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Abstract

Model checking is a fully-automatic formal verification rhet that has been ex-
tremely successful in validating and verifying safetyticeél systems in the past three
decades. In the past fifteen years, there has been a lot of iwaktending many
model checking algorithms over finite-state systemfritely representable infinite-
state systemsUnlike in the case of finite systems, decidability can gasdcome a
problem in the case of infinite-state model checking.

In this thesis, we presegenericandspecifictechniques that can be used to derive
decidability with near-optimal computational complexity various model checking
problems over infinite-state systems. Generic techniqndsspecific techniques pri-
marily differ in the way in which a decidability result is dezd. Generic techniques is
a “top-down” approach wherein we start with a Turing-powekfdrmalism for infinite-
state systems (in the sense of being able to generate theutatiop graphs of Turing
machines up to isomorphisms), and then impose semantiictesis whereby the
desired model checking problem becomes decidable. In etbets, to show that a
subclasf the infinite-state systems that is generated by this fosmas decidable
with respect to the model checking problem under consiaeratve will simply have
to prove that this subclass satisfies the semantic restrictOn the other hand, spe-
cific techniques is a “bottom-up” approach in the sense tleatestrict to a non-Turing
powerful formalism of infinite-state systerasthe outsetThe main benefit of generic
techniques is that they can be usedafgorithmic metatheorems.e., they can give
unified proofs of decidability of various model checking Iplems over infinite-state
systems. Specific techniques are more flexible in the seegectin be used to derive
decidability or optimal complexity when generic techniguiail.

In the first part of the thesis, we adopt word/tree automaéindition systems as
a generic formalism of infinite-state systems. Such forsmadi can be used to gener-
ate many interesting classes of infinite-state systemdthat been considered in the
literature, e.g., the computation graphs of counter systéraring machines, push-
down systems, prefix-recognizable systems, regular grtneedrewrite systems, PA-
processes, order-2 collapsible pushdown systems. Altihtlug generality of these
formalisms make most interesting model checking probleewer( safety) undecid-
able, they are known to have nice closure and algorithmipgmntees. We use these
nice properties to obtain several algorithmic metathesremer word/tree automatic
systems, e.g., for deriving decidability of various modetcking problems including
recurrent reachability, and Linear Temporal Logic (LTL)Rvcomplex fairness con-



straints. These algorithmic metatheorems can be useditormly prove decidability

with optimal (or near-optimal) complexity of various modsiecking problems over
many classes of infinite-state systems that have been @vadidh the literature. In
fact, many of these decidability/complexity results weoe previously known in the
literature.

In the second part of the thesis, we study various model ¢hggkoblems over
subclasses of counter systems that were already known tedéadble. In particu-
lar, we consider reversal-bounded counter systems (amdetktensions with discrete
clocks), one-counter processes, and networks of one-eopricesses. We shall de-
rive optimal complexity of various model checking problemduding: model check-
ing LTL, EF-logic, and first-order logic with reachabilitglations (and restrictions
thereof). In most cases, we obtain a single/double expaieatuction in the previ-
ously known upper bounds on the complexity of the problems.
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Chapter 1
Introduction

The past few decades saw an unprecendented growth rate pltensin scale and
functionality. This has resulted in a substantial growtlcamplexity, which conse-
guently increases the likelihood of subtle errors. It isugstn that in this technological
era people have grown accustomed to systems that from tireéoexhibit certain
faults. Although such faults are a mere nuisance for evgrgglatems (e.g. personal
desktops “hang”), they could be catastrophic for safettyeat or life-critical systems.
Furthermore, it is well-known that, even when the systenesrat safety-critical or
life-critical, errors could still result in a substantiaiss of money or productivity
Many examples of such system failures and their impacts atedecumented (e.g.
see [Cip95, CGP99, Gre09]).

For a long time, testing has been the standard techniqueyfbera validation.
Nowadays, testing is well-known to be insufficient to engtiecorrectness of a sys-
tem. This statement is even truer in the presence of conmyri@ the system. To
ensure that a system is correct, formal methods are negeddadel checking is a
fully-automaticformal verification method that has been extremely sucuoessial-
idating and verifiying safety-critical systems in the pdstt decades resulting in a
recent bestowal of ACM Turing Award to its pioneers. Loosgpeaking, in order
to check that a system satisfies a certain property, we festerarabstract modets
(usually as a finite transition system) that captures howsykeem evolves, and express
the property as a formuld is somelogical language(usually some temporal logic).
This reduces the initial problem to checking whetlgesatisfiesp, which can then be
checked using standard model checking algorithms (e.dC8B99, Sch02]).

1The 80/20 rule is a well-known rule of thumb stating that a6 of software development effort
is spent on writing codes, while the rest is primarily spemtiebugging
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Model checking primarily differs from other approacheshe titerature of verifi-
cation (e.gautomated theorem provirapdtraditional static analysisin two aspects.
First of all, model checkers are meant to flodly-automatic i.e., can be used as a
blackbox. This is in contrast to automated theorem prowens;ch often require con-
siderable user interventions. This aspect of model chggi@mthaps explains the wide
adoption of model checking technologies by industriesuditig NASA, Intel, IBM,
and Motorola. The other major difference of model checkmthe use oexpressive
specification language, e.g., temporal logics like LTL @an Temporal Logic), and
CTL (Computation Tree Logic). This is in contrast to traglital static analysis tech-
niques, which are fully-automatic but admit only very simptoperties like safety and
liveness; see [DKWO08] for a more detailed discussion. Nawyadnodel checking is
widely used for static analysis of programs (cf. [DKWO08]).

In theory, real-world systems can almost always be modedefinge transition
systems that arexplicitly represented (e.g. using adjacency lists). However, such a
naive approach is often impractical. One well-known probleith this approach is
the state-explosion problem.e., the number of configurations in the abstract model
grows exponentially in the number of certain parameterdhéndctual system. For
example, a distributed protocol with processes could have at least exponentially
many possible configurations. One successful approachabvdéh this problem
is calledsymbolic model checkinddCM ™90, McM93], which is to develop model
checking algorithms osymbolic representations the transition system. In the case
of [BCM1™90, McM93], the symbolic representation is ordered binaggision dia-
grams (OBDDs). An intuitive explanation of the success & #pproach is that many
real world systems exhibit a large amount of symmetry andefbes could besuc-
cinctlyrepresented as OBDDs, on which efficient algorithms couldéseloped.

In the past fifteen years, there has been a lot of work in ektgnitie symbolic
model checking techniques to deal with symbolic represiemsofinfinite-statetran-
sition systems. Although most real-world systems couldbeaght of as finite systems
(e.g. the size of hard disks and the number of processes atrébdied protocol are
finite in reality), it is often more suitable to model them afnite-state systems. For
example, in the study of distributed algorithms [Lyn96],istkdbuted protocol is said
to satisfy a certain property (e.g. freedom from deadldc&xchinstance of the proto-
col with n processes satisfies the property, i.e., not only for eackewain up to (say)
1500, although this number could be reasonable for todégrslard. This is arguably
also the reason why abstract models of computation such msgTioachines (with
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an infinite tape) and Minsky’s counter machines (with thdiigtio store unbounded
integer values) are used as formal definitions of the initiotions of algorithms. We
shall now mention a few possible sources of infinity in #iestractionsof real-world
systems:

1. Data structures: stacks (e.g. for modeling recursianusues (e.g. for modeling
communication channels), arrays and heaps.

2. Numeric data types: integers, reals, etc.
3. Discrete or real-valued clocks.
4. Concurrency: unbounded number of processes.

Most of these sources of infinity can easily result in Turpayerful models of com-
putation (in the sense of being able to generate the compuigitaphs of Turing ma-
chines up to isomorphisms). Despite this, researchersdizagned promising results
in this direction that are both interesting from both prea&ltiand theoretical points of
view.

Approaches to infinite-state model checking that have beesidered in the lit-
erature can often be (somewhat loosely) classified into tegories: “generic” and
“specific”. Genericapproaches usually adopt powerful symbolic represemsitod
infinite-state systems (i.e., those that can capture Typowerful models of computa-
tion such as Turing machines or counter machines) and depeldial techniques for
solving model checking problems over such systems. Theslgachniques might
turn out to be complete (i.e. yield decidability) in caseswltertain restrictions are
imposed. In contrasspecificapproaches avoid undecidability by always restricting to
non-Turing-powerful formalismat the outsetNonetheless, this doe®t necessarily
mean that positive results obtained in this way are alwagsictive. In this thesis,
we shall present generic techniques and specific techniguexbtaining decidabil-
ity with optimal (or near-optimal) computational complgxof various infinite-state
model checking problems.

The rest of this section is organized as follows. In Sectidnahd Section 1.2,
we shall review some results in the literature of infinitatstmodel checking that have
been obtained using specific and generic approaches, teghedn Section 1.3, we
will discuss the contributions of this thesis. Finally, iacBon 1.4 we will outline how
the thesis is organized.
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1.1 Specific approaches

Finding classes of infinite-state systems with decidabldehochecking tasks is by far
the most popular approach in infinite-state model checKiigs perhaps explains the
plethora of decidability results that have been obtainedffinite-state model checking.
We shall now review some of the major decidability/compigxesults in the area.

One of the earliest decidability results in infinite-statedal checking that per-
mits an expressive specification language is arguably Mahe Schupp’s result that
model checking monadic second-order logic (MSO) queshdown systengse. the
transition graphs of pushdown automata) is decidable [MIS&ushdown systems
are relevant in verification since they are known to be goatrabtions for sequen-
tial programs with unbounded recursions. On the other h#mete exists a fixed
pushdown system (i.e. the infinite binary tree) with a nomeletary complexity
of MSO model checking [Sto74]. This is in contrast to the peab of reachabil-
ity over pushdown systems, which is easily reducible toRF@mplete problem of
nonemptiness of languages of pushdown automata. This atetivesearchers to find
logics that are weaker than MSO, but are still sufficientlpressive for verification
purposes, i.e., they should be able to express reachadniltypossibly also some live-
ness propertiés Temporal/modal logics turn out to have much better coniplever
pushdown systems. Walukiewicz [Wal96, Wal01] was the fogtentify that model
checking (modal)-calculus over pushdown systemsEXP-complete. This specifi-
cation language is subsumed by MSO, but turns out to be asrhdvas MSO for
expressing bisimulation-invariant properties [JW96]jathinclude most properties of
interests in verification. Linear Temporal Logic (LTL) wdeeh proved to havEXP-
complete model checking complexity over pushdown syst8EdM97]. In contrast
to p-calculus, model checking LTL was shown to be solvable fior a fixed formula,
which is appealing since LTL specifications are quite snrmafiractice. The complex-
ity for other temporal logics including CTL (Computationegr Logic),EF-logic, and
Propositional Dynamic Logic (PDL) have also been identitiedbe within EXP (cf.
[BEM97, GLO6, Wal0Q]).

Many of the results for pushdown systems have by now beem@steto more
expressive classes of infinite-state systems, which wé slealtion next. First, the de-
cidability of MSO has been extended by Caucal [Cau96, CawaQ&Efix-recognizable

2This means that the time complexity cannot be bounded framwebyk-fold exponential functions
for every fixedk > 1.
3In this senseHennesy-Miler logidor modal logics of actions) does not fall within this catego
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systemswhich can be understood as pushdown systems with infimbelgry rewrite
rules compactly represented by means of regular languagescomplexity of modal
and temporal logics have also been identified for prefix-gatable systems [Cac02,
GL06, KPVO02]. For example, ovat-calculus the problem remaiBXP-complete
[Cac02, KPVO02]. Over LTL, the problem remaigaXP-complete, but th&XP lower
bound still holds for a fixed formula [KPV02]. Interestingitwas only shown recently
[G0108] that reachability over prefix-recognizable syssas alreadyEXP-hard. Cau-
cal [Cau02] also gave another extension of the MSO decidabflprefix-recognizable
systems to a hierarchy of infinite graphs, which are know@ascal hierarchy As has
been shown in [CWO03], this hierarchy of graphs is intimatelgnected to a formalism
calledhigher-order pushdown automafilas76], which extend pushdown automata
by “stack-of-stacks” structures. Some results on modetking higher-order push-
down systems are also known, e.g., model checloglculus isn-EXP complete for
ordern higher-order pushdown systems [Cac03, CW07]. Similartesu related for-
malisms like higher-order recursion schemes and collépsiigher-order pushdown
automata, which are suitable abstractions for higherrgodegrams with unbounded
recursions, are also known (cf. [Ong06, HMOSO08]).

So far, we have only discussed abstract models of sequentigiams. We now
discuss models of concurrent prograrRstri nets— initially proposed by Carl Adam
Petri — are one of the first well-known models fourely concurrent programs with
interesting decidability results. Roughly speaking, tlaeg a subclass of Minsky’s
counter machines with only one state that cannot test whatheunter value is zero.
Reachability for Petri nets is known to be solvable in nomative recursive time
[May84], but is only known to beeXPSPACE-hard [Lip76]. On the other hand,
branching-time model checking over Petri nets is known taimgecidable [Esp973a]
even oveEF-logic, which is probably the simplest standard branchinge logic with
a reachability operator. Despite this, LTL model checkimglécidable, but has been
shown to be as hard as reachability for Petri nets [Esp94gréstingly, when only
infinite runs are considered, the complexity of the problerBXPSPACE-complete
[Hab97]. Many subclasses of Petri nets with better deciiglsiomplexity are known.
We shall mentioncommunication-free Petri net@.k.a. basic parallel processgs
which are simply Petri nets whose transitions depend onlyhenvalue of a single
counter. Communication-free Petri nets are known to lreomplete reachability
problem [Esp97b] anBSPACE-completeEF-logic model checking problem [May98].
We refer the reader to the survey [Esp96] and the thesis [Bldg® more results and
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discussions on Petri nets and their subclasses.

The expressive power of Petri nets and pushdown automateaph generators
are known to be incomparable up to bisimulation (cf. [BCMSMoI96]). Intu-
itively, this is because pushdown systems can only modelesgdl programs, while
Petri nets only purely concurrent programs. Some reseashéen made into com-
bining them to obtain a model that is both sequential and woent. We shall first
mentionPA-processe&f. [BW90, BCMS01, Mol96]), which are obtained by blend-
ing one-state pushdown automata and communication-freerieés. PA-processes
are known to have decidabkr-logic model checking andélP-complete reachabil-
ity [May98, LS02], but undecidable LTL model checking [BH96t is also known
that they can be used to model parallel programs with unbedinelcursions and un-
bounded parallelism [BW90, EP00]. The first complete gdimation of pushdown
automata and Petri nets was given by Mayr [May98], which his €aocess Rewrite
Systems (PR)espite its generality, PRS is still known to have decidabbhchability
problem [May98].

Another way of incorporating some concurrency into pushaeystems is to con-
sider rewrite rules over ranked trees instead of words. &pmoach yields a class
of infinite-state systems that is callgcound tree rewrite systengsf. [CDG"07]). It
has been shown that ground tree rewrite systems have poighttme reachability
[CDGV94, Lod03] and decidable model checking with respedirst-order logic with
reachability operators [DT90]. Loding [L6d03] was thestito show that some inter-
esting liveness properties could be also decided for grtneedewrite systems. In par-
ticular, he showed that the problem of checking the exig@han infinite path from a
given treel which visits a given set(4) infinitely often, where£(2) is the language
of a tree automatori, is decidable in polynomial time. Such a liveness propertyfi
ten referred to agcurrent reachabilityandrepeated reachabilit{e.g. see [BBF01]).

