. We shallonly show Lemma

8.3.2 for∆=0
↑ (q1,q2); the other cases can be proven analogously. Let

A = ({♯},Q×{0,1},δ,q1,{(q2,0),(q2,1)})

be the NWA (withε transitions) such that

• δ((q,0), ♯) = {(q′,1) : ∃a∈ ACT : (q,a,q′,1) ∈ δ′0},

• δ((q,1), ♯) = {(q′,1) : ∃a∈ ACT : (q,a,q′,1) ∈ δ′>0},

• δ((q,0),ε) = {(q′,0) : ∃a∈ ACT : (q,a,q′,0) ∈ δ′0}, and

• δ((q,1),ε) = {(q′,1) : ∃a∈ ACT : (q,a,q′,0) ∈ δ′>0}.

That is,A is obtained fromP ′ by regarding it as an NWA over{♯} by removing all

pop-transitions, treating zero transitions asε-transitions, and treating push transitions

as reading the symbol♯. Observe thatA simulates precisely paths inSP ′ from (q1,0)



Chapter 8. One-counter processes 190

to some configuration in{q2}×N on which the counter behaves monotonically non-

decreasing. It is easy to see now thatP (L(A)) coincides with∆=0
↑ (q1,q2). Since we

may compute an equivalent NWA withoutε-transitions and with the same number of

states in polynomial time, Chrobak-Martinez’s Theorem implies that we can compute

from A in polynomial time a union ofO(n2) arithmetic progressions, with offsets

bounded byO(n2) and periods bounded byO(n), representing∆=0
↑ (q1,q2). 2

8.3.3 Characterization of zero paths and positive paths

Lemma 8.3.2 will now be used to obtain characterizations of zero paths and positive

paths inS′P . Let q1,q2 ∈ Q be control locations. Note that if(q1,n) ↓∗P ′ (q3,1) ↑∗P ′
(q2,n) for someq3 ∈ Q, then also(q1,n+ i) ↓∗P ′ (q3,1+ i) ↑∗P ′ (q2,n+ i). Therefore,

we define∇(q1,q2) ∈ N∪{∞} to be

min{n > 0 | ∃q3 ∈Q : (q1,n) ↓∗P ′ (q3,1) ↑∗P ′ (q2,n)}.

Observe that∇(q,q) = 1 for everyq∈Q. The following lemma, whose proof is in the

appendix, can be easily proven using Lemma 8.3.2 as a subroutine.

Lemma 8.3.3 Either∇(q1,q2) = ∞ or ∇ ∈O(|Q|2). Moreover∇(q1,q2) can be com-

puted in polynomial time.

We now obtain a characterization for zero paths.

Lemma 8.3.4 There is a zero path from(q,n) to (q′,n′) in SP ′ if and only if n∈
∆=0
↓ (q,q′′) and n′ ∈ ∆=0

↑ (q′′,q′) for some q′′ ∈Q.

Proof. “If”: Follows directly from definition of the sets∆=0
↓ and∆=0

↑ .

“Only-if”: Let π = (q1,n1)→P ′ (q2,n2) · · · →P ′ (qk,nk) be a zero path from(q,n)

to (q′,n′) in SP ′. Let l = min{i ∈ [k] | ni = 0} and letr = max{i ∈ [k] | ni = 0}. Then

observe that since(q1,n1)→∗P ′ (ql ,0), it follows (q1,n1) ↓∗P ′ (ql ,0) due to the equiv-

alences of points (2) and (3) of Lemma 8.3.1 and the definitionof ↓P ′. Analogously,

we have(qr ,0) ↑∗P ′ (qk,nk). Moreover, there exists a (mountain) subpathρ from (ql ,0)

to (qr ,0) in π. By again applying the equivalences of points (2) and (3) of Lemma

8.3.1 the subpathρ can be replaced by a path on which all states have counter value 0.

Hence, altogether there exists someq′′ ∈Q such that we have

(q1,n1) ↓∗P (ql ,0) ↓∗P ′ (q′′,0) ↑∗P ′ (qr ,0) ↑∗P ′ (qk,nk).

Hence we obtainn1 ∈ ∆=0
↓ (q,q′′) andnk ∈ ∆=0

↑ (q′′,q′) as required.2
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The next lemma characterizes positive paths.

Lemma 8.3.5 Assume n≤ n′. Then there exists a positive path inSP ′ from (q,n) to

(q′,n′) if and only if n≥ ∇(q,q′′) and n′−n∈ ∆>0
↑ (q′′,q′) for some q′′ ∈Q.

Assume n≥ n′. Then there exists a positive path from(q,n) to (q′,n′) in SP ′ if and

only if n′ ≥ ∇(q′′,q′) and n−n′ ∈ ∆>0
↓ (q,q′′) for some q′′ ∈Q.

Proof. We only prove the case whenn ≤ n′. The case whenn≥ n′ can be proven

analogously.

“If”: Assume n≥ ∇(q,q′′) andn′−n∈ ∆>0
↑ (q′′,q′) for someq′′ ∈ Q. Then(q,n) ↓∗P ′

(q0,n−d) ↑∗P ′ (q′′,n) for someq0 ∈Q and somed ∈ [0,n−1] following immediately

from definition of∇(q,q′′). Moreovern′−n∈ ∆>0
↑ (q′′,q′) implies(q′′,n) ↑∗P ′ (q′,n′).

Altogether, there exists a positive path of the kind(q,n) ↓∗P ′ (q0,n−d) ↑∗P ′ (q′,n′) in

SP ′ as required.

“Only-if”: Let π = (q1,n1)→∗P ′ (q2,n2) · · ·(qk,nk) be a positive path from(q,n) to

(q′,n′). Letµ= min{ni | i ∈ [k]} be the minimal counter value that appears inπ. Recall

thatµ > 0 sinceπ is positive. Definel = min{i ∈ [k] | ni = µ} andr = max{i ∈ [k] |
ni = µ}. Since(q1,n1)→∗P ′ (ql ,µ), it follows from the equivalences of points (2) and

(3) of Lemma 8.3.1 and the definition of↓P ′ that (q1,n1) ↓∗P ′ (ql ,µ). Analogously, it

follows that(qr ,µ) ↑∗P ′ (qk,nk). Moreover the subpath from(ql ,µ) to (qr ,µ) in π can be

replaced by a path of the kind(ql ,µ) ↓∗P ′ (qµ,µ) ↑∗P ′ (qr ,µ) for someqµ ∈Q by Lemma

8.3.1. Altogether, we have shown the existence of a path of the following kind

(q,n) ↓∗P ′ (qµ,µ) ↑∗P ′ (q′,n′).

Thus, there exists someq′′ ∈Q such that the previous path can be split up as

(q,n) ↓∗P ′ (qµ,µ) ↑∗P ′ (q′′,n) ↑∗P ′ (q′,n′).

This impliesn≥ ∇(q,q′′) andn′−n∈ ∆↑(q′′,q′) as required.2

8.4 A translation to MMA

In this section, we shall present a polynomial-time translation from the problem of

model checkingEF dag-formulas over OCPs to the membership problem of MMA. In

fact, the following theorem shows a stronger statement: theset of configurations of

an OCP satisfying the givenEF dag-formula can be represented by MMA formulas;

moreover, they can be computed in polynomial time.
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Theorem 8.4.1 From a given one-counter processP and a givenEF dag-formulaϕ,

we can compute in polynomial time for each control location qof P an MMA dag-

formulaα(q) such that[[α(q)]] = {n∈N | (SP ,(q,n)) |= ϕ}.

By combining Theorem 8.4.1 with Proposition 8.2.3, the following corollary is imme-

diate.

Corollary 8.4.2 The problem of model checkingEF dag-formulas over OCPs is in

PNP.

Therefore, it remains to prove Theorem 8.4.1. For the rest ofthis section, let us fix an

OCPP = (Q,δ0,δ>0) and anEF dag-formulaϕ = (ϕi)i∈[l ]. For convenience, we shall

assume that each occurrence of theEFΓ operator inϕ satisfiesΓ = ACT (or equiva-

lently EFΓ = EF); for the general case ofΓ⊆ ACT, the proof can easily be adapted by

first restricting ourselves toΓ-transitions inP when we seeEFΓ operators. Assume

now thatQ = {q1, . . . ,qk}. For technical convenience, we will identify each element

(qi, j) ∈Q× [l ] with the corresponding natural numberi +( j−1) ·k∈ [k · l ]. The goal

of this section is to present a polynomial time algorithm to compute an extended MMA

formula α = (α(q, j))(q, j)∈Q×[l ] such that[[α(q, j)]] = {n ∈ N | (SP ,(q,n)) |= ϕ j} for

each(q, j) ∈Q× [l ].

First, we saturateP in polynomial time. Then, we apply Lemma 8.3.2 and compute

in polynomial time the sets∆>0
↓ (q,q′), ∆>0

↑ (q,q′), ∆=0
↓ (q,q′), and∆=0

↑ (q,q′), which are

each unions ofO(|Q|2) arithmetic progressions with offsets bounded byO(|Q|2) and

periods bounded byO(|Q|) for eachq,q′ ∈Q. By applying Lemma 8.3.5 we compute

in polynomial time∇(q,q′) ∈ [n∇]∪{∞} for eachq,q′ ∈Q, wheren∇ ∈O(|Q|2).
Let us now present the computation of the MMA formulaα = (α(q, j))(q, j)∈Q×[l ].

We will do this by induction onj with respect to≺+
ϕ and simultaneously for eachq∈Q.

Base Case. Assume j is minimal with respect to≺+
ϕ . Thenϕ j = ⊤ and we put

α(q, j) = (≥ 0) for eachq∈Q.

Induction Step.

Assumeϕ j = ¬ϕ j ′ for somej ′ ∈ [ j−1]. Then we putα(q, j) = ¬α(q, j ′) for eachq∈Q.

Assumeϕ j = ϕ j1∧ϕ j2 for some j1, j2 ∈ [ j−1]. Then we putα(q, j) = α(q, j1)∧α(q, j2)

for eachq∈Q.
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Assumeϕ j = 〈a〉ϕ j ′ for somea∈ ACT and somej ′ ∈ [ j−1]. By induction hypothesis,

we have

α(q′, j ′) = {n∈ N | (q′,n) |= ϕ j ′}

for eachq′ ∈Q. By putting+̂ =− and−̂= +, we defineα(q, j) as the conjunction of

(= 0)→




_

q′∈Q:
(q,a,q′,+1)∈δ0

α(q′, j ′)−1 ∨
_

q′∈Q:
(q,a,q′,0)∈δ0

α(q′, j ′)




and

(> 0)→




_

q′∈Q,⊙∈{−,+}:
(q,a,q′,⊙1)∈δ>0

α(q′, j ′)⊙̂1 ∨
_

q′∈Q:
(q,a,q′,0)∈δ>0

α(q′, j ′)


 .

Finally, assumeϕ j = EFϕ j ′ for some j ′ ∈ [ j − 1]. Let us first fix control locations

q,q′ ∈Q. By induction hypothesis

[[α(q′, j ′)]] = {n∈ N | (q′,n) |= ϕ j ′}.

By Lemma 8.2.1 we know that for eachn1,n2 ∈ N which exceed a thresholdt(q′, j ′)

such thatn1≡ n2 modL(q′, j ′) we haven1∈ [[α(q′, j ′)]] if and only if n2 ∈ [[α(q′, j ′)]]. Note

that this implies that[[α(q′, j ′)]] is infinite if and only if there exists somen∈ [[α(q′, j ′)]]

such thatt(q′, j ′) < n≤ t(q′, j ′) +L(q′, j ′).

Let us now fix an arithmetic progressiona+bN with b> 0 that is a subset of some

of the sets∆>0
↓ (q,q′),∆>0

↑ (q,q′), ∆=0
↓ (q,q′), or ∆=0

↑ (q,q′). Moreover, letc ∈ Z/bZ

be some residue class. We aim at defining an MMA formula inf(q′, j ′,c,b) that is

valid if and only if there are infinitely many naturals that satisfy α(q′, j ′) and that are

congruentc modulob. Now observe that the latter is the case exactly whenever there

exists somen ∈ [[α(q′, j ′)]] such thatt(q′, j ′) < n≤ t(q′, j ′) + L(q′, j ′) and moreovern≡ c

mod gcd(b,L(q′, j ′)). Let us define the auxiliary MMA formula

ψ(q′, j ′,c,b) = α(q′, j ′)∧ (≡ c mod gcd(b,L(q′, j ′)))

and finally

inf(q′, j ′,c,b) = t(q′, j ′) < max(ψ(q′, j ′,b,c), t(q′, j ′) +L(q′, j ′)).

Next, we aim at defining the set

{n∈N | ∃n′ ∈ N : (q,n)→∗P (q′,n′),(q′,n′) |= ϕ j ′}
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in terms of an extended MMA formula. For this, assume that there is a pathπ from

(q,n) to (q′,n′) in SP ) such that(q′,n′) |= ϕ j ′, wheren′ ∈ N. We distinguish three

(not necessarily distinct) cases. Either (1)π is positive andn≤ n′, (2) π is positive and

n≥ n′, or (3)π is zero. We will realize each of these cases by correspondingextended

MMA dag-formulasβ1(q,q′), β2(q,q′), andβ3(q,q′) respectively.

Let us first consider case (1), i.e.π is positive andn≤ n′. Thenn≥ ∇(q,q′′) and

n′− n ∈ ∆>0
↑ (q′′,q′) for someq′′ ∈ Q by Lemma 8.3.5. Thus,(n′−n) ∈ a+ bN for

some arithmetic progressiona+bN ⊆ ∆>0
↑ (q′′,q′). Furthermore, letc∈ Z/bZ be the

residue class ofn′ modulob. So altogether, we will fix the witnessesq′′, a+bN, and

c in the following. First, let us first assume thatb > 0. We now distinguish the cases

when there are either (i) infinitely or (ii) finitely manyn′′ ∈N such thatn′′ ≡ c modb

and(q′,n′′) |= ϕ j ′.

• Case (i) is expressed by the formulaγ(q′′,a,b,c)∞ which is defined as

inf(q′, j ′,c,b) ∧ ≥ ∇(q,q′′) ∧ ≡ (c−a) modb.

• Case (ii) can be realized by saying that the maximal suchn′′ is reachable from

n via the arithmetic progressiona+bN. For this, let the formulaγ(q′′,a,b,c)<∞

be defined as the conjunction of

¬ inf(q′, j ′,c,b) ∧ ≥ ∇(q,q′′)

and

≡ (c−a) modb∧ ≤max(α(q′, j ′)−a, t(q′, j ′)).

The last conjunct guarantees thatn+a≤ n′′, which is necessary since we have

to have thatn′′ ∈ n+a+bN.

The case whenb = 0 can easily be realized by putting

γ(q′′,a) = ≥ ∇(q,q′′) ∧ (α(q′, j ′)−a).

Altogether, we put

β1(q,q′) =
_

q′′∈Q




_

a+0N⊆∆>0
↑ (q,q′′)

γ(q′′,a)∨

_

a+bN⊆∆>0
↑ (q,q′′)

b>0,c∈Z/bZ

γ(q′′,a,b,c)∞∨ γ(q′′,a,b,c)<∞


 .
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Let us now consider case (2), i.e. whenπ is positive andn≥ n′. Thenn′≥∇(q′′,q′)

andn−n′ ∈ ∆>0
↓ (q,q′′) for someq′′ ∈Q by Lemma 8.3.5. Hence,n−n′ ∈ a+bN for

somea+ bN ⊆ ∆>0
↓ (q,q′′). Firstly, let us assume thatb > 0. Recall thatc ∈ Z/bZ

is the residue class ofn′. Now the simple observation is that the witnessn′ can be

replaced by the minimaln′′ ∈ N such thatn′′ ≡ n′ ≡ c modb, n′′ ≥ ∇(q′′,q′), and

(q′,n′′) |= ϕ j ′ . We realize this by the formulaθ(q′′,a,b,c) defined as the conjunction

of ≡ c+a modb and

≥min

(
(≥ ∇(q′′,q′) ∧ α(q′, j ′) ∧ ≡ c modb)+a

)
.

Secondly, let us assume thatb = 0. This case is realized by the formula

θ(q′′,a) = ≥ (∇(q′′,q′)+a) ∧ (α(q′, j ′) +a).

Altogether, we defineβ2(q,q′) to be

_

q′′∈Q




_

a+bN⊆∆>0
↓ (q,q′′)

b>0,c∈Z/bZ

θ(q′′,a,b,c) ∨
_

a+0N⊆∆>0
↓ (q,q′′)

θ(q′′,a)


 .

Finally, let us consider case (3), i.e. whenπ is zero. For eachq′′ ∈ Q, define the

predicate

∃m∈ N : m∈ ∆=0
↑ (q′′,q′)∧ (q′,m) |= ϕ j ′ .

In other words, case (3) can be rephrased asn∈ ∆=0
↓ (q,q′′) andπ(q′′) for someq′′ ∈Q

by Lemma 8.3.4. Now check that the predicateπ(q′′) can be expressed as
_

a+bN⊆∆=0
↑ (q′′,q′)

b>0

0≤max(≡ a modb∧α(q′, j ′), t(q′, j ′) +L(q′, j ′))

∨
_

a+0N⊆∆=0
↑ (q′′,q′)

a = min((α(q′, j ′)−a)+a).

Defineβ3(q,q′) =
W

q′′∈Qπ(q′′)∧ρ(q′′), whereρ(q′′) is
_

a+bN⊆∆=0
↓ (q,q′′)

(≡ a modb) ∨
_

a+0N⊆∆=0
↓ (q,q′′)

(= a).

We finally putα(q, j) =
W

q′∈Qβ1(q,q′)∨β2(q,q′)∨β3(q,q′).

This concludes the definition ofα. It is straightforward to see thatα can be com-

puted in time polynomial in‖P‖+ ‖ϕ‖. By additionally applying Lemma 8.2.2, we

obtain Theorem 8.4.1.

It turns out that a more precise analysis of our translation allows us to derive the

following polynomial time upper bound, when the one-counter process is fixed.
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Theorem 8.4.3 The problem of model checkingEF dag-formulas over a fixed OCP is

in P.

This is in stark contrast to the problem of model checkingEF-logic over a fixed push-

down system, which can be shown to bePSPACE-complete using the proof from

[BEM97, Wal00]. The proof of Theorem 8.4.3 can be found in theappendix.

8.5 Application to weak-bisimilarity checking

In this section, we use ourPNP upper bound from the previous section to derive a

PNP upper bound for weak-bisimilarity checking of OCPs againstfinite systems. This

improves the previousPSPACE upper bound known for the problem [Kuc00]. In the

next section, we shall in fact give aPNP lower bound for weak-bisimilarity checking

of OCPs against finite systems.

We shall first recall the definition of weak bisimulation (cf.[KJ06]). Let S =

〈S,{→a}a∈ACT〉 be a transition system and assume some distinguished internal sym-

bol τ ∈ ACT. Define theextended transition relation⇒a ⊆ S×S for eacha∈ ACT as

s⇒a t if and only if eithera 6= τ and there exists′, t ′ ∈ Ssuch thats→∗τ s′→a t ′→∗τ t,

or a = τ ands→∗τ t. Given two transition systemsS = 〈S,{→a}a∈ACT〉 andS′ =

〈S′,{→′a}a∈ACT〉, a relationR⊆ S×S′ is aweak-bisimulation(or w-bisimulation) if it

is nonempty, and whenever(s,s′)∈R, then for everya∈ ACT the following two condi-

tions hold (i) ifs→a t for somet ∈S, thens′⇒′a t ′ for somet ′ ∈S′ such that(t, t ′) ∈R,

and (ii) if s′ →′a t ′ for somet ′ ∈ S′, thens⇒a t for somet ∈ S such that(t, t ′) ∈ R.

For everys∈ Sand everys′ ∈ S′, we say thats ands′ arew-bisimilar, written s≈ s′,

whenever there exists a w-bisimulationR⊆ S×S′ such that(s,s′) ∈R. We now define

w-bisimilarity checkingof one-counter processes against finite systems as follows.

W-BISIMILARITY CHECKING: OCPS AGAINST FINITE SYSTEMS

Instance: A one-counter processP , a state(q,n) of SP with n given in binary, a finite

systemT, and a statet of T.

Question: (q,n)≈ t?

In order to derive our upper bound, we recall the following well-known result from

[JKM01] (a more recent presentation can be found in [KJ06]).

Lemma 8.5.1 Let S1 = 〈S1,{ 1→a}a∈ACT〉 be a (possibly infinite) transition system

andS2 = 〈S2,{ 2→a}a∈ACT〉 be a finite transition system with k states. Then, given any
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state s2∈S2, we can construct anEF dag-formulaϕs2,S2 in polynomial time (in k) such

that, for every state s1 ∈ S1, it is the case that s1≈ s2 if and only ifS1,s1 |= ϕs2,S2.

In other words, Lemma 8.5.1 implies that the w-bisimulationchecking problem is

polynomial-time reducible to the problem of model checkingEF dag-formulas. Com-

bining this lemma with our results in the previous sections,the following theorem can

easily be derived.

Theorem 8.5.2 The w-bisimilarity checking problem is solvable inPNP. The problem

becomes solvable inP when the one-counter process is fixed.

8.6 Lower bounds

We conclude this chapter with several tight lower bounds forthe problem of model

checkingEF-logic over OCPs and weak-bisimulation problems of OCPs against finite

systems.

Let us start with the problem of model checkingEF-logic over OCPs. We have

managed to give aPNP lower bound for this problem in [GMT09] when the input

formulas are represented as dags. This is achieved by a simple reduction from the

PNP-complete problem called DSAT. On the other hand, we will notreproduce the

proof here since a matchingPNP lower bound has recently been given by Göller and

Lohrey [GL10] forEF tree-formulas.

Proposition 8.6.1 ([GMT09, GL10]) The problem of model checkingEF dag/tree for-

mulas over OCPs isPNP-hard.

We now proceed to the lower bound of weak-bisimilarity checking of OCPs against

finite systems. We will show that this problem isP
NP-hard by a reduction from a

problem called DSAT [Pap94], which takes the following input: a sequence of boolean

formulasF1, . . . ,Fn with variablesx1, . . . ,xn and sets of variablesZ1, . . . ,Zn such that

the formulaFi can take only variables from{x1, . . . ,xi−1} andZi . The goal is to decide

whether there exists an assignmentσ : {x1, . . . ,xn}→ {0,1} that setsxn to 1 such that

the following are satisfied for alli ∈ [n]:

σ(xi) = 1 ⇔ ∃ZiFi(x1, . . . ,xi−1,Zi). (8.1)

Notice that imposing the constraint in (8.1) ensures that there exists auniqueassign-

mentσ. The only question is whether this assignment satisfiesσ(xn) = 1.
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Proposition 8.6.2 The problem of checking weak-bisimulation between a given one-

counter net and a given finite system is hard forPNP.

To prove this proposition, we will have to be able to encode assignments to boolean

formulas (i.e. a sequence of 0s and 1s) as numbers. We shall achieve this viaGödel

encodings(i.e. using the uniqueness of prime decomposition). To thisend, we shall

define the Gödel functionG : Z>0→{0,1}ω as follows: if pi is theith prime number

andn = ∏i>0 p j i
i , where j i ∈N, then defineG(n) = j ′1 j ′2 . . ., where j ′i = 0 if j i = 0 and

j ′i = 1 if j i > 0. Since the proof of Proposition 8.6.2 is rather intricate,we shall only

present a sketch of the proof (the full proof can be found in the appendix).

Proof Sketch. In this proof, we shall present the weak-bisimulation as games between

two players: Attacker and Defender (e.g. see [Sti98]). Briefly, Attacker’s goal is

to prove that two given processes are not w-bisimilar, whileDefender tries to prove

otherwise. In every round of the game, there is a pebble placed on a unique state in

each transition system. Attacker then chooses one transition system and moves the

pebble from the pebbled state to one of its successors by an action→a. Defender must

imitate this by moving the pebbled state from the other system to one of its successors

by the same action→a, possibly together with several internalτ-actions, i.e. he has

to move the pebble along a⇒a-transition. If one player cannot move, then the other

player wins. Defender wins every infinite game. Two statess and t are w-bisimilar

(resp. not w-bisimilar) if and only if Defender (resp. Attacker) has a winning strategy

on the game with initial pebble configuration(s, t).

We now present the proof sketch of Proposition 8.6.2. We reduce DSAT to the w-

bisimulation checking problem by constructing a suitable one-counter net and a finite

system. The finite system contains (among many others) statesP1 andP2, and the one-

counter net contains control-statessFi for 1≤ i ≤ n such that the following statements

are equivalent:

• 〈F1, . . . ,Fi〉 ∈DSAT.

• P1≈ sFi(l) for all l ∈N.

• P2 is not w-bisimilar tosFi(l) for somel in N.

In the particular case ofi = n, this is the reduction we are looking for. The idea is that

checking the truth of every subformula∃ZiFi(x1, . . . ,xi−1,Zi) of the DSAT problem

is encoded into a complex w-bisimulation game forP1 ≈ sFi(l). In this game, the
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defender player gets to choose (by a long
τ⇒move) a natural numberl ′ which is stored

in the one-counter net. This number encodes (by Gödel encoding) the assignment of

values to the boolean variables in the blockZi . Later in the game, these values can

be tested by special counter-decreasing loops, which implement divisibility tests onl ′.

The variablesxk are treated differently, because they depend on other subformulaeFk

with smaller index numbersk < i. If the value of somexk (for k < i) needs to be tested,

then the w-bisimulation game jumps to some subgame which tests eitherP1 ≈ sFk(l
′)

or P2≈ sFk(l
′), depending on whether the value ofxk is claimed as true or false.

The main technical difficulty of the proof is to restrict the freedom of the players

in the w-bisimulation game, so that they exactly make the choices needed in the veri-

fication game for the formula∃ZiFi(x1, . . . ,xi−1,Zi) in the right step, and do not make

a move that is reserved for the other player. This is rather intricate, because of the

asymmetry of the two compared systems, one infinite-state one-counter process and a

finite system. In particular, isomorphic copies of the finitesystem are replicated in the

finite-control of the one-counter net.2

In contrast to Kučera’sDP lower bound [Kuc00] which holds for a fixed one-counter

net, our proof of Proposition 8.6.2 requires that the finite system is not fixed. Never-

theless, we can show that the w-bisimilarity checking problem for fixed finite systems

is harder thanDP.

Proposition 8.6.3 There exists a fixed finite system for which the w-bisimilarity check-

ing problem is hard forPNP[log] even for one-counter nets.

This lower bound proof, which is given in the appendix, is achieved by a reduction

from aPNP[log]-complete problem called INDEX-ODD. Together with Lemma 8.5.1,

we also obtain aPNP[log] lower bound for a fixedEF formula (in this case tree/dag

representations are not important since the formula is fixed).

Proposition 8.6.4 There exists a fixedEF formulaϕ such that model checkingϕ over

one-counter nets isPNP[log]-hard.

In [GMT09], we gave a direct reduction which shows the same hardness result when

only EFΓ operators satisfyingΓ = ACT are permitted.





Chapter 9

Networks of one-counter processes

In the previous chapter, we have studied one-counter processes and several verifica-

tion problems over such systems. One-counter processes are, however, a rather weak

model. They can only be used to model programs with bounded recursions and one

unbounded integer variable (used as a counter). Let us now imagine a more general

scenario when several integer-valued counters are used in aprogram. Consider the

following code snippet written in a C-like language:

INT i, n, m; // Initialized elsewhere

STRING s; // bounded length

L1:

n, s are used ...

FOR( i = n; i ≥ 0; i = i−1 ) // Synch.

i,s are used ...

m= n−2; // Synch.

L2: ...

This program has three unbounded integer variables and other bounded data structures

(e.g. strings). The places where these variables synchronize in the form of simple vari-

able assignments are underlined. Notice that the synchronizations take place outside

for/while loops. Within for/while loops, at most one integer variable is used. Observe

that such a program already cannot be modeled by OCPs since wehave to keep track of

several integer counters simultaneously, e.g., the variable n in this program is assigned

to i andm at different points of the program.

201
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FO(Reach)
FO

2(Reach) EF-logic
FO

4(Reach)

Combined PSPACE PSPACE in PNP & PNP[log]-hard (Chap. 8)

Expression PSPACE in P in P (Chap. 8)

Data PH PH in P
NP & P

NP[log]-hard (Chap. 8)

Table 9.1: Results for OCPs.

The approach that we will take in this chapter is to study model checking problems

over asynchronous products of OCPs, which we denote byΠOCP. They can also

be construed asnetworks of one-counter processeswith each component behaving

independently (i.e. the processes do not interact). Observe that reachability forΠOCP

can trivially be reduced to the reachability problems of their components. On the other

hand, when we consider the model checking problems of asynchronous products of

OCPs with more powerful logics likeFO(Reach) andEF-logic, asynchronous products

are sufficiently powerful for modeling bounded synchronizations among the finite-

control units of the OCPs. This follows from a more general result by Wöhrle and

Thomas [WT07] regardingfinitely synchronized productsof infinite-state systems. In

order to permit some synchronizations amongst the counters, we will also enrich these

logics with some simple synchronization predicates. Thesewill enable us to verify

interesting properties of programs with multiple integer-valued counters withbounded

synchronizationsbetween the counters, i.e., ineveryexecution of the program, the

number of times at which integer variables synchronize is bounded a priori. Notice

that the example of a program that we saw above falls within this category since it uses

only two synchronizations outside for/while loops.

The model checking problems overΠOCP that we will consider in this chap-

ter are with respect to the specifications in (1)FO(Reach), (2) thek-variable frag-

mentsFO
k(Reach) (k≥ 2) of FO(Reach), and (3)EF-logic, which is a fragment of

FO
2(Reach). We also study these logics extended with simple component-wise syn-

chronizing predicates testing whether componentsi and j have the same counter val-

ues, which we denote byFOS(Reach), FO
k
S(Reach), andEFS-logic, respectively. The

goal of this chapter is to provide not only decidability results, but also the precise com-

plexity of these model checking problems.

The results of this chapter are summarized in Table 9.1 and Table 9.2 together with

the results from the previous chapter. Notice that OCPs are simply the special case of
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FO(Reach)

FO
2(Reach) EF-logic EFS-logicFO

4(Reach)

FOS(Reach)

Combined PSPACE PSPACE PSPACE PSPACE

Expression PSPACE in P in P PSPACE

Data PH PH in PNP & PNP[log]-hard PH

Table 9.2: Results for ΠOCP.

ΠOCP with only one component. In particular, all our results are within PSPACE,

in contrast to PDS whose expression complexity forFO(Reach) is nonelementary

[CH90]. Our upper bounds are shown by first introducing two syntactic restrictions

L andL′ of Presburger Arithmetic, for which we give optimal quantifier elimination

procedures, and showing that theΠOCP model checking problems are poly-time re-

ducible to eitherL or L′. Note that, to obtain a sharp upper bound, we cannot consider

only OCPs (without products) and applyFeferman-Vaught type of composition meth-

ods(e.g. see [Mak04, Rab07, WT07]) as the resulting algorithm will run in time that is

nonelementary in the formula size. Concerning our lower bound results, in contrast to

the result from the previous chapter that model checkingEF-logic is inPNP, data com-

plexity of FO
2(Reach) over OCPs is already hard for every level ofPH. On the other

hand, the expression complexity ofFO
2(Reach) over ΠOCP is inP. This general-

izes one of the key results from the previous chapter that theexpression complexity of

EF-logic over OCPs (without products) is inP. However, for eachk > 3, we can show

that the expression complexity ofFO
k(Reach) is PSPACE-complete already for OCPs.

Also, notice that the combined complexity ofEF-logic becomesPSPACE, which holds

already for products of two OCPs. Finally, notice that adding simple synchronization

relations toEF-logic causes the expression and data complexity to increase signifi-

cantly.

What about model checking with respect to specifications in CTL or LTL? We do

not consider them since they are easily shown to be undecidable by a simple reduction

from reachability of Minsky’s 2-counter systems, e.g., we can encode full synchro-

nizations of the counters in a CTL formula of the formE(ϕ U ψ) (synchronization is

embedded inϕ). For monadic second-order logic, undecidability can be more easily

obtained by an asynchronous product of two OCPs which only increments their coun-

ters (i.e. this generates the two-dimensional infinite gridwith an undecidable MSO
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theory [Tho96]).

This chapter is organized as follows. We start with the definitions of asynchronous

products of OCPs and logics with synchronizing predicates in Section 9.1. In Section

9.2, we define our two fragmentsL andL′ of Presburger arithmetic and give a reduction

from our model checking problems to the membership problemsof these logics. In

Section 9.3, we give optimal quantifier elimination procedures forL andL′ and deduce

optimal upper bounds for all model checking problems in Table 9.1 and Table 9.2. We

prove the lower bounds in Section 9.4. The results in this chapter have previously

appeared in [To09a].

9.1 Preliminaries

In this section, we first define the notions of asynchronous products of OCPs. We then

explain how synchronizing predicates can be added in our logics.

9.1.1 Asynchronous products

We now review the definition of asynchronous products of transition systems and asyn-

chronous products of OCPs.

Let ACT1, . . . ,ACTr be r pairwise disjoint sets of actions. LetACT be their union.

For eachi ∈ [1, r], letGi = 〈Vi ,{Ea}a∈ACTi
〉 be a transition system overACTi . An asyn-

chronous productof G1, . . . ,Gr is the transition systemΠr
i=1Gi := 〈V,{Ea}a∈ACT〉,

whereV := Πr
i=1Vi and, whenevera∈ ACTi , ū = (u1, . . . ,ur), andv̄ = (v1, . . . ,vr), we

have(ū, v̄) ∈ Ea iff (ui,vi) ∈ Ea andu j = v j for all j 6= i. Intuitively, the product is

“asynchronous” as each edge relation inΠr
i=1Gi changes at most one component in

each vertex ofΠr
i=1Gi , i.e., causing no interaction between different components. See

[Rab07, WT07] for more details.

An asynchronous productP of r OCPs is simply a tuple ofr OCPsP1, . . . ,Pr

over pairwise disjoint action alphabetsACT1, . . . ,ACTr .The productP has action labels

ACT := ACT1∪ . . .∪ACTr . Then, the transition systemSP generated byP is defined

to be the transition systemΠr
i=1SPi overACT. In the sequel, asynchronous products

of OCPs are abbreviated asΠOCP.

We define the model checking problems ofΠOCP with respect toFO(Reach) as

follows.
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MODEL CHECKING FO(Reach) OVER ΠOCP

Instance: A ΠOCP P over ACT, an FO(Reach) formula ϕ(x1, . . . ,xk) over ACT, k

configurations{ci}ki=1 of P with binary representation of numbers.

Question: SP |= ϕ(c1, . . . ,ck)?

For other logics likeFO
k(Reach) (k ≥ 2) andEF-logic, we could define the model

checking problems in a similar fashion.

9.1.2 Synchronization predicates

So far, our logics cannot compare the values between two different counters in the

system. We now introduce an extension that permits simple comparison tests (orsyn-

chronizing predicates) between counter values.

To add synchronizing predicates to the logic, we first add these predicates in the

semantics ofΠOCP. Given an asynchronous productΠOCP of r OCPsP1, . . . ,Pr

overACT =
Sr

i=1ACTi , we define a transition systemSS
P as the transition systemGP

expanded with the “synchronizing” edge relations{=i, j}1≤i 6= j≤r that are defined as

=i, j := {(c,c) : ni = n j},

wherec = ((q1,n1), . . . ,(qr ,qr)). In other words, the relation=i, j contains all self-

loops inSS
P restricted to tuples in which the counter values of theith component and

the jth component agree. The graphSS
P has action labelsACT∪{(i, j)}i, j∈[1,r].

The logicsFOS(Reach), FO
k
S(Reach), andEFS-logic are simply defined to be

FO(Reach), FO
k(Reach), andEF-logic interpreted over this modified semantics. The

problem of model checkingFOS(Reach) overΠOCP can be defined as follows.

MODEL CHECKING FOS(Reach) OVER ΠOCP

Instance: An asynchronous productP of r OCPsACT, an FOS(Reach) formula

ϕ(x1, . . . ,xk) overACT∪{(i, j)}i, j∈[1,r], k configurations{ci}ki=1 of P with

binary representation of numbers.

Question: SS

P |= ϕ(c1, . . . ,ck)?

We can similarly define the model checking problems ofFO
k
S(Reach) andEFS-

logic overΠOCPs.
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9.2 Two fragments L and L′ of Presburger Arithmetic

We define our first fragmentL of Presburger Arithmetic, to which we will reduce the

model checking ofFOS(Reach) overΠOCP.

Definition 9.2.1 The syntax of the logicL is as follows. Atomic propositions are of the

form:

• x∼ y+c, where∼∈ {≤,≥,=},

• x∼ c, where∼∈ {≤,≥,=},

• x≡ y+c (mod d), where c∈ [0,d−1], and

• x≡ c (mod d), where c∈ [0,d−1].

Here, x and y can take any variables, while c and d are constantnatural numbers,

given in binary representations. We then close the logic under boolean combinations,

and existential and universal quantifications. The semantics is given directly from

Presburger Arithmetic. The expression x≡ y+ c (mod d) is to be interpreted as the

Presburger formula∃z( x = y+c+dz ∨ x+dz= y+c ).

Intuitively, the logicL is the fragment of Presburger Arithmetic that permits only in-

equality tests, addition with constants, and modulo tests.We now impose some further

syntactic restrictions to our logicL, to which model checkingFO
2(Reach) overΠOCP

is still poly-time reducible.

Definition 9.2.2 Define the logicL′ as follows. The only variables allowed are xi and

yi , where i∈ Z>0. The atomic propositions ofL′ are given as follows for each i∈ Z>0:

• xi ∼ yi +c and yi ∼ xi +c,

• xi ∼ c and yi ∼ c,

• xi ≡ yi +c (mod d) and yi ≡ xi +c (mod d), and

• xi ≡ c (mod d) and yi ≡ c (mod d).

Here, c and d are constant natural numbers given in binary. Wethen close the logic

under boolean combinations, and existential and universalquantifications.
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Observe that the logicL′ allows only two variablesxi andyi to be related. In fact, if

we only allowx1 andy1 as variables, thenL′ coincides withFO
2 fragment ofL.