In order to emphasize the expressive “target”5efl), we shall also address the prop-
erty as recurrent reachability witlegular fairness constraintThese positive results
also extend taegular ground tree rewrite systerfidT90, L6d03, Lod06], which are
extensions of ground tree rewrite systems with infinitelyngneules compactly repre-
sented by means of tree automata (i.e. similar to prefixgeeable systems). Despite
this, it can be shown that model checking logics like LTL arid-@s undecidable over
ground tree rewrite systems.

So far, we have discussed some results on systems with twoesoof infinity, i.e.,
stacks (or generalizations thereof) and concurrency. \&hatit numeric data types



Chapter 1. Introduction 7

like integers? Unfortunately, adding numeric data typaslyeesult in undecidability,
e.g., consider Minsky’s 2-counter machines. As we sawerardiecidability can be
retained if we do not allow zero tests yielding the modelezhlPetri nets. However,
this is not satisfactory since programs naturally perforitheetic expressions, the
simplest of which already require zero test. Let us now dis@ome restrictions on
counter machines that still allow test for zero but still @@ome interesting decidabil-
ity results. Firstly, if we restrict the number of countessane, we obtain 1-counter
machines, which can be thought of as pushdown automata nétktack symbol plus a
non-removable stack-bottom symbol. In this way, 1-cousystems inherit the decid-
ability results from pushdown systems, e.g., model checkl8O. It turns out, though,
that 1-counter systems have better computational contplésar example, LTL ang-
calculus model checking over 1-counter systems were sholwaRSPACE-complete
[Dem06, Ser06], in contrast to pushdown systems whictEXife-complete. FOEF-
logic, the complexity is known to be iIRSPACE [Wal00] and DP-hard [JKMS04].
Another well-known decidable restrictions of counter nmaek arereversal-bounded
counter machinesvhich were initially proposed by Ibarra [Iba78]. These siraply
counter machines each of whose counters can change fromdecosasing mode to
a non-increasing mode (or vice versa) for a fixadumber of times. Reachability was
initially shown by Gurari and Ibarra [GI81] to be solvableRSPACE, and later was
shown in [HR87] to be preciseliP-complete wherm is given in unary andNEXP-
complete whem is given in binary. Furthermore, when the number of reveraad the
number of counters are fixed in advance, the problem is sl@valpolynomial time
[G181]. Certain liveness problems like recurrent reacligifiave also been shown to
be decidable [DIP0O1] for reversal-bounded counter systeitisone free counter.

Results that combine infinite data structures with numeata types are also avail-
able. We shall only mention the result on reversal-boundrohier systems with a
pushdown stack and finitely many discrete clocks [DOB]. This class of systems
generalizes pushdown systems, reversal-bounded cowystenss, and discrete timed
systems [AD94] simultaneously. Despite this, it was showbilB*00] that interest-
ing safety properties are still decidable. It was an operstjue in [DIP01] whether
interesting liveness properties are also decidable fertiudel.

There are also other classes of systems with interestiniglai®lity results for
model checking that we have not mentioned. These includgy losannel systems
[ACJT96] and probabilistic infinite-state systems inchgliprobabilistic pushdown
systems (cf. [KEMO6]), which we will not further encounterthe thesis.
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1.2 Generic approaches

We have hitherto mentioned only models of computationsateatot Turing-powerful.
However, these are not the only models that were intensstelyied in infinite-state
model checking communities. Many formalisms that are ckgpabgenerating the
configuration graphs of Turing machines or Minsky’s coumtachines have also been
studied. These include rational transition systems [MpBXB09], automatic and»>
automatic structures [Blu99, BG04], tree-automatic strres [Blu99, BLNO7], and
Presburger-definable systems (cf. [Boi99, BFLP08, FLO3Jhce even reachability
is already undecidable over such systems, most resultenang verification over
such systems have a semi-algorithmic flavor. In particulg, mention the work
on regular model checkingwhich aims to develop practical semi-algorithmic tech-
niques for computing a symbolic representation (e.g. uségglar languages) of the
reachability sets or reachability relations of such systeffihe reader is referred to
[AIJNS04, Bou01, Boi99, BLWO03, BIJNT00, BHV04, KM&1, Nil05] for more
details. Many of the semi-algorithms given in this literguhowever, do not come
with a completeness criterion, i.e., a criterion on the trgystems whereby the semi-
algorithms will certainly terminate with a correct answeén other words, the per-
formance of many of these semi-algorithms is only evaluatquerimentally. In the
case when completeness criteria are given, they are ofteatwral and do not subsume
commonly consideresubclassesf systems with decidable model checking problems.
Recently, there have been several successful attemptevaersemi-algorithms
with natural criteria for completeness. In particular, \Wwalsmention the work [LS05a,
BFLSO05], which provide semi-algorithms based on the “am@gion techniques” of
[CJ98, FLO2, Boi03] for computing symbolic representasiari reachability sets or
reachability relations over linear counter systems (astdfdPresburger-definable sys-
tems). They show that their algorithms terminate with a@dranswer iff the input
systems ardattable i.e., they can be turned intofiat counter system [CJ98]. Many
interesting subclasses of counter systems have been sh@atidfy this property, e.g.,
2-dimensional vector addition systems with states [LS@&ersal-bounded counter
systems [LS05a], and other subclasses of Petri nets [LSObRAlIs, this approach
yields asinglesemi-algorithm that is guaranteed to solve the reachglpittblems for
these subclasses of counter systems, instead of one d&tladgbrithm for each sub-
class. Furthermore, the general procedures turn out tafy@esi than the specialized
algorithms (e.g. reachability for 2-dim vector additiorssgms was shown to be de-
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cidable in [HP79] with a rather difficult technique). Thesens-algorithms have also
been implemented in FAST [BFLPOS8] with impressive expentaéresults.

The results of [LS05a, BFLS05] can naturally be viewedgorithmic metathe-
orems as was suggested by the authors. More precisely, to proetheha subclass
of linear counter systems has decidable reachability,fiiceis to show that they are
flattable. In this sense, other results in the verificatioerditure can also be clas-
sified as algorithmic metatheorems. In particular, we sheadhtion the works of
[Fin87, Fin90, ACJT96, FS01] owell-structured transition systenasd the works of
[Sem84, Wal02, CW98] on operations on transition systerasteserve decidability
of monadic second-order logic. In the case of finite-statdehohecking, algorithmic
metatheorems are also used extensively to obtain goodithlge bounds for evalu-
ating logical formulas [FGO06].

1.3 Contributions

The main contributions of this thesis are new generic andipdechniques for
infinite-state model checking.

Our generic approach to infinite-state model checking adaptd/tree automatic
transition systems [BG04] as generic frameworks. Althouggrchability is already
undecidable, word/tree automatic transition systems aoevk to satisfy some nice
closure/algorithmic properties, e.g., closure under éaolcombinations and automata
projections [Hod83]. Using these properties, we will preggous algorithmic metathe-
orems for showing decidability of model checking over winel automatic transition
systems with optimal (or near-optimal) complexity. Morepiontantly, we will show
that many previously known or unknown decidability/conxiecan be obtained in a
uniformway using our metatheorems.

Thus far only algorithmic metatheorems for safety propsrare available in the
literature [LS05a, BFLS05]. We complement these resultpioyiding algorithmic
metatheorems for liveness. Our most basic algorithmic theteem concerns a partic-
ular liveness property over the expressive class of wae/dutomatic systems called
recurrent reachability checking with regular fairness straints Such a property is
important since certain logic model checking (e.g. LTL) barreduced to it. In partic-
ular, we show that, for any subclags=f word/tree automatic systems for which there
exists an algorithn?M computing a word/tree automatic presentation of the reacha
bility relation of a given system i, we may decide recurrent reachability by first
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computing the reachability relation of the given system #rah perform some extra
polynomial-time computation. This metatheorem will thendxtended to recurrent
reachability withmultiple regular fairness constraints (a.k.@eneralized Bchi con-
ditions). Roughly speaking, this problem asks whether there eaistafinite path
from a given configuration (i.e. a finite word or a finite treeiting each of the given
regular sets£(4;),..., L(4n) infinitely often (simultaneous visits are not required).
Together with the known results on algorithms for computiegchability relations
for specific classes of infinite-state systems, our metagme® can be applied to uni-
formly derive decidability of recurrent reachability ovyeushdown systems, prefix-
recognizable systems, (regular) ground-tree rewriteesyst PA-processes, order-2
collapsible pushdown systems, PA-processes, reversaleea counter systems (and
extensions thereof), and some subclasses of Petri netslingl2-dim vector addition
systems. For many of these classes of infinite-state systeensianage to obtain op-
timal complexity. Many of these decidability/complexigsults were not previously
known in the literature. For example, Loding [Lod06] adkehether his result on
the decidability of recurrent reachability with a singlguéar fairness constraint over
ground tree rewrite systems could be extended to multigjelae fairness constraints,
which we answer positively using the techniques in thisithes

Building on our algorithmic metatheorems for recurrentcresbility, we provide
algorithmic metatheorems ftwgic model checkingver word/tree automatic systems.
In particular, we consider the LTL (or fragments thereof)dalochecking problems
with multiple regular fairness constraints. Fairness tramsts are standard ways of
eliminating executions that do not represent actual patite real-world systems,
i.e., “spurious” executions that are introduced by absitvas (cf. [BBF01]). Reg-
ular languages give powerful ways of expressing fairness;iwcannot be expressed
in LTL alone. Our results are as follows. To begin with, we whbat if we ad-
ditionally require the subclass of word/tree automatic systems to blsed under
products with finite systemthen we obtain decidability of the full LTL model check-
ing with multiple regular fairness constraints. We will ubés algorithmic metatheo-
rem for uniformly deriving decidability with optimal (or me-optimal complexity) of
LTL model checking with multiple regular fairness consttaiover pushdown systems,
prefix-recognizable systems, and extensions of revematdied counter systems with
discrete clocks and one free counter. The condition of ceosmder products with
finite systems turns out to be rather restrictive. For thesom, we provide a weaken-
ing of this condition, which we caltlosure under taking subsystenkhis condition
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is rather weak and is satisfied by virtually every class ohitdistate systems. Our
second algorithmic metatheorem is thatiifsatisfies this condition together with the
condition for recurrent reachability, we have decidapitit the fragments LTIFs, Gs)
and LTLget Over C with multiple regular fairness constraints. These fragimeh LTL
are sufficiently powerful to express many interesting sdigeness constraints. More
importantly, we use this algorithmic metatheorem to giwe decidability/complexity
results over many of the classes of infinite-state systems.

Additionally, we build on top of our algorithmic metatheors for recurrent reach-
ability to obtain algorithmic metatheorems for extensiaidirst-order logic with
reachability and recurrent reachability operators (gmgsenriched with path con-
straints). Similarly, we can apply these metatheoremsdorohg decidability results
over classes of infinite-state systems that have been @residth the literature.

Generic approaches are not without limitations. In paléicuvhen we consider
subclasses of counter systems (e.g. one-counter systeinswansal-bounded counter
systems), our generic approaches cannot immediatelyedeptimal complexity. We
address this problem by providing new techniques that asegded specifically for
these classes of systems.

First of all, we will develop techniques to compute Pariklagas of nondetermin-
istic finite state automata (as semilinear sets) in a moreiefti way. This technique
can then be used to derive an optimal complexity for LTL maghedcking with mul-
tiple regular fairness constraints over reversal-bourabeohter systems with discrete
clocks. We will also provide a kind of fixed-parameter tradity result for model
checkingeF-logic over reversal-bounded counter systems. Thesetsesate not pre-
viously known.

Finally, we will consider the problem of model checkigg-logic and first-order
logic with reachability over one-counter processes andawds of one-counter pro-
cesses with no bounds on the number of reversals. As we will $fiter, these classes
of systems form a natural subclass of programs with muliipeger variables and
simple synchronizations between the variables. To protiengpcomplexity for these
model checking problems, we will first introduce new substasof Presburger arith-
metic and prove that they have good complexity (all beR&PACE). The optimal
complexities of the model checking problems are then ddrinepolynomial reduc-
tions to the membership problems for these subclasses sihlger arithmetic.
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1.4 Organizations

The thesis is organized as follows. We shall first recall ssag/ preliminaries in
Chapter 2. The contents after Chapter 2 are divided int@ thagts:

1. Part | contains generic techniques for infinite-state ehatiecking. In partic-
ular, we shall review basic results on word/tree automadigsition systems in
Chapter 3. In Chapter 4, we will prove algorithmic metatteeas for recurrent
reachability properties and their extensions over waed/automatic systems. In
Chapter 5, we will extend the algorithms from Chapter 4 tadegodel check-
ing. We will use these metatheorems in the correspondingtehao derive
some known or previously unknown decidability/complexigults in infinite-
state model checking. In Chapter 6, we will study more apgibeis of our
algorithmic metatheorems.

2. Part Il contains specific techniques. In particular, wiedeial with model check-
ing problems over reversal-bounded counter systems and ékiensions in
Chapter 7. In Chapter 8, we will study model checking proldesaer one-
counter processes. Finally, we will consider model chegkiroblems over net-
works of one-counter processes in Chapter 9.

3. Part lll contains a summary of the results in the thesisfatae work.

As a convention, we shall udl to end remarks, ané (resp. O) to end examples
(resp. proofs).



Chapter 2
Preliminaries

In this chapter, we shall fix some notations that will be usethe sequel, and review
basic definitions and results from automata theory, coniyléxeory, and logic. The
reader is assumed to have basic familiarity with these st&jéhis chapter is orga-
nized as follows. In Section 2.1, we fix some general mathealatotations that we
shall use throughout the thesis. Automata theory is pertiegshost important tool in
the thesis. We shall review necessary preliminaries frotoraata theory in Section
2.2. In Section 2.3, we review standard definitions and te$tdm computability and
complexity theory. Most mathematical structures that wievicounter in the sequel
can be formalized as transition systems or logical strestover some vocabularies.
We shall review them in Section 2.4. Finally, Section 2.5ee the logics and prop-
erties that we will deal with in the sequel.

2.1 General notations

Most mathematical notations and terminologies that we nghis thesis are fairly
standard. For the sake of completeness, we shall mentioa sbthese in this section.

Some notations from set theory We use standard notations for set operations: union
(U) , intersection ), set difference)(), Cartesian productq), and power set (e.g.52

for a given seB). Givenn setsS,, ..., S,, their producf]'; S is the sef{ (s1,...,S) :
Vie[1,n)(s € §)}. If S =--- =S, then this set is also writte§]. Denote byw the
least infinite ordinal.