We shall briefly discuss the expressive power ofL in terms of subsets ofNk that

can be defined in the logics. Let us first briefly recall the definition of first-order

modulo counting logicFOMOD, which extendsFO with the modulo counting quanti-

fiers ∃p,q, for eachq ∈ Z>0 and p ∈ [0,q). When interpreted over over(N,<), the

semantics ofFOMOD is defined over(N,<) as follows: (N,<) |= ∃p,qxϕ(x,b) iff the

numberl := |{a∈N : (N,<) |= ϕ(a,b)}| is either infinite or finite andl ≡ p (mod q).

See [Pél92] for more details. It turns out thatL coincides with theFOMOD theory

over 〈N,<〉. In fact, [Pél92] shows thatFOMOD theory over〈N,<〉 admits a quanti-

fier elimination, when the vocabulary is expanded with congruence tests. Therefore,

L subsumesFOMOD over 〈N,<〉. To show thatL ⊆ FOMOD〈N,<〉, observe that ex-

pressions of the formx∼ y+c can easily be replaced by equivalentFO formulas over

〈N,<〉. Also, the atomic formulax≡ y+ c (mod d) can be defined as
Vd−1

a=0(y≡ a

(mod d)↔ x≡ a+c (mod d)), and congruence testsx≡ a (mod d) can be defined

in FOMOD over〈N,<〉 as∃a,dy(y < x). The expressive power ofFOMOD over〈N,<〉
was shown in [Pél92] to be strictly in betweenFO over〈N,<〉 and Presburger Arith-

metic. For example, it was shown that Presburger formulas ofthe formx = 2y is not

definable inFOMOD over〈N,<〉. Finally, we shall emphasize that the proof in [Pél92]

of quantifier elimination forFOMOD over 〈N,<〉 expanded with congruence tests is

nonconstructive.

The membership problem of the logicL is defined as follows: givenϕ(x) ∈ L,

wherex = (x1, . . . ,xn) and a tuplea ∈ N
n in binary, decide whether〈N,+〉 |= ϕ(a).

The membership problem forL′ can be defined similarly. We now state a proposition,

which gives a reduction from model checking problems ofΠOCP to the membership

problem forL or L′.

Proposition 9.2.1 There is a poly-time reduction from the problem of model checking

FOS(Reach) (resp.FO
2(Reach)) overΠOCPto the membership problem forL (resp.

L′). Furthermore, the alternation rank of the output formula in L (resp.L′) is the same

as the alternation rank of the input formula inFOS(Reach) (resp.FO
2(Reach)) up to

addition by a small constant.

This proposition can be proved easily using Lemma 8.3.1, Lemma 8.3.4, and Lemma

8.3.5. For this reason, we relegate the proof to the appendix.
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9.3 Complexity upper bounds

In this section, we shall show that the combined and data complexity of FOS(Reach)

overΠOCP are, respectively, inPSPACE andPH. We then show that the expression

complexity ofFO
2(Reach) is in P. To deduce aPNP upper bound for data complexity

of EF-logic overΠOCP, it suffices to invoke the Feferman-Vaught type of composition

method forEF-logic [Rab07] and use thePNP algorithm for model checkingEF-logic

over OCPs from the previous chapter. Observe that these willgive the claimed upper

bounds in Table 9.1 and Table 9.2.

9.3.1 Combined and data complexity of FOS(Reach)

We start with the combined and data complexity ofFOS(Reach) overΠOCP.

Theorem 9.3.1 The combined and data complexityFOS(Reach) over ΠOCPare in

PSPACE and inPH, respectively.

By Proposition 9.2.1, to deduce this theorem it suffices to prove the following propo-

sition.

Proposition 9.3.2 The membership problem ofL-formulas is inPSPACE. Moreover,

fixing the alternation rank of input formulas, the problem isin PH.

The proof is done via a quantifier elimination technique (e.g. see [Koz06] for an

overview). Intuitively, our proof can be thought of as an extension of Ehrenfeucht-

Fraı̈ssé games on linear orders (e.g. see [Lib04]) with modulo tests. We first define an

equivalence relation≡k
p,m on tuples of natural numbers.

Definition 9.3.1 Given two(k+1)-tuplesa = (a0, . . . ,ak),b = (b0, . . . ,bk) of natural

numbers such that a0 = b0 = 0 and two numbers p,m> 0, we writea≡k
p,m b iff for all

i, j ∈ [0,k] the following statements hold:

1. |ai−a j |< pm implies|ai−a j |= |bi−b j |,

2. |bi−b j |< pm implies|ai−a j |= |bi−b j |,

3. |ai−a j | ≥ pm iff |bi−b j | ≥ pm,

4. ai ≡ bi (mod p),

5. ai ≤ a j iff bi ≤ b j .
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The first two conditions above state that if two elements are “near”, then the difference

for the corresponding two elements in the other tuple is the same. The third condition

is the opposite of this condition: if two elements are “far” away from each other, then

so are the corresponding two elements in the other tuple. It is easy to check that, given

m′ ≥ m > 0, we havea≡k
p,m′ b implies a≡k

p,m b. Similarly, if p|p′, thena≡k
p′,m b

impliesa≡k
p,m b. The following lemma can be used to eliminate a quantifier.

Lemma 9.3.3 Given two(k+ 1)-tuplesa = (a0, . . . ,ak),b = (b0, . . . ,bk) of natural

numbers such that a0 = b0 = 0 and two numbers p,m> 0, if a≡k
p,3m b, then for all

a′ ∈N, there exists b′ ∈N such thata,a′ ≡k+1
p,m b,b′.

Proof. In this proof, for two numbersc,d ∈ N, we write d(c,d) to denote|c− d|.
Suppose thata′ ∈ N. If a′ = ai for somei ∈ [0,k], then we simply setb′ = bi and see

thata,a′ ≡k+1
p,m b,b′. Otherwise, there are two cases to consider:

(Case I) the numbera′ falls into a regionR= (ar ,as) for some distinct integersr,s∈
[0,k].

(Case II) the numbera′ falls into a regionR = (ar ,∞) for somer ∈ [0,k] such that

there is nos∈ [0,k] with ar < as.

Let us first consider Case I. Pick two indicesr andssuch that there is nol ∈ [0,k] with

al ∈R. There are several subcases to consider:

1. d(ar ,as) < 3pm. In this case, assumption implies thatd(br ,bs) = d(ar ,as).

Therefore, we may pickb′= br +d(ar ,a′). It is then easy to verify thata,a′≡k+1
p,m

b,b′.

2. d(ar ,as) ≥ 3pm. In this case, our assumption implies thatd(br ,bs) ≥ 3pm.

There are now three further subcases to consider:

(a) d(ar ,a′) < pm. In this case, it follows that we haved(a′,as) ≥ pm. Pick

b′ = br +d(ar ,a′). It is then easy to check thata,a′ ≡k+1
p,m b,b′.

(b) d(a′,as) < pm. This case is similar to the previous item; one can setb′ :=

bs−d(a′,as).

(c) d(ar ,a′) ≥ pmandd(a′,as) ≥ pm. Sinced(ar ,as),≥ 3pm, it follows that

there are at leastp consecutive numbers in the region[ar + pm,as− pm].

Likewise, sinced(br ,bs)≥ pm, there are at leastp consecutive numbers in
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the region[br + pm,bs− pm]. This implies that for everyc∈ [0, p), there

existsa′′ ∈ (ar ,as) with a′′ ≡ c (mod p), d(ar ,a′′)≥ pm, andd(a′′,as) ≥
pm iff there existsb′′ ∈ (br ,bs) with b′′ ≡ c (mod p), d(br ,b′′) ≥ pmand

d(b′′,bs) ≥ pm. Therefore, ifa′ ≡ c (mod p) for somec ∈ [0, p), it fol-

lows that there existsb′ ∈ (br ,bs) with b′ ≡ c (mod p), d(br ,b′)≥ pmand

d(b′,bs)≥ pm. It it easy now to check thata,a′ ≡k+1
p,m b,b′.

This completes our proof for Case I. Let us now turn to Case II.There are two possi-

bilities:

1. d(ar ,a′) < pm. In this case, we setb′ = br + d(ar ,a′) and it is easy to see that

a,a′ ≡k+1
p,m b,b′.

2. d(ar ,a′)≥ pm. In this case, we may setb′= br + pm+(d(ar ,a′) modp). Since

we havear ≡ br (mod p), it follows that a′ ≡ b′ (mod p). It is easy now to

verify thata,a′ ≡k+1
p,m b,b′.

This concludes our proof.2

Let us consider only tuplesa = (a0, . . . ,ak) of natural numbers satisfyinga0 = 0.

Given an≡k
p,3m-equivalence classC and an≡k+1

p,m-equivalence classC′, we say that

C′ is consistent with Cif there exist a tuplea = (a0, . . . ,ak) of natural numbers and a

numbera′ ∈ N such thata0 = 0, a∈C, and(a,a′) ∈C′. The following lemma shows

that we need not consider large numbers when eliminating a quantifier.

Lemma 9.3.4 Let a = (a0, . . . ,ak) be a tuple of natural numbers and C be its≡k
p,3m-

equivalence class. Then, every≡k+1
p,m-equivalence class has a representative in the set

{(a,a′) : 0≤ a′ ≤max(a)+ pm+ p}.

Proof. This follows from the proof of Lemma 9.3.3, i.e., that we never need to add

more thanpm+ p from the maximal element inb. 2

Definer(0,m) := m andr(n+1,m) := 3r(n,m), for n∈ N. By induction, we have

r(n,m) = 3nm. Let us now define the notion ofoffsetsandperiodsof formulas inL.

If ϕ are atomic formulas of the formx∼ y+ c, x∼ c, x≡ y+ c (mod d), or x≡ c

(mod d), thenoffsets ofϕ are defined to be the integerc. If ϕ is not an atomic formula,

then itsoffsetis the largest offset of atomic subformulas ofϕ. If ϕ are atomic formulas

of the form x∼ y+ c or x ∼ c, then itsperiod is defined to be 1. Ifϕ are atomic

formulas of the formx≡ y+c (mod d) or x≡ c (mod d), then itsperiod is defined
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to bed. Otherwise, ifϕ is not an atomic formula, itsperiod is defined to be the least

common multiple of the periods of each of its atomic subformulas. Forp,m∈ Z>0,

defineLp,m to be formulas inL, whose periods dividep and whose offsets are smaller

thanm.

Lemma 9.3.5 Let p,m∈ Z>0. Supposea = (a0, . . . ,ak),b = (b0, . . . ,bk) are tuples

of natural numbers satisfying a0 = b0 = 0 and a≡k
p,r(n,m) b. Then, given a formula

ϕ(x1, . . . ,xk) in Lp,m of quantifier rank n,

〈N,+〉 |= ϕ(a1, . . . ,ak)⇔ 〈N,+〉 |= ϕ(b1, . . . ,bk).

Proof. The proof is by induction onϕ. Let us consider the base cases. There are four

cases:

• ϕ is of the formxi ∼ x j + c. Suppose thatd(ai,a j) < pm. In this case, our

assumptiona≡k
p,m b implies that we haved(ai,a j) = d(bi ,b j). Pick an integer

r such thatai = bi + r. Then, sinceai ≤ a j ⇔ bi ≤ b j , we havea j = b j + r.

Therefore, for each∼∈ {≤,≥,=}, we haveai ∼ a j +c iff bi + r ∼ b j + r +c iff

bi ∼ b j +c. Let us now consider the case whend(ai ,a j)≥ pm. In this case, our

assumptiona≡k
p,m b implies thatd(bi,b j)≥ pm. Then, sinceai ≤ a j ⇔ bi ≤ b j

andc < m≤ pm, it follows thatai ≤ a j + c⇔ bi ≤ b j + c. Furthermore, since

c < m≤ pm, it follows thatai 6= a j +c andbi 6= b j +c. Altogether, these imply

thatai ∼ a j +c iff bi ∼ b j +c for each∼∈ {≤,≥,=}.

• ϕ is of the formxi ∼ c. This follows from the proof for the previous case.

• ϕ is of the form xi ≡ x j + c (mod d). Sinceai ≡ bi (mod p) and a j ≡ b j

(mod p), we also haveai ≡ bi (mod d) anda j ≡ b j (mod d) asd divides p.

It is then immediate thatai ≡ a j +c (mod d) iff bi ≡ b j +c (mod d).

• ϕ is of the formxi ≡ c (mod d). Same as the previous case.

We now turn to the inductive cases. The cases for boolean combinations are easy.

So, consider the case whenϕ is of the form∃xk+1ψ(x,xk+1). Then, let us prove

that 〈N,+〉 |= ϕ(a) implies〈N,+〉 |= ϕ(b); the converse is completely symmetric. If

〈N,+〉 |= ϕ(a), then there existsak+1∈N such that〈N,+〉 |= ψ(a,ak+1). Sincea≡k
p,m

b, Lemma 9.3.3 implies that there existsbk+1 ∈ N such thata,a′ ≡k+1
p,r(n−1,m) b,b′. By

induction, it follows that〈N,+〉 |= ψ(b,b′), which proves that〈N,+〉 |= ϕ(b). 2
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We are now ready to prove Proposition 9.3.2.

Proof of Proposition 9.3.2. We now give a polynomial-time alternating Turing ma-

chineM which checks whether〈N,+〉 |= ϕ(a1, . . . ,an) for given a formulaϕ(x1, . . . ,xn)

and an+ 1-tuplea = (a0, . . . ,an), wherea0 = 0. First, push all the negations down-

ward to the atomic propositions level, which can be done easily. Suppose thatp and

m be, respectively, the period and offset of the input formula. Now if ϕ is an atomic

proposition (i.e. inequality, or modulo tests), it is easy to see thatM can check it in

poly-time. If ϕ is ψ∨ψ′ (resp.ψ∧ψ′), then existentially (resp. universally) guessψ
or ψ′ and check the guessed formula. Ifϕ is of the form∃xψ(y,x) (resp. ∀xψ(y,x))

and has quantifier rankk, thenM existentially (resp. universally) guesses a number

an+1 not exceeding max(a)+ pr(k,m)+ p≤ max(a)+ p3km+ p and check whether

〈N,+〉 |= ψ(a,an+1). The upper bound foran+1 is sufficient due to Lemma 9.3.4.

To analyze the running time ofM, notice that the maximum number thatM can

guess on any of its run on inputϕ of quantifier rankh and a tuplea of natural numbers

(in binary) is max(a)+Σh
j=0(pr( j,m)+ p)≤max(a)+ p(h+1)3hm+ p(h+1), which

can be represented using polynomially many bits. [Note thatp andm are represented

in binary and so the guessed number is polynomial in log(p) and log(m).] This implies

that membership ofL-formulas is inPSPACE. Finally, notice that the number of al-

ternations used byM corresponds to the alternation rank ofϕ. Therefore, considering

only formulas of fixed alternation rank, the membership problem for L-formulas is in

PH. 2

9.3.2 Expression complexity of FO
2(Reach)

We now deal with the expression complexity ofFO
2(Reach).

Theorem 9.3.6 The expression complexity ofFO
2(Reach) overΠOCPis in P.

Define L′p,m to be the set of all formulas inL′ whose periods dividep and whose

offsets do not exceedm. Let L′p,m(n) to be the set of all formulas inL′p,m that use only

variables in{x1, . . . ,xn} ∪ {y1, . . . ,yn}. For all fixed p,m,n ∈ Z>0, the membership

problem ofL′p,m(n) is as follows: givenϕ(x,y) ∈ L′p,m(n) and two tuplesa,b∈ N
n of

numbers in binary representation, decide whether〈N,+〉 |= ϕ(a,b). By Proposition

9.2.1, Theorem 9.3.6 follows from the following proposition.

Proposition 9.3.7 For fixed p,m,n∈Z>0, the membership problem ofL′p,m(n) is in P.
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This proposition can also be proved via quantifier elimination. The intuition that we

can obtain a poly-time algorithm is from a two-pebble Ehrenfeucht-Fraı̈ssé games over

linear orders (see [Lib04]), which can only distinguish small linear orders (i.e. only

linear in the quantifier rank of theFO
2(Reach) formula). The proof is similar to the

case forFO(Reach), but is much more tedious, which we relegate to the appendix.

9.4 Complexity lower bounds

In order to facilitate our lower bound proofs in this section, we shall define a 2-player

game, calledthe buffer game, which we shall prove to bePSPACE-complete. First, let

LDIV be the set of quantifier-freeL-formulas in 3-CNF (i.e. in CNF and each clause

has exactly three literals) with one free variablex, whose atomic propositions are of the

form x≡ 0 (mod p) wherep is a prime number. The buffer game is played by Player

∃ and Player∀. An arena of the buffer game is a tuple(v,k,ϕ), wherev is a finite

and strictly increasing sequence of positive integers,k is the number of integers inv,

andϕ a formula ofLDIV . The buffer game with arena(v,k,ϕ), wherev = (v1, . . . ,vk),

hask+1 rounds and is played as follows. Each roundr defines apositivenumbermr ,

which represents the current buffer value. At round 0, Player ∃ chooses a numberm0

to be written to the buffer. Suppose that 0< r ≤ k, andm0, . . . ,mr−1 are the buffer

values chosen from the previous rounds. At even (resp. odd) roundr, Player∃ (resp.

Player∀) rewrites the buffer by a numbermr ≥mr−1 of his choosing such thatmr ≡
mr−1 (mod ∏vr

j=1 p j), i.e.,mr = mr−1+c
(

∏vr
j=1 p j

)
for somec∈N. In particular, by

Chinese remainder theorem, this condition implies that, for each 1≤ j ≤ vr , p j |mr iff

p j |mr−1. In other words, each player is not allowed to “overwrite” some divisibility

information in the buffer. Player∃ wins if 〈N,+〉 |= ϕ(mk). Otherwise, Player∀ wins.

The problemBUFFER is defined as follows: given an arena(v,k,ϕ) of the buffer game,

whereeach number is represented in unary, decide whether Player∃ has a winning

strategy. For eachn∈ N, we define the problemBUFFERn to be the restriction of the

problemBUFFER which takes only an input arena of the form(v,n,ϕ).

Lemma 9.4.1 The problemBUFFER is PSPACE-complete. The problemBUFFERk is

Σp
k+1-complete.

Loosely speaking, by applying Gödel encoding (see Section8.6 for its definition)

one can encode each truth valuation for boolean formulas into a number. Therefore,

boolean formulas can be reduced to statements about divisibility. Furthermore, ablock
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of ∃ (resp.∀) quantifers in a quantified boolean formula can be reduced into a choice

of number at a single round in the buffer game for Player∃ (resp. Player∀). The proof

of Lemma 9.4.1 can be found in the appendix.

We now use the buffer game to prove our first lower bound resultfor the problem

of model checking OCPs.

Proposition 9.4.2 Combined complexity ofFO
2(Reach) on OCPs isPSPACE-hard.

For every k∈ N, there is a fixed formulaϕk of FO
2(Reach) with k+c quantifier alter-

nations, for some small constant c∈ N, such that checkingϕk over OCPs isΣp
k-hard.

To prove this theorem, we first state a standard lemma, whose proof can be found in

[JKMS04] (similar proof techniques have been used earlier in [Kuc00], and were also

used in our lower bound proofs in the previous chapter).

Lemma 9.4.3 Given aLDIV -formulaϕ, we can compute in polynomial time an OCP

P with a fixed setΓ of action symbols and an initial state qI such that, for each positive

integer m, it is the case thatSP ,(qI ,m) |= α iff 〈N,+〉 |= ϕ(m), whereα is a small fixed

EF formula.