13
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Sets of numbers and vector spaces Let N be the set of nonnegative integers. As
usual, we us&, andZ to denote, respectively, the set of real numbers, and the set
of integers. We also often use such notation®Rag and Z-o, which in this case
mean the set of nonnegative real numbers and the set ofygositegers, respectively.
Given two integers < j, we use interval notations of the forfn j] to denote the
set{i,i+1,..., ]} of integers (instead of reals), which is more standard inpmaer
science. Similarly, we shall use notations lifigj] to mean the sdf, j] but excluding
extreme points (in this cas¢ Logarithm notations used in this thesis has base 2.
When we fix some vector spaf, we use0 to denote the elemert0,...,0) in RX.

We shall also denote bje }¥_; the standard basis f@&*, wheree denotes the vector
with all-zero entries except for theh.

Partial orders ~ Recall that a partial order on a setSis well-foundedf there does
not exist a strictly decreasing infinite sequesge- s; > ... of elements frons. An
elements of Sis said to be<-minimal, if all S € Swith s’ < ssatisfies=7¢.

In the sequel, we shall reservefor the component-wise partial order 8, i.e.,
(ai,...,a) = (bg,...,by) iff & <b; foralli € {1,...,k}. Dickson’s lemma [Dic13]
states tha is well-founded.

Asymptotic notations We use the following standard asymptotic notations, espe-
cially when measuring the computational complexity of aytem: big-ohO(), small-
oho(), and big omeg&().

Arithmetic on 22" First, we extend standard arithmetic operations (additsutp-
straction, and multiplication) to tuples in a componens@vmanner. These can be
further extended to sets of tuples as follows. Given two SgtS, C 7ZX, we define the
operation® € {+,—,-} on them as followsS; © S :={viOV2: V1 € §,v2 € S}.
Forne N and$ C N, we shall also writen® S, to mean{n} ®S. An arithmetic
progressions any set of numbers of the forax-b- N for somea,b € N. The number

a (resp.b) is said to be theffset(resp. theperiod) of a+ bN.

2.2 Automata theory

In this section, we shall review some basic definitions asdlte from automata theory.
In particular, we will look at finite-state automata on finiterds, finite trees-words,
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and w-trees. We will also briefly recall pushdown automata andiextAree gram-
mars used as generators of languages of finite words. Fimalyill look at Parikh’s
Theorem, which relates the sets of letter-counts of langsiagcognized by regular
languages and context-free languages (on finite words)andisear sets. For a more
thorough treatment of the subject, the reader is referr¢dn97, Sip97, Tho96].

2.2.1 Automata over finite words
Languages over finite words

An alphabetZ is simply a finite nonempty set détters We say that is k-ary if

|Z| = k. A word (or string) overX is a finite sequence = a; ...a, Wherea € X for
each I<i<nandneN. If n=0, thenwis the uniqueempty worct. For 1<i < j<n,

we write w[i, j] to refer to the wordya,1...a;. The wordwli, j] is asubwordof w.
Note also that]i,i] refers to thdth lettera in w. For convenience, we shall also use
w(i] for wii,i]. Given two wordsu = a;...an andv = by...bn, theconcatenation v

of u andv is the new word; ...anm, Wherea, i := bj for each 1<i < m(e.g. the
concatentation ochbawith bbbis ababbl). Note thate is the unique word satisfying
€.u=u.e = ufor each wordu overZ. For convenience, we shall often writg instead

of u.vin the sequel. Given a numbare N, we definew" as the concatenation of
with itself n times (e.g. fow = ab, we havew = ¢, w! = w, w? = abab). A word

W = a; ...an haslength|w| = n. Note thate| = 0. For a given lettea € X, we denote
by |w|a the number of occurrences of the lettein w (e.g. |aabd,; = 3). We denote
by =* (resp. 1) the set of all words (resp. nonempty words) oXerin the sequel,
when we omit mention ok when referring to these notions, we tacitly assume some
underlying alphabeX.

A language(over) is any subser C >*. We shall define a number of useful op-
erations on languages. Standard set operations such as(upiantersection((), and
complement\) — also known adoolean operations— can be applied to languages
as usual. For a languagg we useL to denote the complemeit \ £ of £. Given
two language< and L’ overZ, we define theiconcatentation

L.L={uv:ue L,ve L'}

As before, we will mostly use the notatiah.’ instead of£.L’. For eachn € N, we
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define£" and L=" to be the languages defined as follows

L" = {ui...Up:Ug,...,UnE€ L}
n

LM = YLl
i=0

Finally, we define th&leene staiof L to be the language

o=

ieN
Regular languages and regular expressions

We now recall the notion of regular languages, along witlul@gexpressions as their
standard finite representations. We begin by recallingyhtax ofregular expressions
e over an alphabef using the standard Backus-Naur Form:

g€ =¢g|la(acy)|e+€ |ed |¢.

The three operators here are uniaer),(concatenation.), and Kleene star«). The
language/(e) generatedy a regular expressiancan be defined by induction:

o L(g):=E.

L(a):={a} for eachac Z.

L(e+€):=L(e)UL(€).

L(e€):=L(e).L(€).
o L(€):=L(e)".

Let us now define some syntactic sugar. We shall allow theesgprn> with the
obvious meaning (Z) = . When the meaning is clear, we shall also weiéeinstead

of e.€ for two given regular expressioeande’. An example of a regular expression is
(ab)*+a*, which describes the set of all words that are of the f¢ay)" or a" for some

n e N. To minimize the use of brackets ‘(" and’)’, we assign an @per precedence in
the following order (highest to lowest): *’, ‘., and ther*. Furthermore, observe that
both of the operators ‘+’ and ‘. are associative(e+ (€ +€’)) = L((e+€) +¢€’)

and L(e.(€.€¢)) = L((e€).€'). Therefore, we will write(ab)* + b* + a* instead of
((ab)*+Db*) +a*. Regular languageéoverz) are those languages that are generated
by some regular expressions (o8t We now state a standard result about regular
languages (e.g. see [Koz97] for a proof).
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Proposition 2.2.1 Regular languages are effectively closed under unionrsetgion,
complementation, composition, and Kleene star.

Finite automata

We now recall the notions of finite automata. ndndeterministic word automaton
(NWA)over an alphabel is a tupleq = (Z,Q, ,Qo, F) where

e Qis afinite set oftates
e Qo C Qis a set ofinitial states,
e F C Qis a set ofiinal states, and

e 0 C QxZxQisatransition relation

We shall useStateg 4) to denote the sé of states of4. As usual, we shall also treat
the transition relatio® as a transition functiods : Q x = — 2% such thaty € & (g,a)

iff (g,a,d) € 6. If |Qo] =1 and|d(g,a)| < 1 for eachg € Q anda € Z, then we say
that 4 is determinsitic In this case 4 is a DWA (deterministic word automaton). A
pathttin 4 fromqe Qtod € Qs simply an interleaving sequenpgaipz . .. ampm
of states inQ and letters irx such thatpi 1 = d(pi,ai+1) for eachi € [0,m). Itis said
to be arun if pp € Qp. We shall also use& (1) to denote thepath labels a...an,
and say thattis a path on (input) a...ay. For convenience, we shall sometimes
omit the path labels fromm, and simply refer to it as a patin= pp... pm on the word
a;...am. In addition, the patht has length] = m, and we leffirst (1) := po (resp.
last(7) := pm) denote the initial (resp. end) state in the pathror 1<i < j <m, we
shall use the notatiorti, j] (resp. 1(i)) to denote the patipiaj 1pit1...ajp; (resp.
nodep;). Given two pathst= ppa; ... pm andm = pmam+1.- .. Pn (With m< n), we let
o W denote the concatenated paida; ... pnam.1... Pn. A path that ends in some
final stateq € F is said to beaccepting The NWA 4 is said toacceptthe wordw € *
from q if there exists an accepting path @fonw from g. When we say4 accepts the
word w without mention of the statg, we tacitly assume that is the initial state of
4. The language.(A4) acceptediy 4 is simply the set of words ovex accepted by
2. As usual, for clarity we may define a finite automaton by dreyan edge-labeled
directed graph whose nodes (resp. arcs) define the staggs (teansitions) of the
automaton. In the sequel, we use filled circles to denote $itaies, while the initial
state is defined by drawing a source-less incoming arc to a.nédr example, the
language/((ab)* + a*) is accepted by the automaton in Figure 2.1.
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Figure 2.1: An NWA recognizing the language L((ab)* +a*).

Remark 2.2.1 Recall that our definition of NWAs allow more than one initshtes.
This is done only for convenience since we may easily coostm equivalent NWA
with only one initial state by adding one extra state. In teguel, we shall of-
ten assume that an NWA has only one stggeand write (Z,Q,d,qo, F) instead of

(Z7Q7 67 {q0}7 F) u

Complexity measure

For the purpose of complexity analysis, we shall define cemfyl measures for au-
tomata and regular expressions.

We start with regular expressions. The sj&l of a regular expression can be
defined inductively as follows:

1. foreacha e Z,

all :=1,

2. le+€| = €| +]€|+1,
3. |e€| = |el+|I€] +1, and
4. |lef]] = el + 1.

In other words,||e|| is the number of nodes in the parse treeeofObserve that the

number of bits needed to write an expressas at mositO(||e|| x log|Z|).

We now define computational complexity measures for NWAsveGian NWA
A4 =(2,Q,0,Qp,F), the easiest, but less precise, measure can be obtainedd&y me
suring the numbefQ| of states and the sizZ&| of the alphabet separately. Such a
measure is reasonable since all other parametefsae polynomial inQ| and |Z|,
e.g.,|8| < |QJ? x |Z|. On the other hand, when a more accurate analysis is desieed,
shall instead use the following measure. ll&t|| be the number of pair&y, q’) such
that(g,a,q’) € d for somea € Z. In other words|| 4|| denotes the number of different
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unlabeledtransitions ind. Then, assuming that each stateQroccurs ind at least
once (by easily removing isolated states in linear timeghgaarameter ird can be
expressedinearly in || 4|| and|Z|. For example, the numbé®)| of states is at most
14
of bits needed to write down the automaton is at n@gt4|| log||A4|| x |Z|log|Z]). In

, and the number of transitions bl is at most|4|| x |Z|. Moreoever, the number

the sequel, we cal|4|| the (unlabeled transition) sizef the NWA 4. When we intend
to measure the number of states as the complexity measushalldoe explicit about
this.

Some basic results

We now state several basic results from automata theoryfmregr words. We first
start with a standard result concerning the equivalencegaflar expressions and finite
automata (e.g. see [Koz97] for a proof).

Proposition 2.2.2 Given a language&l overZ, the following statements are effectively
equivalent:

(1) £ is generated by a regular expression.
(2) L is accepted by an NWA.
(3) L is accepted by a DWA.

Furthermore, there is a linear-time translation from (1)(®).

All the translations in the proposition above run in tiatenostexponential in the size
of the input (e.g. see [Koz97]). It turns out treterytranslation from (2) to (3) could
be exponential in the worst case even over unary alphabe8@l.nn particular, there
exists a clas$4n }ncz., of NWASs 4, with n states over the alphabgd} whose small-
est equivalent DWA require at leas®@M09") states. When the alphabet contains at
least two letters, the lower bound can be improvedt@e2g. see [Var95]). In addi-
tion, the lower bound of 2v09M holds also for translations from (1) to (3) even over
unary alphabet since NWAs and regular expressions are aiaily equivalent over
unary alphabet [Chr86, Mar02, To09b]. Furthermore, thése axists an exponential
lower bound for translations from (3) to (1) even over alpdtaif size four [GNO8].

In the sequel, we will meet several complex constructiorer NWVAs, many of
which can be understood in terms of simpler constructioes BYVAs such as boolean
operations. Therefore, we next state basic results on congpNWASs recognizing
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boolean combinations of languages of the given NWAs (see9KpVar95] for more
details).

Proposition 2.2.3 Given NWAsZ and B over the alphabek:

(1) we can compute in time(| x (]|4]| +/B||)) an NWA of sizdl4|| + || B|| rec-
ognizing the languagé (4) U L(B),

(2) we can compute in time(@| x (]|4|| x ||B]|)) an NWA of sizd 4|| x || B|| rec-
ognizing the languagé&(A4) N L(B), and

, We can compute in exponential time a DWA vdthstates

(3) if n=|Stateg4)
recognizing the languagé(4).

Proof. We shall describe only the first and the second construgtiorhe third is
done by the standard subset construction (e.g. see [KozZ&B5)), which we will
not encounter in this thesis. Therefore, suppose fhat (£,Q7,87, Qf,F?) and
B = (2,Q%,8%,QF,F?). without loss of generality, we assume tigt N Q% = 0.

Let us start with the construction for (1). Define the NWA= (Z,Q,d,Qo,F) as
follows:

e Q:=Q7UQZ.
e Qo:=QFuQ}.
o 5:=5"U8%.
e F:=FAUF?%.

It is easy to see that(7) = L(A4)U L(B) and that| Z || = || 4|| + ||B]|. The construc-
tion can also be easily implemented in ti@€Z| x (|| 4|+ ||B]|))-

We now describe the construction for (2), which is also knasproduct construc-
tion. Define the NWAT = (Z,Q, 8, Qo, F) as follows:

e Q:=Q7x Q%
e Q:=0QF xQf.
e 3((9,q),a) :=&%(qg,a) x 8%(q,b) forallgc Q%, ¢ € Q%, andac 3.

o F:=F1xF%
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Intuitively, the automator?” simulates both¥a and ‘B on the given input wordimul-
taneously It is not hard to see that(7) = L(A4)N L(B) and || 4| = || 4| x ||B|.
Furthermore, this construction can be easily implememté¢idieO(|Z| x ||| x ||B||).
O

We now state the following basic result on checking langueagptiness and mem-
bership for NWAs. The proof of the following proposition che done by using a
simple reachability algorithm (e.g. see [Var95]).

Proposition 2.2.4 Checking whether the language recognized by a given NWN&
empty can be done in time({(?4|| x |Z|). Consequently, checking whether a word
w e Z* is a member of(4) is solvable in time Qw| x ||A4]| x |Z]).

Star-free regular languages

Star-free regular languages form an important subclasseftlass of regular lan-
guages. They are precisely the languages over the alpbajesteratedtar-free regu-
lar expression®verZ, which are defined by the following grammars:

e€:=¢cla(ac)|e+€ |e€ |e

The semantics foe+ € ande.€ are the same as the regular expressions. We define
L(e) =Z*\ L(e). Therefore, star-free regular expressions do not allovekéestar
operator, but instead allow complementation. Althougindsad regular expressions
do not have built-in complementation operator, it is easye® that they are definable
using regular expressions (e.g. using Proposition 2.28)the other hand, it is well-
known that star-free regular languages actually form agrepbclass of the class of
regular languages [MP71]. Other proofs of this result cao &le found in [Lib04,
Tho96]. We shall see later that there is a tight connectidwéen star-free regular
languages and the class of languages definable in first-lmgierover finite words.

We now touch the computational complexity aspect of stee-fregular expres-
sions. The most important such result for the present thesimt checking whether
two star-free regular expressions over an alphabet comgiat least two letters gen-
erate the same language is decidable but is nonelementaryannot be decided in
k-fold exponential time for some integler> O.

Proposition 2.2.5 ([Sto74]) The language equivalence problem for star-free regular
expressions over an alphab®ewith |X| > 2 is decidable but is nonelementary.
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This proposition has been commonly used in the literaturelésiving fundamental
complexity lower bounds for translations between autonaawd logic (cf. [Sto74,
Tho96]).

2.2.2 Automata over w-words
Languages over w-words

Fix a finite alphabek. An w-word overZ is a mappingv from Z- to Z. As for finite
words, we will often think ofw as the infinite sequenag(1)w(2).... Let *® denote
the set of alko-words overz. We use the notatiow[i, j| and for nonnegative integers
i < j to denote the finite worav(i)...w(j). Similarly, w[i,) denotes thev-word
w(i)w(i+1).... Given a finite wordw =a;...a, € Z* and anw-word w € %, we
define their concatenation as tteewvord w.w' (also written asvw/) as follows

L a; ifl1<i<n
(W) (i) = { W (i —n) if i > n.

An w-word language over the alphaleis simply a subset oX®. As for finite
words, we could apply the standard set operations (unidersection, and comple-
ment) tow-word languages. Given a finite word languagec ¥* and anw-word
languager’ C 2%, we could define theiconcatenatioras thew-word language

L.L={uviue L,ve L'}.

We shall mostly write£ £’ instead of£. L’ when the meaning is clear.

w-regular languages

As in the case of finite words, we can define the notiowwoégular languages as those
w-word languages that can be finitely represented by finiteraata in some way. Let
us now make this notion more precise. Given an NWA:= (£,Q,d,Qo, F) and anw-
wordw € 2%, arun of 4 on wis a functionm: N — Q such thatt(0) € Qp and, for each

i € N, we have(t(i),w(i+ 1), (i + 1)) € d. We say thattis said to beacceptingif
there exists infinitely many indicés N such thati(i) € F. In other wordsF is visited
infinitely often inTt Such an acceptance condition is commonly referred Biasi
acceptance conditionThe w-word w is acceptedby 4 if there exists an accepting
run of 42 onw. The language(4) acceptedby 4 is simply the set of alto-words

w € Z® that are accepted bg. When using NWAs as acceptorsw@fword languages,
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a,b a
I
Figure 2.2: An NBWA recognizing the language {a,b}*{a}®.

we refer to such NWAs asondeterministic Bchi word-automata (NBWAWhen the
NWA is deterministic, we say that it @eterministic Bichi word-automaton (DBWA)
A language”L C X% is said to bew-regular (or simply regular, when the context is
clear) if it is accepted by some NBWA ovEr For example, the languade, b}*{a}®
is accepted by the NBWA depicted in Figure 2.2.

As in the case of finite wordsp-regular languages also satisfy desirable closure
properties including union, intersection, and compleraton. On the other hand, DB-
WAs are not as powerful as NBWAs, unlike in the case of finitedso For example,
the languagda, b}*{a}* accepted by the NBWA in Figure 2.2 cannot be accepted by
a DBWA (for a proof, see [Var95]). Although there are detenstic automata models
onw-words that capture-regular languages, we will not encounter them in the sequel

We now state a basic result on emptiness checking for larguesgognized by
NBWAs. The proof of the following proposition can be foundWwar95].

Proposition 2.2.6 Checking whether a given NBWArecognizes an empty language
can be done in linear time.

Loosely speaking, the proof of the aforementioned promrsigoes as follows. We
first run Kosaraju’s linear-time algorithm (see [AHUS83])find the strongly connected
components of the NBWA (viewed as a directed graph). Checking emptiness, then,
amounts to finding a path from some strongly connected coemidhat contains an
initial state to a strongly connected component that costadme final statg- andat
leastone edge (so that there is a non-empty cycle that visits thédtategr).

2.2.3 Automata over trees

A direction alphabety’'is a nonempty downward-closed subset of theZsat of posi-
tive integers, i.e., if € Yand 1< j <, thenj € Y. Given adirection alphabel, atree
domainoverY'is a non-empty sdd C Y* that satisfies the following two properties:

e D is prefix-closed, i.e., for each € Y* andi € Y, wi € D impliesw € D, and
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Figure 2.3: An example of a 3-ary tree over {f,g,a,b} (left) depicted together with its

tree domain (right) whose elements are ordered by the prefix-of relations.

e forallwi e D and 1< j <, itis the case thawj € D.

For a nonempty se&X called alabeling alphabetatree overZ with direction alphabet
Yis a pairT = (D, 1) whereD is a tree domain oveY andt is a function mappind
toX. A k-ary tree ovek is a tree oveE with direction alphabeY' = {1, ... k}. Unless
otherwise stated, we shall say “trees” to mé&eary trees, for some positive inteder
over afinite labeling alphabet with &nitetree domain. Figure 2.3 gives an example of
a tree depicted together with its tree domain. When the megasiclear, we shall omit
mention ofY and simply say thal is a tree ovek (or just “tree” whenX is clear).

We shall now define some standard graph-theoretic terngieddor dealing with
trees. Fix &-ary treeT = (D, 1) over the labeling alphab&t The elements ob are
also callechodes Therefore, we shall catl anode labelingand that each nodec D
is labeledby t(u). Thelevelof a nodeu € D, denoted byevel(u), is simply the length
|u| of the wordu. Theheightof the treeT is defined as % max{level(u) : uc D}. We
shall refer to theoot of T as the the node € D. Wordsu € D such that nai is in D
are calledeaves If v e D andvi € D for somei € Y, then we calli a child of vandv
the parentof vi. Likewise, ifvi € D andvj € D for somei, j € Y, then we say thati
andvj aresiblings In addition, ifv,vw € D for somew € Y*, thenvwis adescendant
of v andv an ancestorof vw. A path (or branch starting at a nod® € D is simply
a sequencer = vy, ..., V, of nodes such thatp = v andy; is a child ofv;_1 for each
i=1,...,n. The treeT is said to becompletdf, wheneveru € D andui € D for some
i €Y, itisthe casethatje Dforall j €Y.

The notion of “prefix” for words has a natural analogue foetreWe shall define
this next. Fork-ary treesT = (D,t) andT’ = (D, ') over the labeling alphabét,
we say thafl extends T, written T’ < T, iff D’ C D and, for eachu € D’, we have
T(u) = T'(u). Observe that the relatiod reduces to the prefix-of relations in the word
case. In the sequel, we call the relati®on TREE(Z) to be theree extension relatian

We now define the notion of “subtrees”, which is the tree agadoof the standard
notion of “suffix” of a word. Giverk-ary treesl; = (D1,11) andT, = (D2, T2) over the
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Ty T[Ty /ul

Figure 2.4. A depiction of the subtree substitution operation. Here the subtree rooted

at u on the left is replaced by the tree T, which is the subtree rooted at U on the right.

labeling alphabek, we say thafl, is asubtree of T rooted at ue D1 if D2 coincides
with {v: uve D} and thatta(v) = 11(uv) for eachv € Da. This also motivates the
substitution operatiomn subtrees. Givek-ary treesT; = (D1,11) andT, = (D2, 12)
over the labeling alphab&tand a nodel € D1, we writeT1[T2/u] for the tree obtained
by replacing the subtree df rooted atu by T,. More precisely, the tre& [T,/u] is
defined to be the treé = (D, 1) where

D := (D1\{uveD;i:ve{0,...,1}*})UuDy,
W) = {T1<W) ?fWE(Dl\{UVED]_IVE{O,...,l}*}),
T2(V) if w=uve uD,.

See Figure 2.4 for an illustration. The subtree substitutiperation can also be easily
generalized to take into account multiple substitutionsve@k-ary treesTy,..., Ty
and nodes, ..., Uy in Tg that are incomparable with respect to the prefix-of relaion
over words{1,...,k}* (i.e. nou; is an ancestor ofi; for all distinct indicesi, j),
we defineTp[T1/u1,..., Tn/un] to be the tred...(To[T1/u1])...)[Th/un) Obtained by
applying the subtree substitution operations for multtptees (the order of which is
of no importance).

The set of allk-ary trees ovek is denoted by REE((X). A tree languageover
TREE(Z) is simply a subset of REE(Z). Observe that word languages can be
thought of as a subset oREE; (Z).

Regular tree languages

To define the notion of regular tree languages, we shall negistandard definition
of tree automata. Atop-down nondeterministic) tree automatover TREE(X) is a
tuple 4 = (%,Q, d,Qo, F) where
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Figure 2.5: The tree depicted here is virt (T), where T is the tree from Figure 2.3.

e Qis afinite set oftates

e Qo C Qis a set ofinitial states,

e F C Qis a set offinal states, and

e Jis atransition relation i.e., a subset o x = x QK.

Note that the parametkiisimplicit from the representation ¢f, i.e., it can be deduced
by inspecting the transition relatian In the sequel, we denote [8tates.4) the set
of states of4. For our constructions, it will be most conveninent to defines on
trees by attaching “virtual” leaves. Giverkeary treeT = (D, 1), we definevirt (T)
to be thek-ary tree(D’, 1) over the alphabel’ := Z U {$}, where $¢ Z, such that
D'=DuU{vi:veD,1<i<k}and

() = { T(U) if ue D,

$ otherwise.

See Figure 2.5 for an example. Notice that (T) is a complete tree. Aun of 4
on T then is a mapping : D’ — Q such thatp(€) € Qo and, for each node € D’
with childrenul, ... ,uk € D, we have(p(ul),...,p(uk)) € d(p(u),t(u)). A runis
said to beacceptingif p(u) € F for each leafu € D’. A treeT € TREE(Z) is said
to beaccepteddy 4 if there exists an accepting run gfonT. The language (1)
recognized by is the set ok-ary trees ovek accepted byd. Such a language is said
to betree-regular In the sequel, we shall abbreviate nondeterministic tié@maata as
NTA.
For the purpose of complexity analysis, we shall now defiesitte|| 4 || of an NTA
= (Z,Q,9,q0,F) overk-ary trees. Let|4|| be the number of tuple®, g, ...,0) €
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Q%1 such thal(g,a,q, ...,q«) € & for somea € X. As for automata over finite words,
without loss of generality, we may assume that each st&eiccurs ind at least once.
In this case, the number of bits needed to repregestat most

O(llal > [2] x klog(|Q]) x log(|Z])),
which is polynomial in both| || and|Z|. This justifies our definition off 4||.

Remark 2.2.2 Several important remarks are in order. Firstly, there $® @ notion
of bottom-up nondeterministic tree automatehich recognize precisely regular tree
languages (cf. [CDG07]). Furthermore, the translations between these twaesepr
tations can be performed in linear time. Secondly, it is uisef keep in mind that,
although we may define thaeterministictree automata with respect to these two fla-
vors of tree automata, only the bottom-up notion gives thiepfmwer of regular tree
languages. Since we will not need it in the sequel, we shalidafurther mention
of deterministic tree automata. Finally, we cannot simg@guame that we only deal
with NTAs with only one final state (unlike in the case of word@mata). More pre-
cisely, the conversion from general NTAs to those with omlg &inal state might cause
an exponential blow-up in the size of the direction alphalmtidentally, if we have
“e-transitions” in our NTAs (which are abundant, among otharghe literature of
ground tree rewrite systems and ground tree transducer&{OD, L6d03, L6d06]),
the polynomial-time procedure of removing thesgansitions naturally yield NTAs
with multiple final states (see below). In contrast, it isgibke to assume that an NTA
has only onenitial state. This is because we can introduce a new initial sgasand
addlinearly many extra transitions in the standard way. In the sequelshed of-
ten assume that NTAs have only one initial state and wiit&, d, qo, F) instead of

(Z7Q7 67 {q0}7 F) u

Some basic results

Regular tree languages satisfies the same closure praptirdieare satisfied by reg-
ular word languages, e.g., union, intersection, and comgtegation. The following
proposition can be proved in the same way as Propositio &s2e [CDG 07] for a
proof).

Proposition 2.2.7 Given NTAsZ and ‘B over TREE,(Z):

e we can compute in time (| x (||4]| + ||B||)) an NTA of sizé| 4| + || B|| rec-
ognizing the languagé (4) U L(B),
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e we can compute in time(@| x || 4|| x ||B||) an NTA of siz€/4|| x || B|| recog-
nizing the language& (A4) N L(B), and

e if |Stateg.4)| = n, we can compute in exponential time an NTA itistates

recognizing the languagé(4).

Checking language emptiness (and hence membership) éoatitemata is also easy,
as in the case of word languages. The proof of the followirmgppsition can be found
in [CDG107].

Proposition 2.2.8 Checking whether an NTA = (X,Q,,Qo,F) over k-ary trees
(where k isnotfixed) recognizes a non-empty language can be done in tifjd [Ox
|Z|). Consequently, checking whether a tree=TD, 1) € TREE(Z) is a member of
L(A4) is solvable in time @D| x || 4|| x |Z|).

Nondeterministic tree automata with  €-transitions

We shall now introduce an extension of NTAs watiransitions. This is only done
for the purpose of convenience when describing the NTAs. gRiyuspeaking -
transitions are transitions of the forfg,q') for a pair of states of the automaton. Intu-
itively, if we imagine a top-down tree automaton that thatson a tred’, then at any
given nodeu of T when the the automaton is at staté can use the transitio(q, q')

to instantaneouslgwitch to the stateg at the same node More precisely, am-NTA

A4 over TREE((Z) is atuple(Z,Q,d,Qo, F ), whereZ, Q, Qo, andF are the same as for
NTAs and

e J is atransition relationcontaining transitions of the forrfg,a,qs,...,0k) €
Q x X x QK, or of the form(q,q) € Q x Q.

Before defining the languag&(4) accepted by the-NTA 4 above, we lets- denote
the transitive closure of(q,q) € Qx Q: (g,q) € d}. Define a new NTA (without
e-transitions)?’ := (Z,Q,d, Qo, F’) as follows:

e & ={(9,8,q1,..-,0) : 39 € Qsuchtha{d,a,qi,...,0) € dandg=- '}, and
e F':={q:3q € F suchthag = q'}.

AtreeT is said to beaccepted by if it is accepted by?'. Thelanguage£(4) of 4 is
defined to be the languagg4’) of 4’. The following proposition is now immediate.
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Proposition 2.2.9 Given ane-NTA 4 over TREE(Z) with n states, we may construct
an NTAA' over TREE,(Z) of size nx || 4| such that£(4) = £(A') in time O(|Z| x
nx[1A]))-

Notice that the parametér which isnot fixedfor the problem, does not get into the
exponent for the size and the computation time of the NI'Aln the sequel, we shall
usee-NTA solely for a descriptional purpose.

2.2.4 Automata over infinite trees

An infinite k-ary treeover the labeling alphabét is a tupleT = (D, 1), whereD =
{1,...,k}* andt is a mapping fronD to . Let TREE’(X) denote the class of all
infinite k-ary trees ovek.

Buchi-recognizable infinite-tree languages

In the sequel, we do not need the full power of regular infitiée languages, which
are usually defined by automata over infinite trees with pwacceptance conditions
such as Rabin, parity, and Muller [Tho96]. We shall only neatbmata over infinite
trees with Bichi accepting condition, which is well-knotarbe strictly less powerful
than regular infinite-tree languages (e.g. see [Tho96]kenh the case oto-word
automata.