The crucial idea in the proof of the above lemma is that both divisibility and indivisi-

bility tests of the formp|x or p6 |x can be reduced to a certain reachability question for

an appropriate OCPP by embedding a cycle of lengthp in P .

Proof sketch of Proposition 9.4.2. We give a poly-time reduction fromBUFFER. Given

an arenaA = (v,k,ϕ), we compute anFO
2(Reach) sentenceϕ′, and a OCPP =

(Q,δ0,δ>0) such that Player∃ has a winning strategy inA iff SP |= ϕ′. Let v =

(v1, . . . ,vk). As we shall see,ϕ′ depends only onk and has quantifier rankk+ c for

some small constantc∈N, which by Lemma 9.4.1 will prove the desired lower bound

for data complexity.

We now run the algorithm given by Lemma 9.4.3 on inputϕ to compute a OCP

P1 = (D,δ1
0,δ

1
>0) with initial stateqI ∈D. The key now is to build on top ofP1 and the

fixed formulaα (which can be thought of as anFO
2(Reach) formula) so as to encode

the initial guessing of numbers.

The structure of our output OCPP can be visualized as

B0→ B1 . . .→ Bk→ P1.
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Figure 9.1: The s→∗ t path-weights in this graph equals (1+ 2N)∪ (1+ 3N)∪ (2+

3N)∪Z<0.

The numberk+1 of blocksBi in P corresponds to the number of rounds played in the

buffer game. The initial state is in blockB0. Our outputFO
2(Reach) formula will have

k+ 1 leading (alternating) quantifiers so as to ensure that eachplayer moves in their

designated rounds. One variable will be used for storing thelast buffer value from the

previous round, while the other is used for storing the buffer value after the designated

player has made his move. We now describe how to ensure that ateach roundi (i > 0)

the player can only add numbers that are in the setHi := {c
(

∏vi
j=1 p j

)
: c∈N}. Define

the functiong : Z>0→ Z>0 asg(s) := ∏s
j=1 p j . Note thatg grows exponentially ins,

which is why we cannot simply embed a cycle of lengthg(vi) in Bi, for eachi ∈ [1,k].

On the other hand, notice thatHi is Z−Li , whereLi :=
(

S

1≤ j≤vi

S

a∈(0,p j) a+Np j

)
∪

Z<0.

In turn,Li can be characterized as the set of weights of paths in a small finite graph

Gi from a vertexs to a vertext, where theweightof a path is the sum of the weights

of its edges (which we shall allow to be only either -1,0, or 1). In fact, Gi will have

O(Σvi
j=1p j) vertices, which is polynomial invi . For example, the set(1+ 2N)∪ (1+

3N)∪(2+3N)∪Z<0 corresponds to the weights ofs→∗ t paths in the graph in Figure

9.1.

Furthermore, the graphGi can be thought of as an OCP. Adding the self-loop tran-

sitions(s,loops,s,0) and(t,loopt , t,0) on statess andt, the binary relation

{((s,a),(t,a+b)) : b∈Hi}

can then be expressed inFO
2(Reach) as¬(x→∗ y)∧Eloops(x,x)∧Eloopt (y,y). There-

fore, we shall embed the modified OCPGi into Bi , wheret will be the entry state for

blockBi+1 of P . [Bk+1 shall be interpreted asP1.]

Finally, using this idea, it is not difficult to compute the desiredFO
2(Reach) sen-

tence by mimicking thek+ 1 rounds of the game by using at mostk+ c alternating

quantifiers (using only the variablesx andy). The end buffer valuem, which needs to
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be checked againstϕ, can be checked againstα instead.2

We can also apply Lemma 9.4.1 to prove the following lower bound.

Proposition 9.4.4 The combined complexity of model checkingEF-logic over an asyn-

chronous product of two one-counter processes isPSPACE-hard.

The proof of this lower bound is given in the appendix. Intuitively, instead of simu-

lating each alternation in the buffer game as values in the two variablesx andy, we

can simulate them as values in two different counters. We canmake sure that the

divisibility information is not “overwritten” by encodingit as a non-fixed formula.

We saw in the previous section that the expression complexity of FO
2(Reach) over

ΠOCP is inP. In contrast, we can show that this is not the case forFO
4(Reach) even

over OCPs (without products).

Proposition 9.4.5 The expression complexity ofFO
4(Reach) (without equality rela-

tion) over OCPs isPSPACE-hard.

The fixed graph is in fact〈N,<〉. The proof, which is given in the appendix, adapts

the technique in [GS05] of succinctly encoding addition arithmetic on large numbers

using the successor relations and linear order< with only four variables.

We already saw that the data complexity ofEF-logic overΠOCP isPNP. In con-

trast, we can show the following proposition.

Proposition 9.4.6 For each k∈ N, there is a fixedEFS-logic formula ϕk such that

model checkingϕk overΠOCPis Σp
k-hard.

Intuitively, by using the synchronization constraints, one can faithfully simulate two

variablesx andy in any givenFO
2(Reach) formula as values of two different counters.

Again this proof is given in the appendix. This idea can easily be adapted for showing

the following proposition by appealing to Proposition 9.4.5.

Proposition 9.4.7 The expression complexity ofEFS-logic over ΠOCP is hard for

PSPACE.
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Chapter 10

Conclusions and Future work

In this thesis, we have presented several generic and specific techniques for deriving

decidability for infinite-state model checking with optimal or near-optimal complexity.

This chapter will conclude the thesis with a brief summary ofthe main results we have

obtained in this thesis and some future work.

Summary

We first recapitulate the generic techniques that we have given in this thesis. We adopt

word/tree automatic transition systems as our generic framework for modeling infinite-

state systems. These classes of systems strike a good balance between expressive

power and closure/algorithmic properties. The expressivepower of this framework

easily yields undecidability even for simple safety properties. Nevertheless, we have

obtained several algorithmic metatheorems for showing decidability (with optimal or

near-optimal complexity) for various model checking problems over these frameworks.

More importantly, we have shown that these algorithmic metatheorems can be used to

uniformly prove many known or previously not known decidability results with op-

timal (or near-optimal) complexity. Our algorithmic metatheorems are for recurrent

reachability (possibly with generalized Büchi conditions), model checking LTL (or

fragments thereof) with multi-regular fairness constraints, and extensions of first-order

logic with reachability and extended recurrent reachability operators. Our algorithmic

metatheorems can be used to obtain decidability for (among others) pushdown sys-

tems, prefix-recognizable systems, regular ground-tree rewrite systems, PA-processes,

order-2 collapsible pushdown systems, reversal-bounded counter systems (and their

extensions with discrete clocks), and many subclasses of Petri nets. For most of these,

we have been able to derive optimal or near-optimal complexity.

219
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We now summarize the specific techniques that we have presented in the second

part of this thesis. Most of these techniques are specific forsubclasses of counter

systems. In particular, we considered reversal-bounded counter systems (and their ex-

tensions with discrete clocks) and one-counter processes.For reversal-bounded conter

systems (and extensions thereof), we provide a new algorithm for computing Parikh

images of NWAs as semilinear sets with optimal complexity, which we then use to-

gether with Ibarra’s algorithm [Iba78] to obtain an optimalalgorithm for computing

the reachability relations of such systems. Together with the algorithmic metathe-

orem from Part I, we obtain an optimal complexity for LTL model checking with

multi-regular fairness constraints over reversal-bounded counter systems with discrete

clocks. We also provide a kind of fixed-parameter tractability result for model check-

ing EF-logic over reversal-bounded counter systems. For one-counter processes and

networks of one-counter processes, we obtain optimal complexity by providing three

new fragments of Presburger Arithmetic with better complexity ranging fromPNP to

PSPACE. We have provided optimal complexity for nearly all model checking prob-

lems over these subclasses of counter systems that we considered.

Future work

We close this thesis by several future research directions:

• Is it possible to develop semi-algorithms for computing reachability relations

over word/tree automatic systems with natural and general criteria for com-

pleteness?Recall that reachability for many subclasses of Petri nets and counter

systems can be solved byonesemi-algorithm given in [BFLS05, LS05a] for the

class of linear counter systems. In contrast, each of the upper bound that we

derive using our algorithmic metatheorems requires the useof a specific known

result for computing reachability relations for a specific class of systems. Such

a semi-algorithm, if exists, will enable us to perform logicmodel checking over

many classes of infinite-state systems in auniformway.

• Can our algorithmic metatheorems be extended toω-automatic transition sys-

tems?As we have mentioned, this class subsumes interesting classes of infinite-

state systems including real-timed systems. Furthermore,semi-algorithms for

computing a subclass ofω-automatic systems have also been developed [BLW03,

BLW09]. However, this problem appears to be rather difficultowing to its con-
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nection with the open problem on Ramseyan quantifiers overω-automatic struc-

tures (cf. [Bar07, BGR10, Rub08] for more details).

• Develop new algorithmic metatheorems with better complexity over Presburger-

definable systems.Our algorithmic metatheorems cannot be used to give optimal

complexity for LTL model checking over subclasses of counter systems. For

example, LTL model checking over one-counter processes isPSPACE-complete,

while our technique only yieldsEXP upper bound. Restricting to Presburger-

definable systems (i.e. a subclass of word automatic systems) could potentially

lead to better complexity.

• Obtain algorithmic metatheorems for branching-time logicmodel checking with

good complexity.As we saw, the approach that we develop in this thesis can

only give nonelementary upper bounds for branching-time logic model check-

ing. This is in contrast to the complexity for pushdown systems or one-counter

processes which are withinEXP. The challenge is to obtain sufficiently general

metatheorems but still with good complexity.

• Give extensions of the normal form theorem for Parikh imagesof NWAs, e.g.

to one-counter automata.As saw in Chapter 7, our normal form theorem for

Parikh images of NWAs cannot be extended to context-free grammars. There

are, however, subclasses of pushdown automata to which our normal form theo-

rem could extend. In particular, an extension to one-counter automata will imply

that our exponential time complexity for LTL model checkingover reversal-

bounded counter systems with discrete clocks also extend tothe case when one

of the counter in the system is free.
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Appendix A

Proofs from Chapter 4

A.1 Proposition 4.1.5 implies necessity in Lemma 4.1.4

We now complete the proof of necessity in Lemma 4.1.4 by inductively constructing

the desired sequences{αi}i∈N and{βi}i∈N by using Proposition 4.1.5 at every induc-

tion step. In the following, a sequence{ηi}i∈N of paths ofA is said to begood if

η0(0) = q0 and last(ηi) = first(ηi+1) for all i ∈ N. In other words, the sequence of

paths is good if they can be concatenated to form a run inA . The same notion can

similarly be defined for sequences of paths ofR . So, given a wordv ∈ Σ∗, suppose

thatv∈Rec։(L(A)) = CHAIN (L(A),L(R )).

Claim. There exist two sequences{αi}i≥0 and{βi}i≥0 of words, a good sequence

{ηi}i≥0 of paths ofA , and a good sequence{θi}i≥0 of paths ofR such thatα0 = v,

η0 = q0, θ0 = q′0, and for allk∈N:

1. for all 0< i ≤ k, |αi|> 0,

2. for all 0≤ i < k, |βi|= |αi |,

3. for all 0≤ i ≤ k, πi := η0⊙ . . .⊙ηi is a run ofA on β0 . . .βi−1,

4. for all 0≤ i ≤ k, π′i := θ0⊙ . . .⊙θi is a run ofR on (β0⊗β0) . . .(βi−1⊗βi−1),

5. for all 0< i ≤ k, A acceptsαi from qi , whereqi = last(πi),

6. for all 0≤ i < k, R acceptsαi⊗βiαi+1 from q′i , whereq′i = last(π′i),

7. for all 0≤ i ≤ k, αi ∈ CHAIN (L(Aqi),L(R q′i )), whereqi = last(πi) andq′i =

last(π′i).

245
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Observe that this claim immediately implies Lemma 4.1.4 as we may simply define

π = η0⊙η1⊙ . . . andπ′ = θ0⊙ θ1⊙ . . .. To prove this claim, we shall define these

four sequences inductively. For eachk ∈ N, we shall define four partial sequences

{αi}0≤i≤k, {βi}0≤i<k, {ηi}0≤i≤k, and{θi}0≤i≤k satisfying the conditions in the claim.

We shall first deal with the base casek = 0. We defineα0 = v, η0 = q0, andθ0 = q′0.

It is easy to see that statements (1),(2),(5), and (6) are vacuous. Statements (3)–(4)

are also true becauseq0 (resp.q′0) is a run ofA (resp.R ) on ε. Statement (7) is true

by assumption thatv ∈ CHAIN (L(A),L(R )). Assume now thatk > 0 and the four

partial sequences have been defined satisfying the seven conditions in the claim for

all natural numbers up tok. We shall now extend these partial sequences by defining

αk+1, βk, ηk+1, andθk+1. By induction, we haveαk ∈ CHAIN (L(Aqk),L(R q′k)) and

so Proposition 4.1.5 gives us a wordv′v′′. We may setβk = v′ andαk+1 = v′′. It is

immediate that condition (1) and (2) are satisfied. We defineηk+1 to be the prefix of

length |v′| of the runρ of Aqk on v′v′′ given by Proposition 4.1.5. We defineθk+1

to be the runρ′ of R q′k of length |v′| given by Proposition 4.1.5. It is easy to see

now that condition (3)–(5) hold wheneveri = k+ 1 and condition (6) hold whenever

i = k. Proposition 4.1.5 also implies thatαk+1 ∈ CHAIN (L(Aqk+1),L(R q′k+1)), where

qk+1 := last(ρk+1) andq′k+1 := last(ρ′k+1). Finally, conditions (3)–(7) hold for other

smaller values ofi by induction. This completes our proof for the claim and therefore

the proof of Lemma 4.1.4.

A.2 Proof of Lemma 4.2.2

Suppose thatT1 = (D1,τ1) andT2 = (D2,τ2). Let us first prove existence. The context

treeT = (D,τ) is defined as follows. Let

D = (D1∩D2)∪{vi ∈D1\D2 : i ∈ ϒ,v∈D2}.

In other words, the tree domainD contains all nodes that are both inD1 andD2 and

additionally the children of the nodesv∈D1∩D2 with respect to the treeT1 but which

do not belong toD2. The node labelingτ is defined as follows: for eachv∈ D1∩D2,

τ(v) := τ1(v); for other nodesu1, . . . ,un∈D1\D2, we assignτ(ui) := xi . It is clear that

both conditions are satisfied.

To prove uniqueness, consider another context treeT ′ = (D′,τ′) satisfying the two

prescribed conditions. We shall now prove thatT = T ′ up to relabeling of the context

leaves. We first show thatD = D′. To showD′ ⊆ D, observe that condition (2) implies
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thatD′ ⊆D1. Let v∈D′. If v∈D2, then we are done; otherwise, condition (1) implies

thatv must be a context leaf inT ′ of the formui for someu ∈ D2 and i ∈ ϒ. In any

case, we havev ∈ D. Conversely, we also haveD ⊆ D′. To see this, observe that

D1∩D2⊆D′; for, otherwise, ifu∈D1∩D2 such thatu /∈D′ andv is the longest prefix

of u satisfyingv∈D1∩D2∩D′ (which must exist sinceε ∈D′), both conditions imply

that v is a context leaf but then condition (1) implies thatv /∈ D2, which results in a

contradiction. Furthermore, each nodevi ∈ D1 \D2 such thati ∈ ϒ andv∈ D2 must

be inD′ as a context leaf inT ′ by condition (2). Finally, we note that this proof also

implies that the context leaves ofT are precisely the context leaves ofT ′. Therefore,τ
andτ′ coincide except when evaluated on the context leaves. This completes the proof

of uniqueness.

A.3 Proof of Proposition 4.3.4

The proof is via a reduction from the nonemptiness problem for language intersections

of DWAs, which isPSPACE-complete [GJ79]. More precisely, the problem is to decide

whether, given DWAsA1, . . . ,An over some alphabetΣ, the languageL(A1)∩ . . .∩
L(An) is nonempty.

The proof is rather simple. From the input automataA1, . . . ,An, we construct a PDS

which simply guesses a wordw∈ Σ∗ which witnesses the intersection of the languages

L(A1), . . . ,L(An). More precisely, letP = (ACT,Γ,Q,δ) be the PDS defined as:

• ACT = {α},

• Γ = Σ∪{⊥},

• Q = {q1,q2},

• δ = {((q1,α,a),(q1,ab)) : a∈ Γ,b∈ Σ}∪{(q,α,a),(q2,a)) : q∈Q,a∈ Γ}.

For eachAi , let Bi be the DWA that recognizes the language{q2⊥ w : w∈ L(Ai)}. It

is easy to see that eachBi can be constructed in polynomial time. Observe now that
Tn

i=1L(Ai) 6= /0 iff q1 ⊥∈ Rec(L(B1), . . . ,L(Bn)). This is becauseeveryinfinite run

from q1 ⊥ in the transition systemSP generated byP that visitsL(B1), . . . ,L(Bn)

infinitely often must eventually self-loop at some configuration of the formq2 ⊥ w

for some wordw ∈ Σ∗. Conversely, the existence of a witness wordw ∈ Tn
i=1L(Ai)

implies the existence of a run inSP from q1 ⊥ which visitsq2 ⊥ w, which then self-

loops forever.
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A.4 Proof of Proposition 4.3.7

The proof is via a reduction from the nonemptiness problem for language intersections

of NTAs, which isEXP-complete [CDG+07]. More precisely, the problem is to decide

whether, given NTAsA1, . . . ,An over TREE2(Σ), the languageL(A1)∩ . . .∩L(An) is

nonempty.

The polynomial-time reduction is very similar to the proof of Proposition 4.3.4,

and hence we shall only sketch it. We shall construct a GTRSP over TREE2(Σ′),
whereΣ′ is the union ofΣ with a set containing a special “guessing” node labelq1,

and a special “sink” node labelq2. The GTRSP will start at a tree with only a single

node labeledq1, and “guesses” a treeT that witnesses nonemptiness of the language

intersection problem. At any given point, each leaf will either be labeledq1 or q2. We

will also have rules of the formq1→ q2 andq2→ q2. The input NTAsA1, . . . ,An

will be slightly modified by attaching leaf nodes labeledq2 to the leaves of each tree

recognized by these automata. The rest is identical to the proof of Proposition 4.3.4.



Appendix B

Proofs from Chapter 5

B.1 Proof of Proposition 5.4.6

We show that model checking the negations of LTLdet formulas over GTRS isNP-

hard. Our reduction is from the problem HAMPATH of testing whether there exists

a hamiltonian path in a directed graph. Suppose the input is agraphG = (V,E) with

verticesV = {1, . . . ,n} and edgesE ⊆V×V. Node labels for our trees in the output

GTRSP will draw from the setΣ := {X, root,eval}∪{1, . . .,n}. The initial treet0 to

be evaluated against the input LTLdet formula is the tree drawn in Figure B.1. We have

action labelsACT := {1, . . . ,n}∪{eval, f in}. We now describe the transition rule of

P . For eachi ∈ {1, . . . ,n}, we have a ruleX→i i. For each directed edge(u,v)∈E, we

have a transition ruleeval(u,v)→eval u, whereeval(u,v) is a notation for the tree with

three nodes with root labeledeval, left child labeledu, and right child labeledv. For

eachi ∈ {1, . . . ,n}, we also have a transition ruleroot(i)→ f in root(i), whereroot(i)

is the tree with two nodes with root labeledroot and only child labeledi. Let ϕeval be

the formula

eval∧X(eval∧X(eval. . .∧X(eval∧ f in)))

where the number of evaln−1. Letϕ be the formula

1∧X(2. . .∧X(n∧Xϕeval)).

Claim B.1.1 (Λ(P ), t0) 6|= ¬ϕ iff G has a hamiltonian path.

It is not hard to see that the claim is true. A hamiltonian pathπ := i1, i2, . . . , in in G will

correspond to the treetπ where thejth leaf is “evaluated” asi j , and vice versa.

249
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X

root

eval

eval

eval

eval

X

X

X

Figure B.1: The initial tree t0 with n leaf nodes.

Finally, it is not hard to see that the negation ofϕ is an LTLdet formula (and can

be computed in poly-time). To show this, it suffices to show that the negation of

ψ := p∧X(ϕ) is an LTLdet formula, provided that¬ϕ is an LTLdet formula. In fact, if

p∈ ACT, the formulaψ is equivalent top∧ (¬p∨X(ϕ)), and hence¬ψ is equivalent

to¬p∨ (p∧X(¬ϕ)) which is an LTLdet (since¬ϕ is an LTLdet formula).



Appendix C

Proofs from Chapter 7

C.1 Proof of Fact 7.3.3

The proof is by induction on the length|π| of the pathπ. Whenever|π|= 0 (it contains

only a single state), we may then takeπ′ = π and seth = 0. Then, we haveP (π) =

P (π′)+∑h
i=1 P (Ci). Suppose that Fact 7.3.3 holds for all paths up to lengthk−1≥ 0.

We shall now show that it also holds for all paths of lengthk. Let π be a path of

lengthk. If π is simple, then we may setπ′ := π andh := 0, and the proof is complete.

Therefore, assume thatπ is not simple and letπ = p0 . . . pk, wherep0 = q andpk = q′.

Let i ≥ 0 be any index such that the statepi appears inπ more than once, say, atpi and

p j . Then, consider the path

π1 := p0p1 . . . pi−1pi p j+1p j+2 . . . pk

of length strictly smaller thank that is obtained by removing the segmentπ[i + 1, j]

from π. We will now apply the induction hypothesis twice. Firstly,applying the in-

duction hypothesis on the pathπ1, we obtain a simple pathπ′ and finitely many simple

cyclesC1, . . . ,Ch possibly with duplicates such that

P (π1) = P (π′)+
h

∑
i=1

P (Ci).

We now apply the induction hypothesis again on the pathπ[i +1, j] from pi to p j that

is of length smaller thank yielding a simple pathpi of length 0 (sincepi = p j ) and

finitely many simple cyclesC′1, . . . ,C
′
r such that

P (π[i +1, j]) = P (pi)+
r

∑
i=1

P (C′i ) =
r

∑
i=1

P (C′i ).
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This clearly implies that

P (π) = P (π′)+
h

∑
i=1

P (Ci)+
r

∑
j=1

P (C′j),

which extends the validity of Fact 7.3.3 to valuek. Therefore, by mathematical induc-

tion, Fact 7.3.3 holds for all values ofk, which completes the proof.

C.2 Proof of Lemma 7.3.5

We only show that if theMv[ j,h] = 1, then so is the( j,h)-component of the matrix

on the r.h.s. The converse can be proved by observing that allthe steps below can be

easily reversed.

Let s= 1+Σk
i=1r i. Suppose thatπ = ql0b1ql1 . . .bsqls is a path fromq j to qh with

P (π) = v. Thus, we havel0 = j andls = h. We now decomposeπ as follows. Lett be

the first position where the letterai occurs inπ, i.e.,bt = ai andbt ′ 6= ai for all t ′ < t.

Let π1 := ql0b1 . . .qlt−1, π2 := qlt−1btqlt , andπ3 := qlt bt+1 . . .qls. Let u := P (π1) and

w := P (π3). Notice that theith entry ofu is 0 andw = v−ei −u. Furthermore, we

haveMu[ j, lt−1] = Mei [lt−1, lt ] = Mw[lt,h] = 1. It follows that the( j,h)-component of

the matrixMu •Mei •Mw is 1.

C.3 Proof of Lemma 7.3.6

This can be done using Lemma 7.3.5 and dynamic programming. The algorithm has

n+1 stages. At stagej = 0, . . . ,n, we compute allMv where the components inv sum

up to j. These will be saved in the memory for subsequent stages of the iteration. As

base cases, we would obtainM0 andMei , for each 1≤ i ≤ k, directly from the input.

Notice that boolean matrix multiplication can be done inO(n3) and so each stage of

the computation can be performed inO(n2k+4). Thus, the entire computation runs in

time 2O(k logn).

C.4 Proof of Proposition 7.3.10

The automatonAn = (Σn,Qn,δn,q0,qF), where

Qn = {q0,qF}∪{p0, . . . , pn}∪{p′1, . . . , p′n},
Σn = {a,b,c}∪{ai,a

′
i : 1≤ i ≤ n}.
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Figure C.1: A depiction of the DWA An

We specify the transition functionδn in Figure C.1. Notice thatAn has an equivalent

regular expressionen of sizeO(n). For example, whenn = 2, we can defineen to be

b(a(a1(a
′
1)
∗c|aa2(a

′
2)
∗c))∗b.

We now argue that thea-component of somevi must be at leastn(n+1)/2. Letm

be the maximum entry over all vectors in
Sr

i=1Si . Define

N :=

(
max{|Si| : 1≤ i ≤ r}n(n+1)

2
m

)
+1.

For each 1≤ i ≤ n, let Ci be the cyclep0ap1a. . . piai p′i(a
′
i p
′
i)

Ncp0. Consider the ac-

cepting pathπ = (q0bp0)⊙C1⊙C2⊙·· ·⊙Cn⊙ (p0bqF). We haveP (π) ∈ P(vh;Sh)

for some 1≤ h≤ r. Observe also thata occurs preciselyΣn
i=1i = n(n+1)/2 times in

π.

Claim C.4.1 Each a′i-component ofvh (1≤ i ≤ n) is nonzero.

We now prove this claim. LetSh = {u1, . . . ,us} and P (π) = vh + Σs
i=1tiui . For

eachi ∈ {1, . . . ,n}, there exists a vectoru j i with a positivea′j -component andt j i >

n(n+ 1)/2; for, otherwise, thea′j -component ofP (π) is at most|Sh|n(n+1)
2 m< N, a

contradiction. In particular, this implies that allα-component ofu j i , whereα 6= a′i for
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all i ∈ {1, . . . ,n}, is 0 as each such letterα occurs at mostn(n+1)/2 times inπ. But

this means that eachai-component ofvh is nonzero; for, otherwise, we could consider

the vectorvh + u j i which would not correspond to any accepting path inAn since at

least one letterai needs to read byAn if a′i is to occur in the path. This proves our

claim.

Now consider each wordw = w0 . . .wl ∈ L(An) such thatP (w) = vh. It is easy to

see that the number of occurences ofa in w must be at leastn(n+ 1)/2. In fact, for

every 1≤ i ≤ n, define j i = min{ j : w j = ai}. For eachi, the number of occurences of

a in wt . . .w j i , wheret = max{ j i′ : j i′ < j i ,1≤ i′ ≤ n}, is at leasti. The lower bound of

n(n+1)/2 on the number of occurences ofa in w immediately follows.

C.5 Proof of Proposition 7.4.2

DWA

We now give a poly-time reduction from the hamiltonian path problem to membership

problem for Parikh images of DWAs. The hamiltonian path problem asks whether a

given graphG = 〈V = {v1, . . . ,vn},E〉 has a hamiltonian path fromv1 to vn, i.e., a

path fromv1 to vn in G that visits each vertex inV exactlyonce. GivenG, we define

the DWA AG = (Σ,Q,δ,q0,qF) whereQ := V, Σ := {a1, . . . ,an}, q0 := v1, qF := vn,

andδ := {(vi,a j ,v j) : (vi ,v j) ∈ E}. Then, it is easy to see thatG has a hamiltonian

path fromv1 to vn iff the Parikh imageP (a1 . . .an) of the worda1 . . .an is in P (AG) iff

(0,1,1, . . . ,1) ∈ P (AG). This completes the proof of NP-hardness of the membership

problem for Parikh images of DWAs with unbounded alphabet size.

Regular expressions

One-in-three 3SATis the following problem: given a boolean formulaϕ in 3-CNF,

does there exist a satisfying assignment forϕ that additionally makes no more than

one literal true for each clause. We shall call such an satisfying assignment1-in-3.

This problem is NP-complete (cf. see [GJ79]). We shall reduce this problem to the

membership problem for Parikh images of regular expressions. Givenϕ =C1∧ . . .∧Ck,

whereCi is a multiset overL := {x1,¬x1 . . . ,xn,¬xn}with |Ci|= 3, we define a function

f : L→{1, . . . ,k}∗ as follows:

• f (xi) := a1 . . .ak whereai := i if xi ∈Cj , andai := ε otherwise.
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• f (¬xi) := a1 . . .ak whereai := i if ¬xi ∈Cj , andai := ε otherwise.

That is, the functionf associates a literal with the indices of clauses that are satisfied

when the value 1 is assigned to the literal. The corresponding regular expression over

Σ = {1, . . . ,k} is

eϕ = ( f (x1)| f (¬x1)) . . .( f (xn)| f (¬xn)).

Let 1 ∈ {1}k. We claim thatϕ is a positive instance of one-in-three 3SAT iff1 ∈
P (L(eϕ)). To prove this, suppose thatϕ is a positive instance with a 1-in-3 satisfying

assignmentσ : L→ {0,1} (i.e. σ(xi) = 1 iff σ(¬xi) = 0). Consider the wordw :=

X1 . . .Xn ∈ Σ∗, where

Xi :=

{
f (xi) if σ(xi) = 1,

f (¬xi) if σ(xi) = 0.

Observe thatw ∈ L(eϕ). Sinceσ is a 1-in-3 satisfying assignment, it follows that

P (w) = 1 and, therefore, we have1∈ P (L(eϕ)). The converse direction can be proved

by reversing the above construction of the wordw. Finally, observe that the construc-

tion of eϕ and1 can be done in time polynomial in the size ofϕ.

C.6 Proof of Proposition 7.5.7

This result is almost immediate from the undecidability of the emptiness problem for

deterministic 0-reversal 3-counter systems thatmay test equality of the current values

of two counters[ISD+02]. More precisely, such a counter system is of the formM =

(ACT,X,Q,∆) with X = {x,y,z} and instructions((q,ϕ(X)),a,(q′, i1, . . . , ik)) of the

form:

• for eachj ≥ 1, i j ≥ 0, and

• ϕ(X) is the (guard) Presburger formulaz∼ x or z∼ y, where∼ is either= or 6=.

The semantics is similar to the usual notion of counter systems. For example, if the

instruction has a guard formulaz = x, the machine simply tests whether the current

values held by these variables coincide and then the instructions can be executed if the

test was successful. Theemptiness problemcorresponds to the problem of deciding

whether the configuration(q0,0,0,0) of M , whereq0 ∈ Q is a designated initial state

of M , may reach a designated final stateqF ∈Q.

We now give the reduction. On an input counter systemM of the above form, our

new counter systemM ′ = (ACT′,X,Q′,∆′) will be 1-reversal and not have comparison
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tests between the values of two different counters. Intuitively, when simulating an

instruction inM of the form((q,α∼ β),a,(q′, i1, i2, i3)), the new counter systemM ′

will move from the stateq to the intermediate state(q,α ∼ β) and then move to the

stateq′ while modifying the counters usingi1, i2, i3 and ignoring the testα ∼ β. Our

CTL formula will later take care of the testα ∼ β using one extra reversal. More

precisely, the new counter systemM ′ = (ACT′,X,Q′,∆′) is defined as follows:

• ACT′ = {⋆,⊖,success},

• X = {x,y,z},

• Q′ is a union ofQ, {(q,ϕ(X)) : q ∈ Q, andϕ is a guard formula inM }, and

{(test,ϕ(X)) : ϕ is a guard formula inM }, wheretest is a new state (i.e. does

not occur inQ), and

• ∆′ contains instructions of the form:

– ((qF ,⊤),success,(qF ,0,0,0)).

– ((q,⊤),⊖,((q,ϕ),0,0,0)), if there is an instruction inM of the form

((q,ϕ),a,(q′, i1, i2, i3)).

– (((q,ϕ),⊤),⊖,(q′, i1, i2, i3)), if there is an instruction inM of the form

((q,ϕ),a,(q′, i1, i2, i3)).

– (((q,ϕ),⊤),⊖,((test,ϕ),0,0,0)).

– (test,α ∼ β) may loop on the same state with the action⊖ while decre-

mentingα andβ by 1.

– (test,α = β) may test whetherα = 0 andβ = 0 and loop on the same state

with the action⋆ without modifying the counters.

– (test,α∼ β) may test whetherα = 0 andβ > 0 (or α > 0 andβ = 0) and

loop on the same state with the action⋆ without modifying the counters.

The desired CTL formula is

θ = E(〈⊖〉(
_

ϕ
(test,ϕ)→ EF⋆) U success),

whereϕ is eitherx∼ zor y∼ z, where∼ is either= or 6=. The formula makes sure that

each guess made by the counter system regarding the comparison tests between values

of counters is correct. It is easy to check thatSM ′,(q,0,0,0) |= θ iff 〈M ,q0,qF〉 is a

positive instance of the original problem. This completes the reduction.
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Proofs from Chapter 8

D.1 Proof of Lemma 8.2.2

Let α = (αi)i∈[l ] be an extended MMA formula. Define the set of(possibly) in-

voked pairs P⊆ [l ]×Z to be the set{(i, j) : i ∈ [l ], j ∈ [−l + i, l − i]} ⊆ [l ]× [−l , l ].

Now associate the setP with the usual lexicographic ordering≺Z×Z for Z×Z (i.e.

(x,y)≺Z×Z (x′,y′) iff (1) x < x′, or x = x′ andy < y′). We will now construct a MMA

formula

β = (β(i,d))(i,d)∈P

such that

[[β(i,d)]] = {x∈ N | x+d≥ 0 ∧ x+d ∈ [[αi]]} (∗)

for each(i,d) ∈ P.

Recall that we identify a dag([l ],≺α) with α and its corresponding strict partial

order≺+
α . In the following, we will give the definition ofβ(i,d) and directly prove that

equation(∗) holds, for each(i,d)∈P by induction oni with respect to≺+
α . The lemma

will follow from the latter, since we will have[[α]] = [[αl ]]
(∗)
= [[β(l ,0)]] = [[β]].

For convenience, we will allow formulas of the form∼ −k for positive integerk.

Such formulas, which arestrictly speakingnot MMA formulas by definition, serve

only as abbreviations. In particular, we can replace abbreviation≤−k by¬(≥ 0) (not

satisfied by allk ∈ N) and≥ −k by the formula≥ 0 (satisfied by allk ∈ N). For the

induction base, assumei is minimal with respect to≺+
α . Take anyd∈ [−l , l ] satisfying

(i,d) ∈ P.

• In caseαi = (≡m modn) for somem,n∈ N. Let ν = (m−d) modn. Then,

257
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we put

β(i,d) = (≥−d)∧ (≡ ν modn).

It is obvious to see that equation(∗) holds for(i,d).

• In caseαi = (∼ n), where∼∈ {≤,≥} and wheren ∈ N. Define the integer

ν = n−d. Then we put

β(i,d) = (≥−d) ∧ (∼ ν).

Again, it is obvious to see that equation(∗) holds(i,d).

For the induction step, assumei is not minimal with respect to≺+
α . Take any

numberd ∈ [−l , l ] satisfying(i,d) ∈ P. Again, we make a case distinction according

to αi .

• Assumeαi = ¬α j for somej ∈ [i−1]. Then, we put

β(i,d) = (≥−d)∧ (¬β( j ,d)).

Observe that this is possible, since( j,d) ∈ P. By induction hypothesis, we have

[[β( j ,d)]] = {x∈N | x+d≥ 0∧x+d ∈ [[α j ]]}.

Hence,

[[¬β( j ,d)]] = {x∈N | x+d < 0∨x+d 6∈ [[α j ]]}

which equals

{x∈ N | x+d < 0∨x+d ∈ [[αi]]}.

The latter and the definition ofβ(i,d) yields that[[β(i,d)]] equals

{x∈ N | x+d≥ 0∧ (x+d < 0∨x+d ∈ [[αi]])}.

which equals

{x∈ N | x+d≥ 0∧x+d ∈ [[αi]]}.

delivering(∗) for (i,d) as required.

• Assumeαi = α j ∧αk for somej,k∈ [i−1]. Then we put

β(i,d) = β( j ,d)∧β(k,d).

Again, this is possible, since( j,d),(k,d) ∈ P. That equation(∗) holds for(i,d)

follows directly from induction hypothesis.
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• Assumeαi = n∼minα j for some∼∈ {≤,≥}, j ∈ [i−1], andn∈ N. Then, we

put

β(i,d) = (≥−d)∧n∼minβ( j ,0).

Then,(∗) is immediate by induction hypothesis.

• Assumeαi = n∼ max(α j ,n′) for some∼∈ {≤,≥}, j ∈ [i−1], andn,n′ ∈ N.

Then, we put

β(i,d) = (≥−d)∧n∼max(β( j ,0),n
′).

Then,(∗) is immediate by induction hypothesis.

• Assumeαi =∼minα j for some∼∈ {≤,≥} and for somej ∈ [i−1]. Then we

putβ(i,d) as

(≥−d∧d > minβ( j ,0)∧∼ −1) ∨

(≥−d∧d≤minβ( j ,0)∧∼minβ( j ,d)).

To see why this definition is correct, we first inspect the right hand side of the

equation(∗). Observe that for allk∈N, we havek+d∼ [[α j ]] andk+d≥ 0 iff

either of the following two statements hold: (1)k+d≥ 0, d > [[α j ]] andk∼−1,

or (2) k+d ≥ 0, d≤ [[α j ]], andk∼min[[α j ]]−d. This is clearly because for all

k∈N and a negative integerk′ we havek∼−1 iff k∼ k′. Our definition ofβ(i,d)

now implies that[[β(i,d)]] is a union of the set

{k∈ N : k+d≥ 0∧d > min[[β( j ,0)]]∧x∼−1}

and the set of allk∈ N such that

k+d≥ 0∧d≤min[[β( j ,0)]]∧k∼min[[β( j ,d)]].

By induction, we may assume that

[[β( j ,d)]] = {k∈ N : k+d≥ 0∧k+d ∈ [[α j ]]}.

Similarly, by induction, we have[[β( j ,0)]] = [[α j ]]. Furthermore, we have

min[[α j ]]−d = min{k−d ∈ Z : k∈ [[α j ]]}
= min{k∈ Z : k+d ∈ [[α j ]]}.

These imply that min[[α j ]]−d = [[β( j ,d)]] if min[[α j ]]≥ d. That(∗) holds is then

immediate.
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• αi =∼max(α j ,c) for some∼∈ {≤,≥}, j ∈ [i−1], and a constantc∈N. Then,

lettingν = c−d, we putβ(i,d) as

(≥−d∧d > max(β( j ,0),c)∧∼ −1) ∨

(≥−d∧d≤max(β( j ,0),c)∧∼max(β( j ,d),ν).