A (nondeterministic) Bchi k-ary tree automatqrabbreviated as NBTA, ovex is
ak-ary tree automator = (%, Q, ,qo, F) that we defined for finite trees, except with
infinite trees as input. Given an infinite-trée= ({1,...,k}*,1), arunof Z2onT is a
mappingp : {1,...,k}* — Qsuch thap(g) = qo and, for each nodec {1,... k}*, we
have(p(vl),...,p(vKk)) € 8(p(v),T(Vv)). The runpis said to be accepting if, for each in-
finite pathrt= {vi }{* ; in the runp (viewed as an infinit&-ary tree) starting at the root
g, there exists infinitely many indicéssuch thap(vi) € F. In other words, for each
infinite path inp starting at the root, the Biichi acceptance conditionfavords is sat-
isfied. The languagé(A4) recognized by is the set of alk-ary infinite-trees ovek
that are accepted bg. Such an infinite-tree language is said tdikehi-recognizable
The proof of the following proposition can be found in [VW8g6although it was first
proved in [Rab70] for binary trees.

Proposition 2.2.10 Checking whether a giveniBhi tree automaton recognizes a non-
empty language can be done in quadratic time.
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2.2.5 Pushdown automata and context-free grammars

We now turn back to languages over finite wordscahtext-free grammar (CFGy
over the alphabel is a 4-tuple(Z,V, d, S) where

e V is a set ofnon-terminals
e S <V is aninitial non-terminal,
e Jis the set ofewrite rules which is a finite subset &f x (V x Z)*

When discussing context-free grammmars, the elemeriisacé also often calleter-
minals Given two sequences, € (V x Z)* of non-terminals and terminals, we
say thatp can beimmediately derivedrom a, written o = 3, if there exist words
uve (V x2)* and a rewrite rulgX,w) € & such thato = uXvandp = uwv. Let
=" denote the transitive-reflexive closure of this immediagawation relation=C
(V xZ)*x (VxZ)". We say thatr can bederivedfrom f3 if a =* 3. A sequence
v e 2* of terminals is said to bderivable byG if S =* v. The language.(G) gen-
erated byG is simply the set of wordsg € =* that are derivable by;. A language
L C ¥* is said to becontext-freef some CFGG generates. It is well-known that
context-free languages strictly subsume regular langiage

We now define pushdown automata, which are another modethatbame expres-
sive power as context-free grammars. Fix an (input) alphztaad let>, := XU {€}.
A pushdown automaton (PDA) over the input alphabet is a tuple(Z,I",Q, d,qo, F)
where:

e [ is afinitestack alphabetontaining the speciatack-bottom symb&ec I,

e Qis afinite set oftates

e (p is aninitial state,

e F C Qis a set offinal states, and

e dis atransition relation which is a finite subset dQ x X x TU{e}) x (Qx ™).

The PDAP is said to bee-freeif dis a subset ofQ x Z x ') x (Q x '*). A stack
content(with respect taP) is a wordw € Z*. The topmost symbol of the stack is on
the right. A configurationof 2 is a pair(qg,w) of stateq € Q and astack content

Lin the literature, stack contents are often written in thesrsed way, i.e., topmost symbol on the
left. As we shall see later, this convention is more suitét@ur purposes.
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w. Given two configuration$g,w) and(d',w) of 2 and the symbaoh € Z¢, we write
(g,w) —4 (d,w) if there exists a word € ' such that, for some wordse I' U {e}
andu’ € I'* we havew = vuandw = vu and that((q,a,u), (d,u’)) is a transition in
. Given an input wordr € =*, we write (q,w) —y (d',w) if there exists a sequence
ai,...,an € Z¢ of input letters (possibly interleaved with empty wordsgisthatv =

a1 ...an and there exists a sequence of configurati@aswo), . . ., (0n, Wn) of 2 such
that (do, Wo) = (0, W), (an,Wn) = (¢, W), and

(do,Wo) —ay --- —ay (Gn, Wn).

We say that? acceptsthe wordv € 2* if, for some final stategr € F, we have
(0o,$) —v (gF,$). ThelanguageL(P) of P is the set of words € Z* that are accepted
by . We say also thaP acceptsZ(P). The following proposition is well-known (e.g.
see [Sip97] for a proof).

Proposition 2.2.11 There exists a polynomial-time algorithm, which given a C&G
overZ, computes a PDA overX such thatL(G) = L(P). Conversely, there exists a
polynomial-time algorithm, which given a PDRAover %, computes a CFG; over
such thatZ(G) = L(P).

2.2.6 Parikh’s Theorem and semilinear sets

We shall now recall Parikh’s Theorem [Par66] — one of the eektbrated theorem in
automata theory — and its connectionsemilinear setsRoughly speaking, Parikh’s
Theorem states that the sets of letter-counts (a.k.a. Panikges) of regular languages
and context-free languages precisely coincide with sesali sets. Let us now make
these more precise.

Let us tacitly assume that our finite input alphabet {ay,...,a} has some to-
tal ordering<, saya; < ... < &. Given a wordw € %, we let P(w) be the tuple
(|Wlay,- -, |W[a,) € NK. In other words£(w) is obtained by “forgetting” the ordering
of the wordw, i.e., only count multiplicities of each letter in the alfpied>. TheParikh
image®(£) of the languager C Z* is simply the se{ P(w) : w € £} C NX, This def-
inition allows us to now talk about the Parikh images of (teguages of) CFGs and
NWAs.

Let us now recall the definition afemilinear sets For every vectov € ZX and
every finite setS= {uy,...,um} of vectors inZK, we write P(v;S) to denote theZ-
linear set{v+Zx",au; : ai,...,am € N}. The pairB:= (v;S) is said to be dinear
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basisfor P(v;S). Notice that there exist non-unique linear bases f@-linear set.
The vectow is said to be theffsetof B, and the vectorS the periods(or generator$

of B. A Z-semilinear seBis simply a finite (possibly empty) union @&-linear sets
P(v1;S1),...,P(vs;S5). In this case, we say thét = {(vi;S)};_; is asemilinear basis
for P(B) := S Likewise, semilinear bases f&are not unique. AZ-semilinear set
SC ZK is said to beN-semilinear(or simply semilineaj if it has a semilinear basis
with vectors fromNK only. The notion ofN-linear (or simply linear) sets is also
defined similarly. In the sequel, we shalbt distinguish (semi)linear sets and their
bases, when it is clear from the context. Thus, we shall usie ayphrase as “compute
a (semi)linear set” to mean that we compute a particular ijesar basis for it.

Remark 2.2.3 SinceZ-(semi)linear bases are simply a sequence of vectors fréaif

we could talk about their sizZgB|| when represented on the tapes of Turing machines.
In particular, we shall use botlmary andbinary representations of numbers, and be
explicit about this when necessal.

The connection between Parikh images of CFGs and NWAs antlirsean sets is
given by Parikh’s Theorem, which we shall state next.

Theorem 2.2.12 (Parikh [Par66]) Given a subset & NK, the following statements
are equivalent:

(1) Sis asemilinear set.
(2) S=P(L(A)) for some NWAF over: = {ay,...,a}.
(3) S=2P(L(G)) for some CFG G oveE = {ay,...,a}-

Furthermore, the translations among these finite represénts of the set S are effec-
tive.

The translations from (1) to (2) is rather obvious, which t&ndone in polynomial
time (provided that we represent numbers in unary). Thestsea simple polynomial-
time algorithm which, given an NWA, computes an equivaleRGJe.g. see [Sip97])
yielding a translation from (2) to (3). The non-trivial pastthe translation from (3)
to (1), which was given by Parikh [Par66]. We shall menticsoahat there are other
constructions from (3) to (1) with different flavors and teijues (cf. [Esp97b, Koz97,
SSMHO04, VSS05]). All these constructions run in exponefitiae (in fact, they pro-
duce exponentially many linear sets in the worst case). Ved she in Chapter 7
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that this cannot be improved even for CFGs over the fixed aigtta= {a}. On the
other hand, we shall give a direct translation from (2) toi(lhapter 7 that has a
polynomial-time worst case complexity when the size of tpdabet is fixed.

2.3 Computability and complexity theory

In this section, we shall recall briefly some standard cotscpm computability and
complexity theory (e.g. see [Koz97, Koz06, Pap94, Sip97jiore details).

2.3.1 Computability

For the sake of completeness, we shall briefly recall the idiefirof Turing machines.
A nondeterministic Turing machins a tupleM = (,I,Q,d,qo,gr, ), where the
following are satisfied:

e 2 is aninput alphabet

[ is astack alphabesatisfyingzu {0} C I'. HereO is a reservethlank symbal

Qs a set ofstates

Jo € Q is aninitial state.

gr € Qis anaccept state
e 0:(QxTI)x(QxTI x{L,R}) atransition function

The machineM is said to bedeterministicif o is a function fromQ x I to Q x I x
{L,R}. In the sequel, a Turing machine is deterministic, unlestedtotherwise. The
configuration of M is simply a word in the language*(Q x ')[*. The one-step
reachability relation— between configurations ¢#/ can be defined in the standard
way: ((q,a),(q,b,d)) € & is executed iff, whenever the machine is in stqtand
the tape cell currently pointed to by the machine holds theea then the machine
rewrites the valua by b, switches to statg/, and moves the pointer to the left if
d =L and to the right ifd = R. Without loss of generality, we assume that there is no
transition fromge. The machine is said to Helting on a wordw if every run of M
starting from the configuratiofg, O)w eventually reaches the staje or a dead end.
The machine is said to b®ltingif it is halting on every input word. For the case when
there exists a run gV that reachegr on an input wordv, we say that\ acceptshe
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wordw. Otherwise, it rejectsv. The languageL (M) acceptedoy M consists of all
wordsw € X* which are accepted b/

A languager is said to beecursively enumerable (r.eif)it is accepted by a Turing
machine. It is said to beo-recursive-enumerable (resp. co-r.€.)ts complement is
accepted by a Turing machine. It is said torbeursive(or decidabl¢ if it is accepted
by a halting Turing machin@/. In this case, we also say thatis decidedby 2.
Let Z‘i’ (resp. I'I‘i’) denote the class of r.e. (co-r.e.) Ianguages.Agedienote the class
of decidable languages. For agyof these sets, a languadeis said to beC-hard
if for each language’’ € C there exists a halting Turing machifié which given an
input wordw outputs another word (w) such thatw € £ iff M (w) € L. Such a
Turing machine is also said to bgmany-one) reductianThe languager is said to
be C-complete ifitis inC and isC-hard.

It is well-known thatz9 N N9 = A, but=? =£ N9. These sets can be generalized
in a natural way to form aarithmetic hierarchy(cf. [Koz06]). There are languages
that are beyond this hierarchy. In the sequel, we shall greefe languages that are
s1-complete. In recursion theor§} can be understood as the class of all relations
R C N" that can be defined by a formula of the form

00, X, ),

wheref ranges over number-theoretic functions (i.e. domains andiornains aréN)
and ¢ is a first-order formula in number theory (i.e. quantificatiaver numbers).
Z%-complete languages are also often said thigély undecidable

Remark 2.3.1 As often done in computability theory, the term “languagesl’hence-
forth be synonymously identified with “problems”.

2.3.2 Complexity theory

In computational complexity, we restrict ourselves to dabie languages and try to
classify difficulty of these languages by restricting reses such as time, space, and
nondeterminism. Given a halting Turing machift€ and an input wordv, we can
measure the time (or the number of steps) or space that areeédpo reach a halt. The
time (resp. space) complexity of a Turing machine is themeefico be the function

f : N — N such that for everyn € N the maximum amount of time (resp. space)
required by before it terminates on an input word of lengtis f (n).
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Let us now recall some standard complexity classes. For@iomf : N — N,
we defineDTIME(f(n)) (resp. NTIME(f(n))) to be the class of problems solvable
by a deterministic (resp. nondeterministic) Turing maettimat runs in time(f(n)).
Similarly, we defineSPACE(f(n)) to be the class of problems that are solvable by a
Turing machine that useS(f(n)) space. Let us define the class gxjf functions
for everyk € N by induction. Let exp be the class of all polynomial functions. By
induction, the class exgk > 0) contains all functions of the form®2' ("), where f
is a function in exp_;. By convention, exp stands for expWe may now define the
following standard complexity classes:

e P is the class of problems solvable in polynomial-time.
e PSPACE is the class of problems solvable in polynomial space.

e NP is the class of problems solvable by nondeterministic pahyial-time Tur-
ing machines.

e NPSPACE is the class of problems solvable by nonterministic polyrabspace
Turing machines.

e k-EXP is the class of problems that are solvable in timgexp
e EXP is the class IEXP.

The following containtments are standard:
P C NP C PSPACE = NSPACE C EXP C 2-EXP C ...

Here, set containments of the formare not known to be strict. Each of these com-
plexity classes have complete problems under many-onetieds that run in poly-
nomial time. A decidable problem is said to lementaryf it is in k-EXP for some
k € N. Otherwise, it is said to beonelementary

For a complexity clasg’, we write caC for the set of problems whose complements
are solvable inC. For examplecoNP is the set of problems whose complements are
in NP. While the classeB, PSPACE, and kEXP closed under complements, it is not
known whetheNP = coNP.

We now define polynomial hierarchy. Let

A =55=nf=P.
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For eachk > 0, let

AP = P,
5P = NP,
I'IE = coNPZEfl.

Here, the notatio =1 refers to the class of problems solvable by a polynomiaktim
machine that can make calls to an oracle solving a problétfl ip Oracles are viewed
as blackboxes and so their computation time is measured@sséant. The notations
NPZ-1 andcoNPZ-1 can also be defined in a similar way. Each of these classes are
known to have complete problems. &t be the union of aIEE (k € N). Itis known
thatPH C PSPACE. In Chapter 8, we will see the complexity clas®&§ andPNPllod],
The former is simply the clas{sg, while the latter is the class of problems solvable by
polynomial-time Turing machines that can only make lodpamically many calls toNP
oracles. Clearly, we haveNPllod c PNP The clasNPlodl js also known to contain
NP, coNP, and even the entifgoolean hierarchyWe shall only mention the first level
of boolean hierarchy, which is the cla3® containing problems of the form

{tvyw):ve Lwe L}

for someNP languageL andcoNP languager’.

We shall now briefly recall the notion of alternating Turin@chines (see [Koz06,
Sip97] for more details). Alternating Turing machines carviewed as generalizations
of nondeterministic Turing machines with universal statdsre precisely, each state
of a Turing machineM is declared either existential or universal. To accept from
a configurationc = v(g,a)w of M whereq is existential, some runs o¥# from c
will have to result in an accept. On the other hand, to acaeph fa configuration
c = v(q,a)w of M whereq is universalall runs of M from c will have to result in an
accept. As before, we can define the amount of time/spacehysgt algorithm on
an input wordw and define the time/space used by the algorithm in terms wiitse-
case complexity. We writTIME(f(n)) (resp.ASPACE( f(n))) to denote the class of
problems solvable by an alternating Turing machine in tiresgd. spacep(f(n)). In
the sequel, we will meet the complexity classes:

e AP = ATIME(exp(n)).

e ALOG = ASPACE(log(n)).
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o APSPACE = ASPACE(expy(n)).