The proof is identical to the previous case.

• Assumeαi = α j −1 for somej ∈ [i−1]. Then we put

β(i,d) = β( j ,d+1).

Notice that( j,d + 1) ∈ P since j < i and(i,d) ∈ P. By induction hypothesis,

[[β( j ,d+1)]] equals

{x∈N | x+d+1≥ 0 ∧ x+d+1∈ [[α j ]]}.

which is equivalent to

{x∈N | x+d+1≥ 0 ∧ x+d ∈ [[α j −1]]}.

It follows now that[[β(i,d)]] equals

{x∈ N | x+d≥ 0 ∧ x+d ∈ [[αi]]}.

and thus(∗) follows for (i,d).

• Assumeαi = α j +1 for somej ∈ [i−1]. We put

β(i,d) = (≥−d) ∧ β( j ,d−1).

Notice that( j,d−1) ∈ P since j < i and(i,d) ∈ P. By induction hypothesis we

have that[[β( j ,d−1)]] is

{x∈N | x+d−1≥ 0 ∧ x+d−1∈ [[α j ]]}.

By definition ofβ(i,d) we have that

[[β(i,d)]] = {x∈N | x+d≥ 0 ∧ x∈ [[β( j ,d−1)]]}

which hence equals

{x∈N | x+d≥ 0∧x+d≥ 1∧x+d−1∈ [[α j ]]}

which equals

{x∈ N | x+d≥ 0∧x+d ∈ [[αi +1]]}

delivering(∗) for (i,d) as required.2
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D.2 Proof of Lemma 8.3.1

(1)⇒ (2): Follows trivially sinceP ′ is obtained fromP by addingλ-transitions.

(2)⇒ (3): Let π = s1→P ′ s2 · · · →P ′ sk be a path inS′P . Formally, we callπ normal-

izedif

s1 ↓P ′ · · · ↓P ′ si ↑P ′ · · · ↑P ′ sk

for somei ∈ [k]. We claim that every shortest path froms to t is normalized. To prove

the implication, assume, by contradiction, that there is a shortest pathπ = (q1,n1)→P ′

(q2,n2) · · · →P ′ (qk,nk) with s= (q1,n1) andt = (qk,nk) that is not normalized. Then

there exists a subpathρ

(qi ,ni) ↑P ′ (qi+1,ni+1) ↑P ′ · · · ↑P ′ (q j ,n j) ↓P ′ (q j+1,n j+1)

in π such thatni+1 = ni+2 = · · · = n j andni = n j+1 = n j + 1. If, on the one hand

i + 1 = j, then by rule (R2), it follows that(qi,ni)→P ′ (q j+1,n j+1) by which ρ can

be replaced, contradicting the minimality of|π|. On the other hand, ifi +1 < j, then

by successively applying rules (R1) and (R4), we obtain that(qi+1,ni+1)→P ′ (q j ,n j).

Finally, by applying rule (R3), we obtain that(qi ,ni)→P ′ (q j+1,n j+1) by whichρ can

be replaced, contradicting the minimality of|π|.
(3)⇒ (1): We prove that(q,n)→P ′ (q

′,n) for someq,q′ ∈ Q implies the existence

of a mountain path from(q,n) to (q′,n) in SP . For proving the implication, this is

sufficient sinceδ′0 (resp. δ′>0) only differs fromδ0 (resp. δ>0) by adding transitions

of the kind (q,λ,q′,0). So letn ∈ N be arbitrary and letδ′ = δ′0 (resp. δ = δ0) if

n = 0 andδ′ = δ′>0 (resp.δ = δ>0) if n > 0. We show that(q,λ,q′,0) ∈ δ′ implies the

existence of a mountain path from(q,n) to (q′,n) in SP by induction on the heighth

of the shortest proof tree for applying the rules (R1) to (R4)to deduce(q,λ,q′,0) ∈ δ′.
For the induction base, assumeh = 1. Then, there are two cases. Firstly, in case

we applied rule (R1), we have(q,a,q′,0) ∈ δ and thus clearly(q,n)→P (q′,n) is a

mountain path. Secondly, in case we applied rule (R2), we have (q,a1,q1,+1) ∈ δ
and(q1,a2,q′,−1) ∈ δ>0 for someq1 ∈ Q and somea1,a2 ∈ ACT. Hence(q,n)→P

(q,n+ 1)→P (q,n) is a mountain path inSP . For the induction step, firstly assume

some shortest proof tree of heighth > 1 witnessing(q,λ,q′,0) ∈ δ′ has rule (R3) at its

root. Then(q,a1,q1,+1) ∈ δ,(q1,λ,q2,0) ∈ δ′>0, and(q2,a2,q′,−1) ∈ δ>0 for some

q1,q2 ∈ Q and somea1,a2 ∈ ACT. By induction hypothesis, there exists a mountain

path from(q1,n+ 1) to (q2,n+ 1) in SP . Thus, inSP , we have a mountain path of

the kind

(q,n)→a1 (q1,n+1)→P (q2,n+1)→a2 (q′,n).
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Secondly, assume that some shortest proof tree witnessing(q,λ,q′,0)∈ δ′ has rule (R4)

at its root. Then(q,λ,q1,0) ∈ δ′ and(q1,λ,q′,0) ∈ δ′ for someq1 ∈ Q. By induction

hypothesis, there is a mountain path from(q,n) to (q1,n) and from(q1,n) to (q′,n) in

SP . Hence, there is a mountain path from(q,n) to (q′,n) in SP .

D.3 Proof of Lemma 8.3.3

By definition,∇(q1,q2) equals the minimald+1 such thatd∈∆>0
↓ (q1,q3)∩∆>0

↑ (q3,q2)

for someq3 ∈Q. By applying Lemma 8.3.2, we compute in polynomial time for each

q3 ∈Q the two unions arithmetic progressions
S{ai +biN | i ∈ [k]} (resp.

S{ci +diN |
i ∈ [l ]}) that equal∆>0

↓ (q1,q3) and (resp.∆>0
↑ (q3,q2)), where moreover withk, l ∈

O(|Q|2), ai ,c j ∈ O(|Q|2), andbi ,d j ∈ O(|Q|) for eachi ∈ [k] and eachj ∈ [l ]. Define

a = max{ai | i ∈ [k]}, b = max{bi | i ∈ [k]}, c = max{ci | i ∈ [l ]}, andd = max{di | i ∈
[l ]}. Thus, for eachq3, it boils down to computing

min
[

{ai +biN | i ∈ [k]}∩
[

{ci +diN | i ∈ [l ]}

which is easy, since it either equals∞ or it is less than or equal to

max{a,c}+b ·d

and hence is bounded byO(|Q|2).

D.4 Proof of Theorem 8.4.3

We shall now prove that, for every fixed one-counter processP = (Q,δ0,δ>0), the

following problem is inP: given a state(q,n) ∈Q×N, wheren is given in binary and

anEF dag-formulaϕ, decide whether(SP ,(q,n)) |= ϕ.

AssumeQ= {q1, . . . ,qk} andϕ = (ϕi)i∈[l ]. We directly refer to the translation pre-

sented earlier in this section that allows us to compute in polynomial time an extended

MMA dag-formulaα = (α(i, j))i∈[k]×[l ] such that[[α(i, j)]] = {n ∈ N | (SP ,(qi,n)) |=
ϕ j}. Note that in our translation, we liberately allowed the definitions α(i, j) to be

complex. It is straightforward to see that we can compute an equivalent formulaβ =

(βi)i∈[r], where the definitionsβi are not complex along with a mappingϕ : [k]× [l ]→
[r] such that[[α(i, j)]] = [[βϕ(i, j)]] for each(i, j) ∈ [k]× [l ]. Firstly, let us estimater. For

this, we look at the translation fromP andϕ to α more carefully. It will suffice to

estimate the definitionsα(i, j) whenϕ j = EFϕ j ′ for somej ′ ∈ [ j−1]. A simple analysis
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shows that rewriting the complex definitionα(i, j) in terms of non-complex definitions

requires an extended MMA formula oflength (not size) at most the product of the

following

• O(k) (disjunction over alli′ ∈ k),

• O(k) (disjunction over allq′′ ∈Q for eachβs(i, i′),s= 1,2,3), and

• O(k3) (disjunction over all arithmetic progressions in∆-sets determined either

by (qi,q′′) or by (q′′,qi′) with offsets bounded byO(k2) and periods bounded by

O(k).

Since there arek· l such pairs(i, j), we obtain thatr ∈O(l ·k6). One can easily observe

from the translation that all natural numbersn such that eitherx≡m modn or x∼ n

occurs in any definition ofβ is bounded byO(k2), since it is at mostn∇ plus the

maximal offset of any arithmetic progression that appears in any of the∆-sets. Since

k is fixed, we obtain thatLi is a constant for eachi ∈ [r]. Similarly, one verifies that

the largest offset that occurs inβ, that we denote bykβ, is also constantly bounded by

O(k2), since it is less than or equal to the maximal offset of any arithmetic progression

that appears in any of the∆-sets. Hence there is some constantc = c(P ) such that,

by Lemma 8.2.1, we can compute in polynomial time a thresholdti ≤ i · c+ νi and a

periodpi ≤ c such that for alln1,n2 > ti the following implication holds

n1≡ n2 modpi ⇒ (n1 ∈ [[βi]]⇔ n2 ∈ [[βi]])

for eachi ∈ [r]. Next, we aim at estimatingti for eachi ∈ [r]. A precise analysis of

the definition ofα shows that any constant that will occur in any definition inβi is less

than or equal toc plus the maximal periodicityp j of anyβ j with j ∈ [i−1]. Hence we

have

νi ≤max{t j +c | j ∈ [i−1]}

and

ti ≤ i ·c+νi.

We claim thatti ≤ i2 · c by induction oni. For the induction base, i.e.i = 1, observe
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thatti = 0 sinceα1 =⊤. For the induction step, assumei ≥ 2. Then, we have

ti ≤ i ·c+νi

= i ·c+max{t j +c | j ∈ [i−1]}
≤ i ·c+(i−1)2 ·c+c (by induction hypothesis)

= (i + i2−2i +2) ·c
≤ i2 ·c

The latter inequality holds sincei ≥ 2. Hence, sincei ∈ [r] and r ∈ O(l · k6), we

haveti ∈ O(l2) and thusti ∈ O(|ϕ|2). Thus, logarithmically many bits in|ϕ| suffice

to represent the periodsti. Moreover, recall that each periodpi is at mostc. It is

now straightforward to construct an alternating logspace Turing machine that checks

if (SP ,(q,n0)) |= ϕ.

D.5 Proof of Proposition 8.6.2

We will reduce DSAT to the weak-bisimulation checking problem. Without loss of

generality, we assume that eachFi is in 3-CNF and every assignment makes at least

one clause ofFi true (this can be done by adding the clause(x∨¬x) for some new

variablex). Furthermore, we assume that eachFi is nota tautology (this actually means

that some clauses ofFi do not contain two contradicting literals). We also assume that

all the formulasFis have the same number of clauses; this can be done by duplicating

clauses.

We are given an instanceF1, . . . ,Fn of DSAT with variablesx1, . . . ,xn and setZ =

{y1, . . . ,ym′} of variables such thatFi take only variables in{x1, . . . ,xi−1}∪Z. Suppose

thatFi = Ci
1∧ . . .∧Ci

m, whereCi
j = (l i

j ,1∨ l i
j ,2∨ l i

j ,3) such thatl i
j ,1, l

i
j ,2, l

i
j ,3 are literals

over the variables{x1, . . . ,xn}∪Z. As we will use Gödel encoding technique, for each

integerl > 0 let us define a functionνl mapping boolean formulas over the variables

{x1, . . . ,xn}∪Z to {⊤,⊥}. If G(l) = j1 j2 . . ., then defineνl (ϕ) to be the truth value

obtained by replacingyi by j i andxi by σ(xi). It is easy to see that eachσ(xi) = 1 iff

there exists an integerl > 0 such thatνl (Fi) =⊤.

The one-counter net and the finite system that we will construct will use the action

symbolsa,b,c,d,x1,x1, . . . ,xm,xm,τ. Note that we abuse variable namesxi to also refer

to action symbols; however, the meaning is clear from the context. In the following,

a finite systemG = (S,{→a: a∈ ACT}) is also abbreviated as a tuple(S,δG), where
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q δG(q,a)

P1 {A,A}
P2 {A}

q δG(q,b)

A {C}
A {C,C}

q δG(q,d)

C {T,T,Xi,Xi : 1≤ i ≤ n}
C {T,Xi,Xi : 1≤ i ≤ n}

Table D.1: Definition of δG on input a,b,d

δG : S×ACT→ 2S is a function such thats→a s′ iff s′ ∈ δG(s). We construct a finite

systemG = (S,δG) as follows:

• S= {P1,P2,A,A,C,C,T,T,D}∪{Xi,Xi : 1≤ i ≤ n},

• The transition functionδG is defined as follows. On inputa, b and d, δG is

defined in Table D.1. We also define that

δG(q,c) = {q},∀q∈ {T,T,Xi,Xi : 1≤ i ≤ n},
δG(q,τ) = {D},∀q∈ {T,Xi,Xi : 1≤ i ≤ n},

δG(q,xi) = {P1},∀q∈ {T,T,Xj : 1≤ j ≤ n}∪
{Xj : 1≤ j ≤ n, j 6= i},

δG(q,xi) = {P2},∀q∈ {T,T,Xj : 1≤ j ≤ n}∪
{Xj : 1≤ j ≤ n, j 6= i},

δG(Xi,xi) = {P2}
δG(Xi,xi) = {P1}

We construct a one-counter netP = (Q,δ0,δ>0) as follows. Initially,Q, δ0, and

δ>0 are empty. For every 1≤ i ≤ n, we add all the states in

Q′i = {sFi , r i,c
i
j : 1≤ j ≤m}.

If there is a literalyk or¬yk appearing in the clauseCi
j , then we add all the states in

{〈Ci
j ,yk,h〉 : 0≤ h < pk},

whereph is thehth prime number. We also add the states in

{Xi,Xi : 1≤ i ≤ n}.

In addition, we add an isomorphic copyG′ of the above finite systemG such that each

state inG is renamed with an extra prime symbol (e.g.A becomesA′). Now we add

the following transitions for each 1≤ i ≤ n:
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• add(sFi ,τ,sFi ,±1) to δ>0

• add(sFi ,τ,sFi ,1) δ0,

• add(sFi ,a, r i,0) to δ>0,

• add(r i,b,ci
j ,0) to δ>0 for every 1≤ j ≤m,

• if q∈ {T ′,X′i ,Xi
′
: 1≤ i ≤ n}, then we add the transition(ci

j ,d,q,0) to δ>0,

• if the literal xk (resp.¬xk) appears in the clauseCi
j , then we add the transition

(ci
j ,d,Xk,0) to (resp.(ci

j ,d,Xk,0)) to δ>0,

• if the literal yk (resp.¬yk) appears in the clauseCi
j , then we add the transition

(ci
j ,d,〈Ci

j ,yk,0〉,0) to δ>0,

• add(〈Ci
j ,yk,h〉,c,〈Ci

j ,yk,h〉,0) to δ>0 for all j,k,h,

• add(〈Ci
j ,yk,h〉,τ,〈Ci

j ,yk,(h−1) modpk〉,−1) to δ>0 for all j,k,h,

• if yk doesnot appear positively inCi
j , then add(〈Ci

j ,yk,0〉,c,〈Ci
j ,yk,0〉,0) to δ0,

• if yk does not appear negatively inCi
j , then add(〈Ci

j ,yk,h〉,c,〈Ci
j ,yk,h〉,0) to δ0

for every 1≤ h < pk

• add(〈Ci
j ,yk,h〉,xk′,P′1,0) for eachk′ ∈ [n] to δ>0,

• add(〈Ci
j ,yk,h〉,xk′,P′2,0) for eachk′ ∈ [n] to δ>0,

• if (〈Ci
j ,yk,h〉,0) has a self-loop with action labelc, then add(〈Ci

j ,yk,h〉,xk′,P
′
1,0)

and(〈Ci
j ,yk,h〉,xk′,P

′
2,0) for eachk′ ∈ [n] to δ0,

• add(Xk,x j ,P′1,0) to δ>0 for all j 6= k, add(Xk,xk,sFk,0) to δ>0, and add the rule

(Xk,x j ,P′2,0) to δ>0 for all 0≤ j,k≤ n,

• add(Xk,x j ,P′1,0) to δ>0 for all 0≤ j,k≤ n, add(Xk,x j ,P′2,0) to δ>0 for all j 6= k,

and add(Xk,xk,sFk,0) to δ>0.

• add all the transitions inG′ to δ>0 and δ0, which are interpreted as internal

transitions.



Appendix D. Proofs from Chapter 8 267

We claim that〈F1, . . . ,Fn〉 ∈ DSAT iff P1 ≈ sFn(0) iff P2 is not weakly bisimilar to

sFn(0). We prove a stronger version of this claim. In the following,we definesF0 to

be the stateP′1, and use the convention that the empty sequence〈〉 of formulas is an

instance of DSAT.

Claim D.5.1 For every0≤ i ≤ n, the following statements are equivalent:

• 〈F1, . . . ,Fi〉 ∈DSAT.

• P1≈ sFi(l) for all l ∈ N.

• P2 is not weakly bisimilar to sFi(l) for all l in N.

We prove this claim by induction oni. Consider the base casei = 0. Our convention

implies that〈〉 ∈DSAT. Observe also that each state inG is obviously bisimilar to the

corresponding state inG′ after renaming with any given counter value (e.g.A≈ A′( j)

for any j ∈ N). This is because no states inG′ ever reach a state that modifies the

counter values. In particular, we haveP1 ≈ P′1(0) = sF0(0). Furthermore, it is easy to

see thatP1 is not weakly bisimilar toP2. This also means thatP2 is not weakly bisimilar

to sF0(0).

We now consider the inductive casei > 0. We shall use the functionνl that we

defined earlier in the proof. We now give several obvious facts (one easily follows

from the previous ones):

• For eachl > 0, if the variableyk appears in the clauseCi
j , then〈Ci

j ,yk,0〉(l) τ⇒
〈Ci

j ,yk,h〉(0) iff l ≡ h (mod pk).

• For each 1≤ j < i, it is the case thatT ≈ X j(l) for eachl > 0 iff the unique

assignmentσ : {x1, . . . ,xn} → {0,1} for 〈F1, . . . ,Fn〉 satisfiesσ(x j) = 1. To see

this, observe first that Attacker cannot start the game by playing any moves with

action labels other thanx j , which will take a pebble to eitherGor G′, as Defender

then has a response in the isomorphic copy in the other system. So, Attacker is

then forced to makex j -move in either of the system, which does not matter as

both of the statesXj andX j(l) has exactly one uniquex j -successor. Defender has

a unique response which set up the next configuration〈P1,sFj (l)〉. By induction,

Defender now wins iffP1≈ sFj(l) iff σ(x j) = 1.

• For each 1≤ j < i, it is the case thatT ≈ X j(l) for eachl > 0 iff σ(x j) = 0. The

proof is identical to the previous item.
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• νl(Ci
j) =⊤ iff C≈ ci

j(l). To see this, observe first that Attacker cannot make ad-

move to any of the states in{T,Xk,Xk : 1≤ k≤n} in Gor{T ′,X′k,Xk
′
: 1≤ k≤n}

in G′, as Defender then has a response in the isomorphic copy in theother system.

Attacker then has only two choices: (1) ad-move toT in G, or (2) ad-move to

the states inScorresponding to the literals inCi
j . Suppose thatC≈ ci

j(l). Then,

Defender has a response inS for Attacker’s move of type (1): either one of the

state〈Ci
j ,yk,h〉(l ′), or a stateXk, or a stateX k. For the first case, there is a literal

(¬)yk that makesCi
j true underνl . For the second (resp. third) case,xk (resp.

¬xk) is a literal inCi
j with σ(xk) = 1 (resp. σ(xk) = 0). Conversely, suppose

that νl (Ci
j) = ⊤. We shall prove thatC ≈ ci

j(l). For Attacker’s move of type

(1), Defender has a winning strategy that is similar to the converse case. Let

us consider Attacker’s move of type (2). Suppose that a variable yk appears in

Ci
j and Attacker makes ad-move to〈Ci

j ,yk,0〉. Suppose first thatyk does not

appear positively inCi
j . If νl (¬yk) = ⊥, Defender plays ad-move toT; and if

νl(¬yk) =⊤, Defender plays ad-move toT. Similarly, Defender has a response

whenyk does not appear negatively inCi
j . Suppose now that a literalxk appears

in Ci
j and Attacker makes ad-move toXk. If σ(xk) = 1, it is easy to see that

Defender can make ad-move toT and wins. Ifσ(xk) = 0, Defender can make a

d-move toXk in G and wins since the uniquexk-successor fromXk is P2 instead

of P1 (i.e. stateXk “inverts” the outcome of the stateT under the actionxk).

Similarly, if the literalxk is contained inCi
j and Attacker makes ad-move toX k,

then Defender has a winning response.

• νl(Ci
j) =⊥ iff C≈ ci

j(l). The proof is similar to the previous case.

• νl(Fi) = ⊤ iff A≈ r i(l). To see this, observe thatνl(Fi) = ⊤ iff νl(Ci
j) = ⊤ for

all j. By the previous items, this in turn is true iffC≈ ci
j(l) for all j.

• νl(Fi) = ⊥ iff A≈ r i(l). This can be proved in the same way as in the previous

item. Here, we need the extra assumption that every assignment makes at least

one clause ofFi true so that the transitionA→a C can be matched inr i(l).

Finally, it is easy to deduce the above Claim from the last twoitems. This is because

we assumed that none of the formulas inF1, . . . ,Fn is a tautology.
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D.6 Proof of Proposition 8.6.3

To prove this lower bound, we will make use of an algorithm given by Kuĉera [Kuc00]

as a subroutine:

Lemma.([Kuc00]) There exists a fixed finite systemF ′ with states P1 and P2 such

that, given a boolean formulaϕ, we can compute inP a one-counter netO and an

initial configuration(q0,0) such that(q0,0)≈ P1 iff ϕ is satisfiable, and(q0,0)≈ P2

iff ϕ is unsatisfiable.

The proof is by a polynomial time reduction from the problem INDEX-ODD: given a

list F1, . . . ,Fn of boolean formulas in 3-CNF, does there exist an odd index 1≤ i ≤ n

such thatF1, . . . ,Fi are all satisfiable andFi+1, . . . ,Fn are all unsatisfiable? This prob-

lem is PNP[log]-complete. APNP[log] upper bound is immediate by a simple binary

search in the listF1, . . . ,Fn by invoking anNP oracle at each step to determine the

rightmost satisfiable formulaFi . A P
NP[log]-hardness for INDEX-ODD is also imme-

diate from Wagner’s sufficient conditions forP
NP[log]-hardness [Wag87, Theorem 5.2]

(see also [SV00, Lemma 7]). For notational convenience, we assume that INDEX-

ODD accepts only lists of formulasψ1, . . . ,ψn satisfying the following extra restric-

tions: (1)n≥ 3 is odd, and (2)ψn is unsatisfiable. It is easy to see that the problem

remainsPNP[log]-complete, e.g., by adding at most two extra formulas⊥ to the end

of the input list of formulas. Therefore, we may assume that the given input is the

list ψ1, . . . ,ψ2k,ψ2k+1, whereψ2k+1 =⊥. Initially, we run Kučera’s algorithm sequen-

tially on inputsψ1, . . . ,ψ2k to obtain the one-counter netsP1, . . . ,P2k+1 with respective

initial statesq1, . . . ,q2k+1 such that, for alli ∈ [2k+1], the following conditions hold

for the statesP1 andP2 in the finite systemF ′ = (QF ′,δF ′) given by the above lemma.

1. (qi,0)≈ P1 iff ψi is satisfiable (*)

2. (qi,0)≈ P2 iff ψi is unsatisfiable (**)

We will now define a one-counter netP = (Q,δ>0,δ0) and a fixed finite systemF =

(S,δF). We start with the definition ofF . We defineS= {t0}∪{ti, j : i, j ∈ [3]}∪QF ′.

Intuitively, if we pick an indexh∈ [2k−1], then obviously the formulasψ1, . . . ,ψh are

either: (1) all satisfiable, (2) all unsatisfiable, or (3) some are satisfiable and the rest are

unsatisfiable. These three split cases correspond to the three possible left indicesi for

ti, j . We have also three similar split cases if we inspect the formulasψh+1, . . . ,ψ2k+1.
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[Actually, one of these cases are impossible as we always assume thatψ2k+1 is unsatis-

fiable.] Hence, the right indicesj of ti, j similarly correspond to the these three possible

split cases. We now define the transitions forF accordingly:

• add each transition(t0,e, ti, j) to δF for eachi, j ∈ [3].

• add each transition(ti, j ,L,P1) to δF for eachi ∈ {1,3} and j ∈ [3].

• add each transition(ti, j ,L,P2) to δF for eachi ∈ {2,3} and j ∈ [3].

• add each transition(ti, j ,R,P1) to δF for eachi ∈ [3] and j ∈ {1,3}.

• add each transition(ti, j ,R,P2) to δF for eachi ∈ [3] and j ∈ {2,3}.

• add each transition inδF ′ to δF .

We continue now with the definition ofP . We assume thatP initially has neither states

nor transitions, and continue adding states/transitions as follows:

• Add the initial stateq0 and the states in{si : 1≤ i < 2k andi is odd}.

• Add the transition(q0,e,si,0) to δ>0 andδ0 for eachsi ,

• Assume that the states ofP1, . . . ,P2k+1 are disjoint and add the states and transi-

tions of these one-counter nets intoP .

• Add the transition(si,L,q j ,0) to δ>0 andδ0 for eachsi and j ∈ [i].

• Add the transition(si,R,q j ,0) to δ>0 andδ0 for eachsi and 2k+1≥ j > i.

• Add an isomorphic copyS of F into P ; each new state inS is renamed with an

extra prime symbol so as to distinguish from the states ofF (e.g. t1,2 in F is

renamed tot ′1,2 in S ).

• Add each transition(q0,e, ti, j ,0) to δ>0 and δ0 for eachi, j ∈ [3], except for

(i, j) = (1,2).

We want to prove that(q0,0) ≈ t0 iff ψ1, . . . ,ψ2k+1 is an instance of INDEX-ODD,

which suffices to deduce our theorem.

We first make a simple observation. For eachsi ∈ Q, (si ,0)≈ t1,2 iff the formulas

ψ1, . . . ,ψi are all satisfiable and the formulasψi+1, . . . ,ψ2k+1 are all unsatisfiable. To

see this, note that by definition actionL can only taket1,2 in F to P1 (i.e. asserting



Appendix D. Proofs from Chapter 8 271

satisfiability), while actionR can only taket1,2 to P2 (i.e. asserting unsatisfiability).

Also, by definition, actionL can only takesi to q j with j ≤ i, while actionR can only

takesi to q j with j > i. This observation is then an immediate consequence of property

(*) and (**).

We now prove that(q0,0) ≈ t0 iff there exists an odd indexi < 2k+ 1 such that

ψ1, . . . ,ψi are all satisfiable andψi+1, . . . ,ψ2k+1 are all unsatisfiable. This suffices to

deduce our theorem. Let us first prove necessity. Assume that(q0,0) ≈ t0. Then,

Attacker can move the pebble fromt0 to t1,2. Note that there is no transition fromq0 to

t ′1,2 in P . This means that Defender’s winning strategy must choose one of the statessi .

That is, we have(si,0)≈ t1,2 and the rest follows from the previous simple observation.

Conversely, given the odd indexi, we want to show that(q0,0) ≈ t0. If Attacker

choosest1,2, then Defender can move the pebble from(q0,0) to (si,0) and win as in

the converse case. If Attacker chooses otherti, j with (i, j) 6= (1,2), then Defender can

move the pebble from(si,0) to (t ′i, j ,0) and win as obviously(t ′i, j , l)≈ ti, j for all l ∈N.

Defender has a similar winning response if Attacker moves the pebble from(q0,0) to

(t ′i, j ,0) with (i, j) 6= (1,2). The remaining possible moves for Attacker are moves from

(q0,0) to (si′,0) for some odd indexi′ < 2k+1. If i′ = i, then Defender can move from

t0 to t1,2 and win. If i′ 6= i, then we can look at the formulasψ1, . . . ,ψi′ and the formulas

ψi′+1, . . . ,ψ2k+1. Each of these lists contain either (1) all satisfiable formulas, (2) all

unsatisfiable formulas, or (3) both satisfiable and unsatisfiable formulas. Considering

these two lists separately, this gives rise to nine possiblecombinations, which are all

covered by the successors oft0 in F . Therefore, by picking the appropriate successor

of t0, Defender can win.
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Proofs from Chapter 9

E.1 Proof of Proposition 9.2.1

We shall now sketch a reduction from model checkingFOS(Reach) andFO
2(Reach)

overΠOCP to, respectively the logicL andL′. We will first deal with atomic propo-

sitions. To this end, we will state a lemma, whose proof immediately follows from

Lemma 8.3.1, Lemma 8.3.4, and Lemma 8.3.5.

Lemma E.1.1 Given an OCPP = (Q,δ0,δ>0) over ACT with Q= {q0, . . . ,qk} and

a subsetACT′ ⊆ ACT, one can compute in poly-time a quantifier-freeL′-formula

ϕACT′(x1,x2,y1,y2) in disjunctive normal form (DNF) such that for all a1,a2,b1,b2 ∈
N,

N |= ϕ(a1,a2,b1,b2)⇔ (qa1,a2)→∗ACT′ (qb1,b2).

Although Lemma 8.3.1, Lemma 8.3.4, and Lemma 8.3.5 discuss only the reachability

relation→∗ without any labeling constraints, this lemma can be obtained by first re-

moving transitions with labels inACT−ACT′ from the given OCP (in the same way we

deal withEFACT′ in the proof of Theorem 8.4.1). Note that formulas in DNF are of

alternation rank 2. Since the synchronization constraints=i, j over transition systems

of the formSS

P introduce only self-loops, the following lemma can be directly deduced

from this by taking a conjunction, which increases the alternation rank by 1.

Lemma E.1.2 Let P be an asynchronous product of r OCPsP1, . . . ,Pr . Let Q=

{q0, . . . ,qk} be the union of their control states. Suppose thatSS

P has action la-

belsACT. Then, for eachACT′ ⊆ ACT, one can compute in poly-time a quantifier-

freeL′-formula ϕACT′(x,y) with alternation rank 3, wherex = (x1, . . . ,x2r) and y =

273
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(y1, . . . ,y2r), such that for all two tuplesa = (a1, . . . ,a2r) andb = (b1, . . . ,b2r) of nat-

ural numbers, it is the case that

〈N,+〉 |= ϕACT′(a,b)⇔ ((qa1,a2), . . . ,(qa2r−1,a2r))→∗Σ′ ((qb1,b2), . . . ,(qb2r−1,b2r))

in the transition systemSS
P .

This lemma shows that atomic propositions of the formReachACT′(x,y) can be dealt

with. Furthermore, it is not hard to give a quantifier-freeL′-formula ϕa(x,y) (resp.

ϕ=i, j (x,y)) with alternation rank at most 3 representing the atomic propositions of the

form Ea(x,y) (resp. x =i, j y). For example, for formulas of the formEa(x,y), one

simply needs to check only local transitions in each OCP and distinguish the case

where the initial counter value is zero or not, all of which can be encoded inL as a big

disjunction of these cases. An extra big conjunction in the outermost layer is needed

to encode the asynchronous product.

The inductive cases can be dealt with easily. The case of boolean combinations is

immediate. An existential quantifier for anFOS(Reach) (resp. FO
2(Reach)) can be

replaced by a block ofr existential quantifiers, wherer is the number of OCPs in the

given asynchronous product. Finally, it is easy to see that the alternating rank of the

output formula equals the alternating rank of the input formula up to an addition by a

small constant factorc (from our proof,c = 3).

E.2 Missing proofs from Subsection 9.3.2

Definition E.2.1 Given i∈N, p,m∈Z>0, and two2n-tuples(a,b),(c,d)∈N
2n, where

a = (a1, . . . ,an), b = (b1, . . . ,bn), c = (c1, . . . ,cn), andd = (d1, . . . ,dn), we write

(a,b)∼i
p,m (c,d)

iff for all j ∈ [1,n] the following statements hold

1. d(a j ,b j)≤ pm implies d(a j ,b j) = d(c j ,d j),

2. d(c j ,d j)≤ pm implies d(a j ,b j) = d(c j ,d j),

3. d(a j ,b j) > pm iff d(c j ,d j) > pm,

4. aj ≤ 2(i +1)pm implies aj = c j ,

5. bj ≤ 2(i +1)pm implies bj = d j ,
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6. cj ≤ 2(i +1)pm implies aj = c j ,

7. dj ≤ 2(i +1)pm implies bj = d j ,

8. aj ≡ c j (mod p) and bj ≡ d j (mod p), and

9. aj ≤ b j iff c j ≤ d j .

From this definition, it follows that(a,b) ∼i
p,m (c,d) iff, for each j ∈ [1,n], it is the

case that(a j ,b j)∼i
p,m (c j ,d j).

Lemma E.2.1 Suppose i∈ Z>0 anda,b,c,d ∈ N
n. If (a,b) ∼i

p,m (c,d), then the fol-

lowing statements hold:

1. For all a′ ∈ N
n, there existsc′ ∈ N

n such that(a′,b)∼i−1
p,m (c′,d).

2. For all b′ ∈ N
n, there existsd′ ∈ N

n such that(a,b′)∼i−1
p,m (c,d′).

Proof. We prove the first statement; the second statement can be proved in the same

way. Suppose thata′= (a′1, . . . ,a
′
n). For eachj ∈ [1,n] we shall definec′j ∈N satisfying

(a′j ,b j)∼i−1
p,m (c′j ,d j). This suffices for showing(a′,b)∼i−1

p,m (c′,d). Furthermore,c′ will

be at most max(d)+2pm. There are two possibilities:

• Eitherb j ≤ 2(i + 1)pmor d j ≤ 2(i + 1)pmholds. In this case, our assumption

that (a,b) ∼i
p,m (c,d) implies thatb j = d j . If a′j ≤ 2(i + 2)pm, then choose

c′j = a′j , which would show that(a′j ,b j)∼i−1
p,m (c′j ,d j). Otherwise, we havea′j >

2(i +2)pmand choose

c′j =

{
2(i +1)pm+ pm+(a′j modp) , if p6 |a′j
2(i +1)pm+ pm+ p , if p|a′j .

Then, it is easy to check that(a′j ,b j) ∼i−1
p,m (c′j ,d j). This also shows that our

choice ofc′j does not have to exceed 2(i +1)pm+2pm.

• Both b j > 2(i + 1)pmandd j > 2(i + 1)pmhold. First consider the case when

d(a′j ,b j)≤ pm. In this case, choosec′j := d j +(a′j−b j). Observe thatc′j > 2ipm,

and we havea j ≤ b j ⇔ c j ≤ d j . Furthermore, using our assumption(a,b)∼i
p,m

(c,d), it is easy to use check that(a′j ,b j) ∼i−1
p,m (c′j ,d j). Consider now the case

whend(a′j ,b j) > pm. There are several further possibilities:
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– a′j ≤ 2ipm. Choosec′j = a′j and so we haved(a′j ,b j),d(c′j ,d j) > pm. To-

gether with our assumption that(a,b) ∼i
p,m (c,d), we have(a′j ,b j) ∼i−1

p,m

(c′j ,d j).

– a′j > 2ipm. In this case, ifa′j < b j , we choosec′j := d j− p(m+1)+[(a′j −
b j) modp]. We havec′j > 2(i +1)pm− p(m+1)≥ 2ipmandd(c′j ,d j) >

pm. It is easy now to check that(a′j ,b j) ∼i−1
p,m (c′j ,d j). On the other hand,

if a′j > b j , we choosec′j := d j + p(m+1)− [(b j−a′j) modp]. It follows

thatd(c′j ,d j) > pm. It is easy to check that(a′j ,b j)∼i−1
p,m (c′j ,d j).

2

Supposei > 0. LetC andC′ be, respectively, a∼i
p,m-equivalence class and a∼i−1

p,m-

equivalence class. We say thatC′ is x-consistent with Cif there exist tuplesa,b,a′ ∈N

such that(a,b) ∈C and(a′,b) ∈C′. Similarly,C′ is y-consistent with Cif there exist

tuplesa,b,b′ ∈ N such that(a,b) ∈C and(a,b′) ∈C′.

Lemma E.2.2 Let a,b∈N
n and C be the∼i

p,m-equivalence class of(a,b). Define

A := {(a′1,a′2 . . . ,a′n,b) : ∀ j ∈ [1,n] 0≤ a′j ≤max(b)+2pm}
B := {(a,b′1,b

′
2 . . . ,b′n) : ∀ j ∈ [1,n] 0≤ b′j ≤max(a)+2pm}

Then, the set A (resp. B) contains a representative of every∼i−1
p,m-equivalence class

x-consistent (resp. y-consistent) with C.

Proof. This follows from the proof of Lemma E.2.1, wherec′j (resp. d′j ) was always

chosen to be at most max(d)+2pm(resp. max(c)+2pm). 2

Lemma E.2.3 Let p,m,n ∈ Z>0 and k∈ N. Let a,b,c,d ∈ N
n. If (a,b) ∼k

p,m (c,d),

then for each formulaϕ ∈ L′p,m(n) with quantifier rank at most k we have

〈N,+〉 |= ϕ(a,b)⇔ 〈N,+〉 |= ϕ(c,d).

Proof. The proof is by induction onϕ. First consider the base cases:

• x j ∼ y j +c andy j ∼ x j +c for ∼∈ {≤,≥,=}. Same as in the proof of Lemma

9.3.5.
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• x j ∼ c. If a j ≤ 2(i + 1)pm or c j ≤ 2(i + 1)pm, thena j ∼k
p,m c j implies that

a j = c j , and soa j ∼ c iff c j ∼ c. If a j > 2(i +1)pmandc j > 2(i +1)pm, then

we also obviously havea j ∼ c iff c j ∼ c sincec≤m< 2(i +1)pm.

• y j ∼ c. Same as previous item.

• x j ≡ y j +c (mod d), y j ≡ x j +c (mod d), x j ≡ c (mod d), andy j ≡ c (mod d).

Same as in the proof of Lemma 9.3.5.