It is known thatAP = PSPACE, ALOG = P, and APSPACE = EXP. Furthermore,
poly-time alternating Turing machines with a fixed numbeatiérnations (between
existential states and universal states) in all their fdssuns accept only languages
in PH.

Finally, following [Koz06], we define the notation

STA( fl(n>7 f2(”)7 f3(n)>

to denote the class of problems solvable in spi¢n), in time f2(n) and with f3(n)
alternations. We also writeto denote unbounded. For example, we have the follow-

ing:
e STAexp(n),*,*) = PSPACE,
o STAx,exp(n),*) =P, and

o STAx,exp(n),exm(n)) =AP.

2.4 Structures and transition systems

In this section, we recall the standard definitions of (laistructures and transition
systems. For a more thorough treatment, the reader may ledimsiollowing refer-
ences [BBF 01, BdRV01, CGP99, Lib04, Sti01, Tho96, vD08].

A vocabularyis a finite seto = {ay,...,an} of (relation) namedogether with a
functionAR : 0 — Z- mapping each relation name to a positive integer represgenti
its arity. A o-structure® is a tuple(S {Ra}taco) WhereSis some set (a.k.auniverse
or domair) andR, C S*R(®) is anaRr(a;)-ary relation orS.,

Example 2.4.1 We now consider several important structures that haveeplayg-
nificant roles in logic, automata, and verification. The fgticture is naturals with
addition (N, +). The addition relationt is interpreted as a 3-ary relation consisting
of tuples(n,m,k) € N3 such thatk is the sum ofn andm. The second structure is
nonnegative integers with linear ord@¥, <), where the binary relatior consists of
pairs (n,m) € N2 such thatn is smaller tharm. The third structure is naturals with
successofN, succ), where the 2-ary relatiosucc consists of pairgn,m) € N2 with
m= n+ 1. Another important structure {0, 1}*, succo, succs), where the binary re-
lation succ; (i = 0,1) contains pairs of words of the for(w,vi) with v e {0,1}*. The



Chapter 2. Preliminaries 38

structure({0,1}*,succo, succy) can be naturally interpreted as the infinite complete
binary tree with the root. We could also equip this structure with the transitive clo-
sure= of succoUsucc; yielding the structurg{0, 1}*, succgp, succy, <). Observe that,
when({0,1}*,succo, succs) is viewed as the infinite binary tree, the relatigrcan be
interpreted as the descendant relation between nodes trethé

In the sequel, we shall mostly deal wittansition systemswhich are defined as
structures over vocabulary with only names of arity two. Therefore, transition sys-
tems are simply edge-labeled directed graphs. In the segeethall often use the
notation—j instead ofR, to denote the binary edge relation with nameand write
s—4 S instead of(s,s') €—4. Since we mostly use transition systems to model the
evolution (or behavior) of some dynamic objects, the elds@nthe universe of
a transition systen® = (S, {—a}aco) are calledconfigurationd. The edge relation
—4 WIll be called thetransition relationlabeleda, while the edges in—, are called
a-labeledtransitions In this case, each name nis also said to be aaction label
Hence, we will also use the notati&€T to denote the vocabulakxy and callACT an
action alphabet

Example 2.4.2 Some examples of transition systems include the structd¥esicc),

(N, <), ({0,1}*,succo,succy), and({0,1}*, succo, succy, <) which we defined in Ex-
amples 2.4.1. Also, each NWA over X (omitting initial and final states) can be
easily construed as transition systems over the actiorabkilx. Another exam-
ple of transition systems are those which are generated hyshdown automaton

P =(2,I,Q,d,00,F), i.e., containing configurations & as vertices, and transition
relations—, for eacha € Z;. For more details of transition systems generated by
pushdown automata, see Chapte&s3.

2.5 Logics and properties

In this section, we shall review the definitions of the logacsl verification properties
that we will consider in the sequel. For a more detailed tneait, the reader is referred
to [BBFT01, BARVO01, CGP99, Lib04, Sti01, Tho96, vDO08].

2they are often calledtatesin the literature of modal logic, but we have reserved thisntéor
automata
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2.5.1 Safety, liveness, and fairness

We shall now define safety, liveness, and fairness progentbich are probably the
most important properties in verification. Each of thesecisialy aclassof proper-
ties, instead of a single property. Such properties arendfegsated informally in the
literature since they are often definable in some tempogatoor in terms of some
other properties including reachability and recurrenthadility (see subsequent sub-
sections). We shall now recall the informal definitions desg liveness, and fairness
properties. See [BBFO1, Chapters 6-11] for a more thorough treatment.

Two most commonly considered properties in verificationsafety(under some
conditions, no “bad” configurations are ever reachable)lmedesgunder some con-
ditions, some “good” configurations are eventually reatdal-or example, the prop-
erty that “the system never reaches a configuration whergtaesses are in a crit-
ical region” is an important safety property for mutual ersibn protocols, while the
property that “every philosopher who requests noodle wiirgually get it” is a live-
ness property that is often considered for protocols foindjmphilosopher problems
[BAO6, Lyn96]. To prove or disprove a safety property, itfseés to consider only
finite executions of the systems since a violation of the ertypcan be witnessed by a
finite path that takes the system from an initial configuratma bad configuration. On
the other hand, this is not the case with liveness propeff@prove or disprove a live-
ness property, we need to take into account (potentiallpiteli maximalexecutions
of the systems.

Fairnessis another important property in verification. Roughly dpeg, it states
that under certain conditions some events must occur iefynitften. One important
use of fairness property is that liveness property in a systan often be reduced
to a fairness property in a modified system via an automagarétic technique (see
below). Another use of fairness property is abygpothesiof a liveness property.
Liveness property is often easily violated unless somaéais hypothesis is imposed.
For example, for a dining philosopher protocol witlphilosophers, an “unfair” path
in the system could simply ignore a philosopher’s requedgfinitely and therefore
resulting in a violation of a desired liveness property. ©omon fairness hypothesis
in the setting of distributed protocols is that if a resouscequested infinitely, it must
be infinitely often granted.
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2.5.2 Reachability and recurrent reachability

Safety, liveness, and fairness are often best expressesrrs tof reachability and
recurrent reachability. We shall now define these conce@isen a transition system
S = (S {—a}acacT) @nd aSUbs&XCT' C ACT, we write— » ~1 to denote the relation
(UaeACT/ —>a) and— to denote the relatior- pc7. As usual, for a binary relation
RC Sx S, we writeR" (resp.R*) for the transitive (resp. transitive-reflexive) closure
of R Givenst € S we say thast canreach tin & (ort is reachablefrom ) if it
is the case that —* t. In the sequel, theeachability relationfor the systemS is
the relation—*, while its one-step reachability relatiors the relation—. We shall
also call—* thestrict reachability relationfor the systen®. It is also convenient to
refer to the preimages and postimages of a relation. To tusgiven a se8 C Sof
configurations and a relatidRC Sx S, we write

pre(S)[R] = {veS:3we S((v,w) €R)},
postS)[R = {veS:awe S((w,v) eR)}.

Given a transition syster® = (S {—a},cacT) @nd a subse8 C S, we now define
the following sets:

pre(S) = pre(S)[—],
posi(S) := post(S)[—],
pre’(S) = pre(S)[—7],
post(S) = post(S)[—],
pre’(S) = pre(S)[—"],
post'(S) = postS)[—"].

We now move to recurrent reachability. Given aSet subse8 C S, and a relation
RC Sx S we denote byRedS)[R] the set of all elements € Sfor which there exists
an infinite sequences }icz., such that:

e scSforallieZ>1,and
e (sj,S) € Rfor all pairs of distinct integers satisfying<0 j < i.

See Figure 2.6 for an illustration of an infinite sequencen@gsingsy € RedS)[R].
Given a transition systel® = (S, {—a},.acT) @nd a subse8 C S, we use the nota-
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So S $

Figure 2.6: An illustration of an infinite sequence witnessing So € Re¢S)[R]. The edges
are from the relation R, while each configuration s (with i > 0) must belong to S. The

configurations in this sequence are not necessarily all different.

tion RedS) to denoteRedS)[— T]. In this case, by transitivity of+* we havesy € S
iff there exists an infinite sequen({a}iez21 such thats € S ands_; — ™ s for all
i € Z>1. In other words, the sé&ReqS) is the set of configurations i from which
there exists an infinite path visitir§ infinitely often.

2.5.3 FO: First-order logic

We assume basic knowledge of mathematical logic (cf. [Li@2D8]). We shall only
briefly recall some basic definitions and results on firsteotdgic.

Syntax and semantics

Let VAR be a countable set of (first-order) variables. In the sequeekhall use, y;, z
for variables withi € N. The syntax of first-order formulas over the vocabulargan
be defined inductively as follows: (¥ =y is an atomic formula for not necessarily
distinct variablex andy (ii) if a € o andxa,...,x, are (not necessarily distinct) vari-
ables, wher@ = AR(a), thenR,(x1, ..., Xn) is an (atomic) formula, (iii) ip andy are
formulas, then so are their conjunctipm , their disjunctionp Vv |y, and the negation
-, and (iv) if ¢ is a formula, then so arex¢ andvx¢. Notice that we allow the
standard built-in equality relation ‘=". The formudais said to beexistential positive
ifitis of the form3xy, ..., xny), wherey is quantifier-fregi.e., a boolean combinations
of atomic formulas. Théree variabledree(¢) of a first-order formulap are also built
inductively: (i) free(x =y) = {x,y} (ii) free(Ra(X1,...,XaR(a)) = {X1,---:XAR(a) }»
(iii) free(dp vV ) = free(d A Q) = free(d) Ufree(), (iv) free(—¢) = free(d), and (iv)
free(Ixp) = free(Vxd) = free(d) \ {x}. If ¢ is a formula with free variables, ..., xn,
then we writed (X1, ...,xn) to emphasize which free variables the formd@ilhas. A
first-ordersentencés simply a first-order formulg with free(¢) = 0.
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Fix a o-structureS = (S {Ra}taco). A G-valuationv is a function mapping the
SetVAR of variables to elements & WheneveS is clear from the context, we shall
simply sayvaluation If ¢ is a formula oveio, we may define the notion ¢futh of ¢
in & with respect tov in the standard way (cf. [LibO4, vDO08]). # is true in& with
respect to), then we also say th& satisfiesp with respect tov and writeS = ¢[v].
A standard proposition in mathematical logic is that thehtrof ¢(x,...,%,) in &
only depends on the values of the valuatioln the free variablegy,...,x, of ¢:
S [ ¢[v] iff, for every valuationv’ that agrees withh on x, ..., X, it is the case
thatS = ¢[v']. For this reason, we shall often simply wrigge= ¢(v(x1),...,v(Xn))
whenevelS = ¢[v] for some valuatiomw.

For two formulas (X, ...,X,) andW(xy,...,X,) over the vocabularg with the
same free variables, we say tltatind are (logically) equivalentwritten ¢ = (, if
for everyo-structureS and valuatiorv it is the case tha® = ¢[v] iff & = Q[v]. The
following are several basic results on equivalence of rger formulas: (iy—¢ = ¢,
(i) dAY= (= V), (i) dVY=-—(=p A1), (V) Ixd = -Vx—=0, and (V)Vxd =
—3dx—¢. Therefore, we will sometimes assume that first-order féasuse only the
operatorg Vv, —,3}. Similarly, by pushing all the negations inside as much asite,
we may assume that the only occurences of negations in fast-tormulas are on the
atomic level. For other standard equivalences, the readefarred to [vD08].

Quantifier rank and alternation rank

The quantifier rankqgr(¢) of a first-order formulap is defined to be the maximum
quantifier nesting depth insidie More formally, this notion can be defined induc-
tively: (i) ar(Ra(X, .., XaRr())) = ar(x=y) := 0, (i) ar(¢ vV ) := max(ar(d), ar(P)),
(iii) ar(—¢) :=ar(¢), and (iv)ar(3x¢) :=ar(¢) + 1.

Given a formulap, let us push all the negations¢nto the atomic level. Thalter-
nation rankAL(¢) of a formula¢ is defined to be the maximum number of alternations
of operators iV, A} and operators i§3, '} over all paths from the root to the leaves
in the parse tree af.

First-order queries

The somewhat non-standard notion of first-order querieiswieashall next define is
motivated by the standard notion of conjunctive queriesatablase theory literature
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(cf. [AHV95]). A first-order k-ary queryver the vocabularg is of the form

U(X]-?""Xk) — ¢(y17---7Yr>

where¢ is a formula overo, y1,...,Yy; are distinct variables, anxh, ... X, are not
necessarily distinct variables. GiveroestructureS, we define themageof G under
L to be the set

L] :={(V(X1),...,Vv(X)) : v is a&-valuation s.t& = ¢ [v]}.

We shall callu(x,...,X) the headof the queryv, while ¢(yi,...,yr) is called the
bodyof the queryu. Without loss of generality, since first-order formulas el@sed
under existential quantification, we may assume that thabfasy;, .. .,y; in the body
of v are among variables, ..., X in the head of the query.

Albeit it is the case that first-order queries can be crudelgltdwith using only
first-order formulas, there are two main reasons for usimgnbtion of first-order
queries. Firstly, the definition of first-order queries enés anexplicit ordering of
the arguments in the inducéehry relations, which is important when using automata
to recognize relations (e.g. see Proposition 3.1.1). S#gpanlike first-order for-
mulas, the arity of the relations defined by first-order geeeneed not coincide with
the number of free variables in their bodies. More impofyamte shall see later that
first-order queries provide a cleaner notation for proofs.

FOK: restriction of FO to K variables

In the literature of model theory (e.g. see [Lib04]), it iswmon to restrict the expres-
sive power ofFO by enforcing onlyk variables in the formulas, for a fixdde Z~1. In
the sequel, we useOK to denote thé-variable first-order logic containing the set of
all first-order formulas which only use at madstariables.

First-order logic with two or three variables are often athg sufficiently powerful.
One well-known example is the equivalence betwE@r over finite words and star-
free regular expressions due to McNaughton and Papert [[MRVA shall now make
this statement more precise only over the alphglBel}, although it generalizes to
any alphabet. A finite word/ = a; ... a, over the alphabef0,1} can be thought of as
a finite structures = (S <,U), where

e S={1...,n},

e < isthe standard transitive binary ordering relation ojer .., n}, and
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e U ={ieS:g =1} isaunary relation.

For example, the word 011 corresponds to the strugt{te?, 3}, <,U), where< is
the standard less-than relation oy&r2,3} andU = {2,3}. The reverse interpretation
can similarly be done. Therefore, given a first-order sesg@nover the vocabulary
consisting of a binary relation name and a unary relation namé, we may define
L(¢) to be the class of finite worde over {0,1} such thatw = ¢. We say that
a languager C {0,1}* is definablein FO (resp. FO¥) if there exists a formula iffO
(resp.FOX) such thatZ(¢) = L. McNaughton and Papert [MP71] proved that a regular
language is star-free iff it is definable HD. Other proofs for this result can also be
found in [Lib04, Tho96]. In fact, it is folklore thafO® suffices and the translation to
FO3 from star-free regular expressions takes polynomial-fieng. see [EVWO02] for a
sketch).

Proposition 2.5.1 (McNaughton and Papert [MP71]) A language is star-free regu-
lar iff it is definable inFO3. Furthermore, the translation from star-free regular ex-
pressions td-O° sentences can be performed in polynomial time.

Many results in the literature show that a large number ofahadd temporal log-
ics can be embedded in first-order logic with two or threealalés possibly extended
with the transitive closure operators (cf. [BARV01, EVW0RE89, Kam68, Lib04]).
We shall mention some of these results below.

2.5.4 FOges(Reach): FO with regular reachability

As we saw earlier, most properties in verification are reldtethe reachability prop-
erty in some way. Therefore, a minimum criterion for a sugdbgic in verification is
that it needs to be able to express reachability. It is a Wwedwn fact in model theory
that first-order logic is not powerful enough to express hehdity (cf. [Lib04]) over
graphs. One way to overcome this limitation is to extend tiggcl with a reachability
operator. We shall now define the lodi©re (Reach) that extend$0 with “regular”
reachability operators, and its subcl&$3(Reach) which extends=O with the sim-
plest reachability operators. These logics are naturacangmonly considered in the
context of verification (e.g. see [Col02, DT90, Lod03, LEO®/TO7]).

Given a finite se”ACT of action labelsFOres(Reach) are built from atomic for-
mulas of the formx =y, x —5 Yy (a € ACT) andReach 4(x,y) for an NWA 4 overACT,
which we then close under boolean combinations and firstragdantifications using
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the standard rules for first-order logic. The semanticsf{Reach) are defined with
respect to transition systems. They can be defined in the s@yas forFO, except
for formulas of the formReach 4(X,y), which can be defined as follows: given a transi-
tion systemS overACT and aG-valuationv, we define tha® = Reachz(v(X),v(y))

iff there exists a path

SO —a - ap Sn

in & such thatsy = v(X), sp = V(y), anda;...a, € L(A4). In other words,& =
Reachz(Vv(x),v(y)) iff the configuratiorv(x) can reachv(y) via a sequence of actions
that are permitted by the NWA.

We define the logidO(Reach) to be the sublogic 0fOgrec(Reach) where we
only permit atomic formulas of the forrReach4(X,y), where£(4) = I'* for some
[ C ACT. In the sequel, we shall use the shorth&edchr(x,y) to refer to such an
atomic formula, and the shorthameach(x,y) to denoteReachps7(X,y). The logic
FOres(Reach) is probably the weakest extensionk that can express reachability
in a meaningful way.

The notion of quantifier rank can be easily extende®#®ggs(Reach) from FO
by interpretinggr(Reach4(X,y)) := 0. The same goes with the notion of alternation
rank. As before, we useOK..(Reach) (resp.FOX(Reach)) to denote the restrictions
of FOgreg (Reach) (resp.FO(Reach)) to formulas with at mosi variables.

2.5.5 HM-logic: Hennessy-Milner Logic

It is well-known that many properties in verification canulagtinguish bisimulation-
invariant properties. Due to its intimate connection witle nhotion of bisimulation,
Hennessy-Milner logi€ plays an important role in verification. We shall now briefly
recall the definition of Hennessy-Milner logic, the notidrbesimulations, and several
basic results that are relevant to this thesis; for a monetigh treatment, the reader is
referred to [BARVO01, Lib04, Sti01Hennessy-Milner logic (HM-logi@ver the action
alphabe®CT is defined by the following grammar:

O,W:=T|=¢ [dVUY]|(ACT)d (ACT C ACT).

If a € ACT, then we write(a)¢ to denote({a})¢d. We also use the usual abbreviations
1L:==T, 0 AP := (=0 V), and[ACT'|¢p := ~(ACT')—=d. The semantic§d]s

3Hennessy-Milner logic (modulo minor syntactic issuesyiginodal logic which was much earlier
introduced in philosophy (cf. [BARV01]).
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of an HM-logic formulad with respect to a transition systeth= (S, {—a}cacT) IS
simply a subset o8 defined inductively as follows:

e [Me:=S

o [-¢]s =S\ [¢]s,

o [9vls = [0]sU[W]s, and

o [(ACT)0]ls := {s€ S: 3 € S(s— oy S ands € [¢]ls)}-

Given a configuratiors € S, we also writeG,s |= ¢ iff s€ [¢]ls. The problem of
model checking HM-logits defined as follows: given a systé#n= (S, {—a},cACT)
a configuratiors € S, and an HM-logic formula overACT, decide whethe®,s}|= ¢.

Standard translationto  FO?

It is well-known that HM-logic formulas can be thought of astiorder formulas with
two variables. More precisely, for every HM-logic formupaover ACT, there exists
an FO formula’(x) over ACT with one free variable such that, for every transition
systemS = (S {—a}cacT) @Nds < S, itis the case that

Gskd = & E¢(s.

Furthermore, there exists an algorithm that performs thissiation in linear time (cf.
[BARVOL1, Lib04]).

2.5.6 EFges-logic: HM-logic with regular reachability

HM-logic is not capable of expressing reachability. Foistreason, we introduce
EFrec-logic, which is HM-logic with a regular reachability opéog and its syntac-
tic restrictionEF-logic, which is HM-logic with a simple reachability opeoat More
precisely, the syntax dfFres-logic over the action alphab@éCT is the extension of
the syntax of HM-logic oveACT with the following rule:

e if 4 is an NWA overACT and¢ anEFges-logic formula overACT, thenEF 7
IS anEFges-logic formula overACT.

The semantics of formula of the forBF 4¢ is defined as follows:
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e for a transition syster® = (S, {—a}cacT) @ndso € S, we haveS,sp = EF 40
iff there exists a path

S —a; - —an Sn

in & such thaty...ap € L(A4) ands, € [¢]s.

We then defindEF ;4] s to be the set of configuratioss € Ssuch thatS, sp = EF 2¢.

We defineEF-logic to be the restriction dtFze-logic which allows only reachability
operators of the forngF 4, where£(A4) = I'* for somel" C ACT. In the sequel, we
shall use the shortharF to refer to such a reachability operator, and the shorthand
EF to denoteEFpcT-

Remark 2.5.1 In the verification literaturegF-logic is often defined in such a way that
only the reachability operat@&r is allowed (e.g. see [BEM97, LS02, May98, Wal00]).
However, it is known that permitting the more general operBEr does not change
the complexity of model checking problems in most cases.tlfisrreason, we shall
adopt the more general definitiolll.

We saw earlier that HM-logic can be naturally thought of asagrentFO?. In
the same manneEFgec-logic can be thought of as a fragmentr®2.. (Reach) and
EF-logic a fragment oF O?(Reach). Furthermore, the same linear-time translation can
be used in this case.

2.5.7 CTL: Computation Tree logic

CTL is one of the most common branching-time temporal lothies are considered in
the context of verification (cf. [BBF01, CGP99, Lib04, Sti01]). Loosely speaking, it
is an extension dfF-logic with powerful “constraints on the way”. To be more Qige,
let us define the syntax and semantics of CTL. The syntax ofotie CTL over the
action alphabeACT is the extension of the syntax BF-logic with the following two
rules:

e if ¢ andy are CTL formulas oveACT, thenE(¢ U W) is also a CTL formula
e if ¢ isa CTL formula oveACT, then so i€G.

The semantics of these types of formulas are defined witleot$spa transition system
S = (S {—a}acacT) @nd a configuratiosy € Sas follows:
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o 5,5 F E(¢ U W) iff there exists a path

SH—...— S
such thas, s, = g and, foreach=0,...,n—1, we haveS, s  ¢.

e 5,5 F EG(¢) iff there exists a (finite or infinite) maximal path — s; — ...
such thats, s |~ ¢, for eachi € N.

As before, we usé¢||s to denote the set of configuratioss Ssuch thats,s = ¢.

The problem of CTL model checkirggin be defined as follows: given a finite sys-
tem & = (S, {—a}acacT): @ configurations € S, and a CTL formulap over ACT,
decide whetheS,s = ¢. It is well-known (cf. [CGP99]) that model checking CTL
over finite systems can be done in polynomial time. This défimican also be easily
extended to finitely representable infinite-state systeynsdomitting finite represen-
tations of& andsto be the input.

2.5.8 LTL: Linear Temporal Logic

Linear Temporal Logic (LTL) is one of the most standard antlired temporal logics
considered in the context of verification. It has been arghed the logic is more
intuitive than branching-time temporal logics like CTL .(dVar01]). We shall now
recall the definition of LTL and review some of its most im@artresults. See [Var95,
WoI0Q] for a more thorough treatment.

The syntax of LTL oveACT is defined as follows:

0,¢":=a(@acACT)| =0 [OVO' |OAD" | X[ HUG".

We shall use the standard abbreviatiofg:for trueU¢, Gé for -F—¢, andFs andGg
for their strict versionsFs¢ = XF¢ andGsp = -Fs—¢. The semantics of LTL over
ACT is given byw-word languages oveXCT:

e [a] ={veACT®:v(1)=a},
o [-¢] =ACT®—[¢].

o [ovo]=[olule,

o [01¢] =[] N[o7,

e [X0] = {ve ACT®: v[1,%) € []}, and
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o [pU] = {ve ACT®:3j > OVi < j(Vi,e0) € [O] AV]j, ) € [¢'])}.

Given anw-wordv € ACT® and an LTL formulap overACT, we writev |= ¢ iff v € [[¢].
We shall now recall a seminal result by Vardi and Wolper [V\&B6

Proposition 2.5.2 (Vardi-Wolper [VW86a]) Given an LTL formulap over ACT, we
can compute an NBWA, of size2®U?l) such thats (44) = [¢]) in time 200191,

Given a transition system® = (S, {—a},.acT) @nd a wordv = a;a,... € ACT®, we
say thatsy € S realizes \f there is an infinite path

SO—>a151—>a252—>a3---

in &. We define the semantics of LTL over transition systems insthedard way:
(6,v) = ¢ iff every w-wordv € ACT® realized by satisfiesy. We write [¢p] & for the
set of allv e Ssuch tha{&,v) = ¢. Here, the symbdf is used to signify the universal
semantics that is adopted in the definition (ieverypath starting inv satisfiesd).
Dually, we will write [¢]|Z for the complement of the s@t-¢]|%, i.e., for the set of
v € Sfrom whichthere exista path that satisfief.

Theproblem of LTL model checkirggn be defined as follows: given a finite system
S = (S{—a}acacT) @ configurations € S, and an LTL formula, decide whether
S,sk ¢. This definition can be easily extended to finitely represielet infinite-state
systems by allowing a finite representation®fands as the inputs. In the case of
finite systems, the problem is known to BEPACE-complete, which can be shown
using a model-theoretic technique [SC85] or an automagardtic technique (i.e. a
more refined version of Proposition 2.5.2) [Var95, VW86a,I0Up. See the survey
[Sch02] for a more thorough discussion.

2.5.9 Other logics

There are of course other logics that are common in veriinatiVe shall mention a
few others, but not give a precise definition since we will aotounter them in the
sequel. Among others, we mention:

e Monadic second-order logiaSO). This is simply first-order logic extended
with quantification over sets of elements (see [Lib04, Thad®03] for a def-
inition). This logic is perhaps the most expressive logiwenmification, i.e., it
subsumes virtually all logics that are considered in vexifan.
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e l-calculus This is simply modal logic extended with least fixed poinegp
tors (see [Sti01, Lib04] for a definition). This logic is sulnsed iNMSO, but
subsumes most logics that are invariant under bisimulation

¢ Propositional dynamic logic (PDL)This is simply modal logic extended with
recursion and other modalities (see [BARVO01] for a definitid here are a num-
ber of variations of this logic with different expressivensr, but the most basic
PDL is subsumed ip-calculus.

2.5.10 Model checking complexity

When we deal with the problem of model checking with respe tertain logid.,
there are usually several parameters that are consideigaltast the problems. The
two most important ones are: (1) structures, and (2) formula

Let us first clarify how we measure the size of structures anahdilas. In this the-
sis, when structures are part of the model checking prohldmyg always take shape
of transition systems, i.e., edge-labeled directed grajphthe case of finite systems,
we may measure them in the standard way we measure the sizgpbisg When they
areimplicitly (or symbolically represented (e.g. when the systems are infinite), we
will simply use the size of these symbolic representatiarsch we will define when
defining a symbolic language for the representations. Ircéise of formulas, we will
simply measure the size of the parse trees of the given farifexicept for Chapter 8
when we represent our formulas as dags). In the case of ldgichvallows natural
numbers as constants (e.g. Presburger Arithmetic withasyiotsugar), we will also
measure the numbers in binary, unless stated otherwise.

There are three standard complexity measures when deaitihgnedel checking
depending on which of the two input parameters are fixed. Therfieasure isom-
bined complexityvhen both structures and formulas are considered as péue ofput.
This measure is reasonable when both structures and fasratdamportant parame-
ters. The second measuralesta complexityhich considers only structures to be part
of the input, i.e., formulas are fixed. This measure is carsid to be the most useful
measure in the context of verification since for most appboas the size of the struc-
tures can be extremely large, while only small formulas aetun practice. The third
measure igxpression complexityhich considers only formulas to be part of the input,
I.e., the structures are fixed. Many believe that the thirdsuee is not very reasonable
in practice. This is, however, not true since many verifaagroblems these days
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are achieved by reductions to Presburger Arithmetic, SAS28. Nowadays there are
fast solvers that have been developed for these theorgpsN®NA [HJJ"95], LIRA
[BDEKO7], and Omega [Ome]).
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Chapter 3
Word/Tree-automatic Systems

Generic approaches to infinite-state model checking reqgeneric frameworks that
are expressive enough to subsume Turing-powerful modet®wiputation. Many
such frameworks have been proposed in the literature (c¥INBO4, Bar07, BGR10,
BFLSO05, BFLP08, BG09, BLNO7, BIlu99, BG04, Boi99, Bou01, BQ@/ BLWO09,
BW94, BJNT00, BHV04, DLS02, FL02, KMM97, KMM*01, JNOO, Mor00, Nil05,
Rub08, WB98]). Such frameworks often make use finite statienaata (or equivalent
models) as finite representations of the transition retatend the domains of transi-
tion systems in various ways. Although the use of finite shatemata often yield nice
closure and algorithmic properties, they are not in gerserflicient for the verification
of reachability or more complex properties due to expresgower of the framework.
In this thesis, we adoptord automatic system8lu99, BG04] andtree automatic
systemgBlu99, BG04, BLNO7] as our generic frameworks since theaiksta good
balance between the expressive power (e.g. they subsumedeaidable classes of
infinite-state transitions systems) and closure/alguorittproperties (e.g. effective clo-
sure under boolean combinations and automata projections)

Our purpose of using generic frameworks in this thesis fgamtly differs from
common uses of generic frameworks in the literature of itéistate model checking.
For example, generic frameworks are often used in comlonatith semi-algorithms
for computing reachability sets and reachability relagidof. [AJNS04, BFLSO05,
BFLPO08, B0i99, BLWO03, Bou01, BW94, BIJNT00, BHV04, BLWO09, B02, Nil05,
KMM 797, KMM*01, JNOO, WB98]). Although the results in this thesis can sedu
in conjunction with such semi-algorithms, we shall chiefseuwgeneric frameworks
as frameworks for derivinglgorithmic metatheorems for decidable model checking
which are generic results that can be used in a “plug-ang-planner for inferring de-

55
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cidability of certain model checking tasks owelarge familyof formalisms of infinite-
state systems, instead of doing sod@ingleformalism at a time. Such a use of generic
frameworks is not new, e.g., this can be found in the work ¢1/B08, BFLS05, LS04,
LS05a] on flattable linear counter systems, which derivaaglessemi-algorithm for
reachability that igguaranteedo terminate over many important subclasses of Petri
nets and counter systems (cf. [LS04, LS05a]). We shall giveatgyorithmic metathe-
orems for word/tree automatic transition systems in the tvex chapters of the thesis.
This chapter aims to review basic definitions and resultsvord/tree automatic
transition systems [BIu99, BG04], and compare them witkesshother closely-related
generic frameworks that have been considered in the litexatThe chapter is orga-
nized as follows. We review the definition and standard tesol word automatic
transition systems in Section 3.1, and of tree automatitesys in Section 3.2. In
particular, we shall review basic properties of word/traoeatic transition systems
and give several well-known concrete classes of infinisgessystems that they can
capture. In Section 3.3, we shall discuss a number of othikwewn generic frame-
works that have been considered in the literature — in paeic length-preserving
word-automatic systems, rational transition systemsskiRnger-definable transition
systems, andrautomatic transition systems — and compare them with weeau-
tomatic systems in terms of expressive power and closgighmic properties.