We now turn to the inductive cases. Boolean combinations areeasy. So, letϕ be a

formula of the form∃x jψ. We now prove that〈N,+〉 |= ϕ(a,b) implies 〈N,+〉 |=
ϕ(c,d); the converse is symmetric. If〈N,+〉 |= ϕ(a,b), then there existsa′j ∈ N such

that 〈N,+〉 |= ϕ(a′,b), wherea′ = (a1, . . . ,a j−1,a′j ,a j+1, . . . ,an). Since(a,b) ∼k
p,m

(c,d), Lemma E.2.1 now implies that there existsc′j such that, whenever

c′ = (c1, . . . ,c j−1,c
′
j ,c j+1, . . . ,cn),

we have(a′,b)∼k−1
p,m (c′,d). The quantifier rank ofψ is at mostk−1 and the induction

hypothesis implies〈N,+〉 |= ψ(c′,d), which in turn means〈N,+〉 |= ϕ(c,d). If ϕ is of

the form∃y jψ, the proof is also the same.2

Lemma E.2.4 Let a,b∈N
n. Then, there existsc,d ∈ [0,2(i +3)pm]n such that

(a,b)∼i
p,m (c,d).

Furthermore, for fixed p,m,n > 0, on inputsa andb (represented in binary), and i

(represented in unary), a logspace machine can computec andd and store them in its

working tape.

Proof. We first show the existence ofc andd. For this, it suffices to show that, for each

j ∈ [1,n], there existsc j ,d j ∈ [0,2(i +3)pm] such that(a j ,b j)∼i
p,m (c j ,d j). It suffices

to consider the case where eithera j > 2(i +3)pmor b j > 2(i +3)pmholds. Ifa j = b j ,

then it is easy to show that settingc j = d j = 2(i + 1)pm+ p+ (a j modp) satisfies

(a j ,b j) ∼i
p,m (c j ,d j). Now consider the case whena j < b j ; the case whena j > b j is

similar.

First, consider the cased(a j ,b j) ≤ pm. In this case, we havea j > 2(i + 1)pm;

for, otherwise,b j = a j + (b j − a j) ≤ 2(i + 1)pm+ pm< 2(i + 3)pm, contradicting

our assumption. Therefore, we setc j = 2(i +1)pm+ p+(a j modp) andd j = 2(i +

1)pm+ p+(a j modp)+(b j−a j). It is easy to check thatc j ,d j ∈ [0,2(i +3)pm] and

(a j ,b j)∼i
p,m (c j ,d j).
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Now consider the case whend(a j ,b j) > pm. If a j ≤ 2(i +1)pm, then our assump-

tion implies thatb j > 2(i +3)pm. So, we setc j = a j andd j = 2(i +1)pm+ pm+ p+

(b j modp). It is easy to see thatd j ∈ [0,2(i+3)pm] and(a j ,b j)∼i
p,m (c j ,d j). Finally,

if a j > 2(i +1)pm, we setc j = 2(i +1)pm+ p+(a j modp) andd j = c j + pm+ p−
[(a j−b j) modp]. This means thatd j ≤ 2(i +1)pm+3p+ pm≤ 2(i +3)pm. Since it

is easy to check thata j ≡ c j (mod p), it follows thatb j ≡ d j (mod p). Furthermore,

it is easy to check that(a j ,b j)∼i
p,m (c j ,d j).

To show that there is a logspace machine computingc andd and store them in

the working tape, observe first that fixing the parametersp,m,n means that the size

of binary representations ofc andd is O(log|i|), sincei is represented in unary, and

so can be stored in the working tape of a logspace machine. To see that one requires

only logspace for actual the computation, recall that checking whethers|t, given the

numberss andt as inputs represented in binary, can be done inL (e.g. see the survey

[All01]). Therefore, sincep is fixed, to compute the number(s modp) one can simply

sequentially go throughj = 0, . . . , p−1 and check whetherp|(s− j). Finally, observe

that the rest of the arithmetic operations above (i.e. additions, multiplications, and

(in)equality tests) can easily be done by a logspace machine. So, the proof can be

directly translated into the desired logspace machine.2

Proof of Proposition 9.3.7. We give an alternating logspace Turing machineM for

solving the membership problem ofL′p,m(n). Givena,b∈ N
n and a formulaϕ(x,y) ∈

L′p,m(n) as input, note that the quantifier rank ofϕ is bounded above byi := ‖ϕ‖, i.e.,

the numberi is represented in unary on the input tape. So, using Lemma E.2.4 our

machine computesc,d ∈ [0,2(i + 3)pm]n such that(a,b) ∼i
p,m (c,d). Therefore, by

Lemma E.2.3,M needs only check whether〈N,+〉 |= ϕ(c,d). The machineM checks

this by a (single) one-way top-down traversal of the parse tree ofϕ in the input tape

starting at the root, which is the formulaϕ. At each step,M keeps track of a valuation

e,g of the variables inx,y, wheree= (e1, . . . ,en) andg= (g1, . . . ,gn). Initially, e (resp.

g) is set toc (resp.d). Suppose that the subformula ofϕ being traversed isα. If α is an

atomic proposition, thenM can checkϕ easily since all the required numbers are loga-

rithmically bounded (or fixed). Ifα is of the formψ∨ψ′, thenM existentially chooses

the next subformulaα′ to be eitherψ or ψ′, and checks whether〈N,+〉 |= α′(e,g).

If α is of the form¬ψ, thenM simply makes a transition into a not-state and checks

whether〈N,+〉 |= ψ(e,g). If α is of the form∃xiψ, thenM will existentially guess a

numbere′j ≤ g j +2pm. Lettinge′ = (e1, . . . ,ej−1,e′j ,ej+1, . . . ,en), the machineM then

checks whether〈N,+〉 |= ψ(e′,g). The machineM needs not guess a number bigger
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thang j +2pmdue to Lemma E.2.2. The case whenϕ is of the form∃y jψ is similar.

At each step, the machineM requires to keep track of: 1) which subformula ofϕ the

machineM is currently at, for which we needO(logi) bits, and 2) the current valuations

e,g for the variablesx,y. Notice that at each step max(e,g)≤max(c,d)+2ipm, which

requiresO(logi) bits as well to represent.2

E.3 Proof of Lemma 9.4.1

We first show upper bounds. Given an arenaA = (v,k,ϕ) and two positive integerss, t,

we writes∼A t iff s≡ t (mod ∏K
j=1 p j), wherepK is the largest prime appearing inϕ.

Then, each equivalence class in∼A has a representative that is at most∏K
j=1 pi , whose

size when represented in binary does not exceedp(|A |) for some fixed polynomial

p not depending on the input arena (recall that each number inA is given in unary).

As each atomic proposition inϕ is only a divisibility test of the formp|x with p≤
pK, it is easy to check that a polynomial-time alternating Turing machineM solving

the buffer game need only simulate the game, while considering only the smallest

representative modulo∏K
j=1 pi of each equivalence classes in∼A . For each guessing

step, the machineM will ensure that the important information from the earlierround

is not “overwritten”. When a representative[mk] of the last buffer value has been

obtained, the machineM will check whether〈N,+〉 |= ϕ([mk]). Checking these can

be done in polynomial time as divisibility of numbers represented in binary can be

checked in polynomial time. Finally, observe that the number of alternations used by

M on inputA is exactlyk+1 (starting with existential guess). This shows thatBUFFER

is in PSPACE, andBUFFERk is in Σp
k+1.

To show lower bounds, we give a polynomial-time reduction from the well-known

PSPACE-complete problem QBF. We assume that the leading quantifierof the input

formulas is∃. Moreover, if the input quantifier boolean formulaϕ hask+1 quantifier

alternations, the resulting output arena is of the form(v,k,ϕ). In particular, this will

prove thatBUFFERk is Σp
k+1-hard, as the restricted QBF problem with a fixed number

k+1 of quantifier alternations starting with the quantifier∃ is Σp
k+1-complete. Suppose

that the input is the formula

θ = Q1x1 . . .Qnxnψ

whereψ is a boolean formula over the variablesx1, . . . ,xn andQ1 = ∃. If θ hask

quantifier alternations, parition the sequenceQ1, . . . ,Qn into k+1 alternating blocks of

identical quantifiers accordingly. For eachi ∈ [1,k+1] we choose numbersr i > 0 such
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that the last variable quantified inith block isxr i . In this case, we haverk+1 = n. For

eachi ∈ [1,k], we also letQi be the quantifier type of theith block of quantifiers (e.g.

Q1 = ∃ by assumption). Letv := (r1, . . . , rk). Defineϕ to be theLDIV -formula obtained

by replacing each occurence of the boolean variablexi in ψ by the atomic proposition

pi |x. It is then easy to check thatθ is true iff Player∃ has a winning strategy in the

input arena(v,k,ϕ). [That is, for each truth evaluationf : {x1, . . . ,xn} → {0,1} and

eachm∈ Z>0 satisfyingG(m) ∈ f (x1) . . . f (xn)(0+ 1)ω, it is easy to check thatψ is

true underf iff 〈N,+〉 |= ϕ(m). To complete the proof, observe that the vectorv is

defined in such a way that the quantifiers inθ are faithfully simulated in the buffer

game.]

E.4 Proof sketch of Proposition 9.4.4

The proof is similar to the proof of Proposition 9.4.2 with the following modification.

We store the buffer values chosen by the Player∃ and∀ in two different counters. At

the roundr where Player∃ acts, suppose that the current buffer value isn0 andn1.

Player∃ rewrites the first counter with a new valuen′0, while making sure that for each

prime numberp∈ [1,vr ] and any numberj ∈ [0, p) it is the case thatn0≡ j (mod p)

iff n1≡ j (mod p). It is not hard to encode this as anEF-formula (with respect to two

appropriate OCPs), whose size depends (polynomially) onvr .

E.5 Proof of Proposition 9.4.5

We show that checkingFO
4(Reach) sentences with equality over(N,succ) isPSPACE-

hard. We shall only make use of the variablesx,y,u,v. Since it is easy to construct an

OCP generating(N,succ), it follows that the expression complexity ofFO
4(Reach)

over OCPs isPSPACE-hard. To deduce the lower bound forFO
4(Reach) without

equality, observe first that we can define a strict inequalityrelation inFO
4(Reach)

(without equality) over(N,succ) as follows:

x < y⇔∃u(succ(x,u)∧Reach(u,y)).

Therefore, the equality relationx = y can simply be expressed as¬(x < y∨y < x).

In the following, we shall give a poly-time reduction from QBF. Given a formula

ϕ = Q1x1 . . .Qnxnψ
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where eachQi is either∃ or ∀, Q1 is ∃, andψ is a boolean formula overx1, . . . ,xn,

we shall compute aFO
4(Reach) sentenceα over (N,succ) such thatϕ is true iff

〈N,succ〉 |= α.

To prove this, we shall first show how to succinctly encode therelation

DIFFi = {(a,b) ∈N×N : |a−b|= 2i},

for eachi ∈ N, using only four variables. The technique is adapted from Grohe and

Schweikardt [GS05]. We show how to define DIFFi in FO
4(Reach) by induction oni.

For the base case, we shall define DIFFi(x,y) and DIFFi(u,v) to be, respectively, the

formulassucc(x,y)∨ succ(y,x) andsucc(u,v)∨ succ(v,u). For i > 0, we define

DIFFi(x,y) := x 6= y∧∃u∀v[(v = x∨v = y)→DIFFi−1(u,v)],

which says that there exists a midpointu in the region[x,y] or [y,x] (depending on

whetherx < y or y < x) whose distance fromx andy is 2i−1. Similarly, we can define

DIFFi(u,v) by interchanging every occurence ofx (resp. y) with u (resp. v). Notice

that the size of the formula DIFFi grows only linearlyi.

From the relation DIFFi , we can now succinctly define some simple arithmetic on

large numbers. Define the relation

PLUS2i (x,y)⇔ x < y∧DIFFi(x,y),

which asserts thaty = x+2i . We shall also define the weak minus relation

WMIN2i(x,y) = ∃uPLUS2i (u,x)→ PLUS2i (y,x)

∧¬∃uPLUS2i (z,x)→ x = y

which is true if eithery= x−2i andy≥ 0, orx−2i < 0 andx = y. It is easy to see that

the size of the formulas PLUS2i and WMIN2i grows only linearly ini.

We now construct the formulaα encoding the quantified boolean formulaϕ. In

the following, the (meta)variablezi with odd (resp. even) indices will refer tox (resp.

y). We first define aFO
4(Reach) formula β(zn) such that, for each truth valuation

f : {x1, . . . ,xn} → {0,1}, it is the case thatψ is true underf iff (N,succ) |= β(m),

wherem is the number with binary representationf (xn) f (xn−1) . . . f (x1). For this, it

suffices to show how to succinctly define the relation

BIT j
i (zj)⇔ a∈ [0,2 j) and theith bit of zj is 1.
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for each j = (i,n]. This is because if this is the case, then we can obtainβ(zn) by

simply replacing each occurrence ofxi in ψ by BITn
i (zn). We first show how to define

BIT i+1
i for eachi ∈ [0,n). This relation can simply be defined as

BIT i+1
i (zi+1) := ¬∃ziPLUS2i+1(zi,zi+1))∧∃zi(PLUS2i (zi ,zi+1).

Now for eachj > i +1, we may simply define

BIT j
i (zj) := ∃zj−1[WMIN2 j (zj ,zj−1)∧BIT j−1

i (zj−1)].

Notice that BITn
i (zn) grows polynomially inn.

Now to define the formulaα, we shall define a sequence{αi(zi)}ni=0 of FO
4(Reach)

formulas with one free variable such that, for each valuation f : {x1, . . . ,xi} → {0,1},
the formulaQi+1xi+1 . . .Qnxnψ is true underf iff (N,succ) |= αi(m), wherem is the

number with binary representationf (xi) f (xi−1) . . . f (x1). [If this sequence is empty,

then the numbermassociated with it is 0.] In this case, we shall setα := α0(y)∧y= 0,

wherey = 0 is a shorthand for¬∃xsucc(x,y). We construct the formulas{αi(zi)}ni=0

recursively. We obviously start by settingαn(zn) := β(zn). For eachi < n, assume that

we have definedαi+1(zi+1). Then, ifQi = ∃, we define

αi(zi) := ∃zi+1[(PLUS2i (zi ,zi+1)∨zi+1 = zi)∧αi+1(zi+1)].

If Qi = ∀, we define

αi(zi) := ∀zi+1[(PLUS2i (zi ,zi+1)∨zi+1 = zi)→ αi+1(zi+1)].

It is now easy to see that, for each valuationf : {x1, . . . ,xi} → {0,1}, the formula

Qi+1xi+1 . . .Qnxnψ is true underf iff (N,succ) |= αi(m), wherem is the number with

binary representationf (xi) f (xi−1) . . . f (x1). This is simply because assigning 1 toxi+1

corresponds to adding 2i to zi, as reflected in the definition ofαi(zi).

Finally, it is easy to see that our construction above runs inpolynomial time.

E.6 Proof of Proposition 9.4.6

Given eachϕ(x,y) ∈ FO
2(Reach) and each OCPP = (Q,δ0,δ>0) over actionsACT,

we compute in poly-time anEFS-logic formulaϕ′, an OCPP1 = (Q1,δ1
0,δ

1
>0) over

ACT1, and an OCPP2 = (Q2,δ2
0,δ

2
>0) overACT2, and a poly-time computable function
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f (resp. f ′) mapping configurations ofP to configurations ofP1 (resp.P2), such that

for any pair ofP -configurations(q,n) and(q′,n′)

SP |= ϕ((q,n),(q′,n′))⇔SP1×P2,( f (q,n), f (q′,n′)) |= ϕ′.

Therefore, by Theorem 9.4.2, there exists a fixedϕk such that model checkingϕk over

ΠOCP isΣp
k -hard.

Suppose thatACT = {σ1, . . . ,σl}. LetACT1 = {a1, . . . ,al}∪{c1,loop1} andACT2 =

{b1, . . . ,bl}∪{c2,loop2} be two disjoint alphabets. DefineQ1 = Q2 = Q∪{g}. The

purpose of adding a new stateg is to define a “global modality”. As we shall see, for

every (q,n),(q′,n′) ∈ Q1×N we have(q,n)→∗{c1,loop1} (q′,n′); a similar statement

also holds forP2. We now define the transition functions. The transition functionsδ1
>0

(resp. δ2
>0) can be obtained fromδ>0 by first renaming each actionσi with ai (resp.

bi), and then adding extra transitions(q,c1,g,0), (g,loop1,g,+1), (g,loop1,g,−1),

and(g,c1,q,0) (resp.(q,c2,g,0), (g,loop2,g,+1), (g,loop2,g,−1), and(g,c2,q,0)),

for eachq∈ Q. Similarly, the transition functionsδ1
0 (resp.δ2

0) can be obtained from

δ0 by first renaming each actionσi with ai (resp. bi), and then adding extra transi-

tions(q,c1,g,0), (g,loop1,g,+1), and(g,c1,q,0) (resp.(q,c2,g,0), (g,loop2,g,+1),

and(g,c2,q,0)), for eachq ∈ Q. Also, defineACT′1 := Σ1−{c1,loop1}, ACT′2 :=

ACT2−{c2,loop2}, ACT′′1 := {c1,loop1}, andACT′′2 := {c2,loop2}.
We now define our formulaϕ′ by induction onϕ. In particular, we shall construct

a functionλ mapping formulas ofFO
2(Reach) to EFS-logic formulas such that, for

eachψ(x,y) ∈ FO
2(Reach) and(q,n),(q′,n′) ∈Q×N,

SP |= ψ((q,n),(q′,n′))⇔SP1×P2,((q,n),(q′,n′)) |= λ(ψ) (∗)

We then need only setϕ′ = λ(ϕ). In the following, recall that the formula∃xψ(x,y)

can be thought of as∃x(ψ(x,y))∧ x = x, and so the variablesx andy always occur

freely in the formula. First consider the base cases:

• ψ := Reach(x,y). We setλ(ψ) := 〈RACT′1
〉(=1,2).

• ψ := Reach(y,x). We setλ(ψ) := 〈RACT′2
〉(=1,2).

• ψ := Eσi (x,y). We setλ(ψ) := 〈ai〉(=1,2).

• ψ := Eσi (y,x). We setλ(ψ) := 〈bi〉(=1,2).

It is easy to check that (*) hold for these. Now consider the inductive cases:
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• ψ := α(x,y)∧β(x,y). We setλ(ψ) := λ(α)∧λ(β).

• ψ := ¬α(x,y). We setλ(ψ) := ¬λ(α).

• ψ := ∃xα(x,y). We setλ(ψ) := 〈RACT′′1
〉(λ(α)∧¬〈loop1〉). We show that (*)

holds. Given(q,n),(q′,n′) ∈ Q×N, we haveSP |= ψ((q,n),(q′,n′)) iff there

exists(q′′,n′′) ∈Q×N such thatSP |= α((q′′,n′′),(q′,n′)) iff (by induction hy-

pothesis) there exists(q′′,n′′) ∈ Q×N such thatSP1×P2,((q
′′,n′′),(q′,n′)) |=

λ(α) iff SP1×P2,((q,n),(q′,n′)) |= λ(ψ) since〈RACT′′〉 is a global modality.

• ψ := ∃yα(x,y). We setλ(ψ) := 〈RACT′′2
〉(λ(α)∧¬〈loop2〉).

Finally, observe that our reduction runs in polynomial time.