3.1 Word-automatic systems

In this section, we shall define the framework of word-autbenaystems [BIu99,
BGO04]. The reader is also referred to [Bar07, BGR10, Rub08]nfore recent re-
sults regarding automatic structures.

3.1.1 Basic definitions

Loosely speaking, word-automatic syste@s- (S {—a},.acT) @re those transition
systems such that, for some alphabeS is a regular language oveérand —; is a
“regular relation” overz. To define the notion of regular relations, we need a binary
operation ovek* calledconvolution®, which computes an encoding of a pair of words
overZ* as a word over some new alphabet. More precisely, given womlg >*
wherev=a;...a, andw = b;...by, letv®w be the wordc; . ..cx over the alphabet
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> x2;,wherez :=>U{Ll} with L¢ X, k=maxn,m), and

¢ [ a ] ey - .
: if i < min(n,m)
_i_
C = ; ifn<i<m
& if m<i<n.
\ | 1]

Roughly speaking, the wond» w is obtained by putting on top ofw and padding the
shorter word by the padding symhal For example, wherm = aabandw = ababah

HIHE

Arelation—,C ¥* x 2* is said to beegularif the languagg v w: v—4 w} is regular.

the wordv® w is simply

1
b

1
a

1
b |

Example 3.1.1 The relation= C {0,1}* x {0,1}* consisting of pairs of equal words

(u,v) is obviously regular, e.g., itis generated by the regulpressior({ 8 } + { i }
The relationel C {0,1}* x {0,1}* consisting of wordqu,v) € {0,1}* x {0,1}* of
equal lengthis regular, e.g., it is generated by the regxaressior{{0,1} x {0,1})*.
The prefix-of relation< C {0,1}* x {0,1}* consisting of wordsu,uw) for some

wordsu,w € {0,1}* is also regular, e.g., it is generated by the regular exjmess
([2]+[2]) drxomy- &

In the sequel, we shall not distinguish a relation and itglege representation. Let
us now summarize the definition of word-automatic systenislisvs.

Definition 3.1.1 A transition systen® = (S {—a},.acT) IS Said to bex*-automatic
if S is a regular language ovet and each—, is a regular relation ovek. It is said to
beword-automatigor justautomatig if it is Z*-automatic for some alphab&t

As there are multiple ways of representing a given regulaguage, there are also
non-unique ways of representing a given word-automatitegys This motivates the
following definition. A presentatiorof a Z*-automatic systeniS { —a},.acT) IS @
tuplen = (A4s,{4a} ,cacT) WhereAs and 4y’s are NWAs such thal (4s) = Sand
L(A5) = {vow:Vv—4w} for eacha € ACT. We shall also use the notati@, to
denote the transition system of whichis a presentation. A transition syste@i
over ACT is said to be(word-)automatically presentabl¢ it is isomorphic to some
automatic systen® overACT.
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Remark 3.1.1 Two remarks are in order. Firstly, our definition of autoroaystems
is slightly different from the common definition in the lisgure of automatic structures
(e.g. see [BGO04]); the latter coincides with our definitidGrmotomatically presentable
systems. Nonetheless, both approaches are equivaleatwgeare only interested in
verification problems, instead of the expressive power dagelogics, over automatic
systems. Secondly, our definition of automatic presemtatitse NWAs as default
representations of regular languages. One may of courgw atiter representations
of regular languages, such as regular expressions or DWisetReless, our choice of
representations of regular languages is justified by coatimmal complexity reasons,
I.e., that most systems that are considered in the litexgiarmit succinct automatic
presentations in terms of NWAs (but not necessarily in teaihn®WAs or regular
languages), while the complexity of the algorithmic metattems that we obtain in the
thesis do not increase even if we adopt NWAs (instead of DW&egular languages)
as default representations of regular languages.

3.1.2 Examples

We now give four examples of classes of infinite-state systwehich can be construed
as word-automatic systems; more will be given in subsequieagtters.

Example 3.1.2 (Pushdown systemsh pushdown system (PDE)a PDA without an
initial state and the set of final states (cf. [BEM97, May985886, Tho03]). This
omission is due to the fact that we are no longer interestd?DAs as acceptors of
languages, but instead as generators of infinite transiiystems. More precisely,
given a PDA(Z,I,Q,8,qo, F), the tuple? := (ACT,I",Q,d) is a PDS over the action
alphabetACT, which we define to be the set of elemeats Z; for which there ex-
ists a transition rule i of the form((qg,a,u), (q,u’). Many notions for PDAs (e.g.
configurations) can be easily adapted to PDSs. The PRff/es rise to the transi-
tion systemSyp = (S {—a},cacT), WhereSC Q x I'* is the set of configurations of
P and—,C Sx Sis the binary relation containing tuplégy, vu), (¢, vu)) such that
there exists a transitiofiq,a, u), (¢, u")) € 6. A simple example of a transition system
generated by a PDS (up to isomorphism) is the structure $23=%ample 2.4.1 for a
definition. This can, in fact, be generated by a PDS with oatest

Transition systems generated by pushdown systems can i thasight of as
word-automatic systems as follows. Given a PRS- (ACT,I,Q,0), letQ =QUT .
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We define the se8 and, for eacta € ACT, the relation—/ as follows:
S = Qrf
H/a = {<qu7 q/U/) < S’ X S’ : (q7 U) —a (q/,U/)}.

In other words, by interpreting each configurati{onu) of ? as the wordjue QI'*, we
see that the transition syste®i, = (S,{—}},cacT) IS isomorphic toS,. Further-
more, the isomorphism function can be implemented to rucieffily, i.e., in linear
time. It is now not hard to see th&,, is word-automatic for which a presentation can
be computed in tim®©(|QUT |2+ || x ||P||). This is because each NW#, for —/

is over the alphabe®? and behaves as follows:

1. nondeterministically guess a transition'@a, u,q’,u’) € J,
2. make sure tha{t; } is the first letter read,
3. read a word of the form® v € (I' xI')*, and

4. nondeterministically jump to a state to check that thé oéshe input word is
ueu.

In other words, these two representations of pushdownrsgsdee polynomially equiv-
alent. Therefore, in the sequel we shall use the term “pushdtystem” to refer to
either of these representatiods.

Example 3.1.3 (Prefix-recognizable systemdyrefix-recognizable systems are natu-
ral generalizations of pushdown systems, where we allowriatly infinitely many
rules which are represented using regular languages (eu(8]). More precisely, a
prefix-recognizable systén® overACT is a tuple(ACT, T, Q,8) where

e [ is afinite stack alphabet,

e Qis afinite set of states, and

e Jis atransition relation, i.e., a finite set of transitiongloé form
((a,8,4),(q,4'),4"),

whereq,q € Q,ac ACT, andA4, 4’, 2" are NWAs over .

in the literature, prefix-recognizable systems are usufined without state components. How-
ever, the two definitions are easily seen to be equivalent.
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As for PDSs, aconfigurationis simply a pair(q,w) € Q x ['* consisting of a state and
a word inl™*. Given two configurationgg,w) and (q',w) of P, we write (q,w) —4
(d,w) if there exist three words, 3,ye I and arul€(q,a,4),(d,.2'),4") in dsuch
thatw=oaB,wW =ay,a e L(A"),B€ L(A4),andy e L(A). The transition syster& ,
generated by is simply the systen(S, {—a} cacT), WhereSC Q x I'* is simply the
set of all configurations aP, and—, is the one-step reachability relation via acten
that we just defined. To understand the definition of prefoegmizable systems and
the transition systems they generate, it is helpful to dravamalogy with pushdown
systems. We may think of pushdown systems as prefix-recaleizystem® =
(Z,I,Q,d), where each rule id is of the form((q,a,2), (¢,42'),4") for some NWAs
A4 and A’ that accepts only a single wordiri and for some?” that accepts all words
in*. A simple example of a transition system that can easily negeed by a prefix-
recognizable system (up to isomorphisms}{i,1}*, succo,succy, <) (see Example
2.4.1). This, however, cannot be generated by pushdowersgssince the nodes in
({0,1}*,succo, succy) have an infinite degree.

Transition systems generated by prefix-recognizable systan be easily thought
of as word-automatic systems as follows. Given a prefixgaaable systen? =
(ACT,T,Q,9d), letQ :=QUI. We define a transition systed&i, = (QI'*, { =4} ,cacT)
in the same way as in the previous example. In other wordspnigearet each configu-
ration(q,u) of ? as the wordjue QI'*. It is easy to see that the new transition system
G’ is isomorphic toS,. Furthermore, the isomorphism function can be computed in
linear time. Similarly, it is not hard to see th@f, is automatic for which a presentation
can be computed in tim®(|QUT |2+ ||2||). The construction for the NWAs for each
—1, is a simple adaptation of the construction in the previowsrgle. In the sequel,
when the meaning is clear from the context, we shall use the‘ferefix-recognizable
system” to refer to either of these representations of prefingnizable systemde

Example 3.1.4 Counter machines [Min67] are a well-known Turing-powerfubdel
of computation. We shall now define the notion of counterayst, which are simply
counter machines without initial and final statesk-8ounter syster/ over the action
alphabe®ACT is a tuple(ACT, X, Q,A) where

e X is a set ok (counter) variablessay{xi, ..., X},
e Qis a set ofstates

e Ais afinite set ofnstructionsof the form((q,$(X)),a, (q,i1,...,ik)), where:
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-0q,q€Q,
— a€ ACT,
— eachij is a numberin{—1,0,1}

— ¢(X) is a (guard) Presburger formula of the forfy.y x ~x 0 for some
Y C Xand~y € {=,>}.

A configurationof 4 is a tuple(qg,ny,...,ns) € Q x NX expressing the stat®f is in
and the current values of tikecounters. Given two configuratioes = (g, n, ..., Nk)
andcy = (d,n,...,n), we writec; —4 C; if there exists an instruction

((q7¢(x)>7a7(q/7i17---7ik>)

such that the guard formulla(ng,. .., ny) is true in(N,+), and for eachj = 1,...,k
we havenj = max(0,n; +ij). In other words, when the counter value is 0, it stays O
when M tries to substract 1 from it. The transition system gendrbate is simply
Gar = (S {—a}acacT) WhereSC Q x N¥is the set of all configurations ¢ and
—4 IS the one-step reachability relation via act@that we just defined. It is well-
known that the reachability problem for counter systens. (ichecking whether a
given configuratiore, of a counter systemy/ is reachable ir®& ,, from another given
configurationc; of M) is undecidable [Min67].

We can think of transition systems generatedimpunter system@/ as automatic
systems in two different ways depending on whether we ath@dtandard binary rep-
resentation of numbers (cf. [Kla08, WBO0O]), or its reverse (BC96, BHMV94]).

In the sequel, we shall adopt the reversed binary represamtaf numbers from
[BC96, BHMV94]. More precisely, given a number let rev-bin(n) denote the
standard binary representation mf(with unnecessary leading 0s removed) written
in reverseorder, e.g.fev-bin(8) = 0001. Given the numbers,...,ng € N, define

N ®°...2°%n as the wordev-bin(n;) ® ... @ rev-bin (ny) with the symbolL replaced

by the symbol 0. For example s 8%°6 is the word

1 1 1

=

0 1 1

Thereforen; ®° ... ®°%ny is a word over the alphabé¢0, 1}¥. Define a new alphabet
Q := Qu{0,1}k. Then, we can define a functignmapping a given configuration
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c=(q,ny,...,n) € Qx NKof M to the wordgw € Q*, wherew =n; @°...@°%n,. We
may therefore think of the set of configurationsifas the set

S:={x(c):ce Qx Nk}
and the relation—, as the relation

—a={(X(c),x(¢)) :c—ac’}.

It is easy to construct an NWAs for the setSwith 2 states in tim@(|Q| + 2K), most
of which is spent in enumerating the letters in the alph&beSimilarly, it is not hard
to construct in timeD(|Q|? x 2¥) an NWA 4, with O(|| M| x 2¥) states ove? for
—~. Intuitively, the automaton first nondeterministicallyggses a transition i that
will be executed and remember it in its finite memory. Upordneg@ any input letter
{0,1}% x {0,1}¥, it will remember in its finite memory precisely one carryfait each
of thek counters

Example 3.1.5 Given a Turing machin@f = (£,I,Q,d,0o, gr, 0), define the transi-
tion systemS,, = (S, —), whereS=T"*(Q x I')["* is the set of all configurations of
‘M and— is the one-step reachability relation definedMy The reachability problem
for transition systems generated by Turing machines is-kredlvn to be undecidable.
It is known that transition systems generated by Turing rimeshare automatic
[BG04]. DefineQ :=TuU(QxT). The setS of configurations ofM is therefore
regular. We can also easily construct an NWA for the relatierC Sx S since M
makes only local changes at each step (i.e. at most threearallthe state ab/). In
fact, this automatic presentation f6r;, can be computed in time polynomial i/ ||.

&

3.1.3 Basic closure and algorithmic results

Givenvy,...,vy € 2%, let us writev; = g;1...4a; j, for eachi =1,...,n. Lettingm =
max(j1,...,Jjn), We definev; ® ... ® vy as the wordc; ...cm over the alphabeE')
where, for eactk=1,...,m, ¢ 1= (Cyk;...,Cnk) and

ax IFk<j
Cik-= ’ .
il if ji<k<m.

An r-ary relationR C (Z*)" is said to beegular if the language

®@...0v:(V1,...,Vr) €ER}
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is regular. Observe that this definition generalizes ourexatefinition of binary reg-
ular relations. As before, we do not distinguish a relatiod &s language representa-
tion.

Definition 3.1.2 A Z*-automaticstructure over the vocabulaxyis a o-structureS =
(S,{Ra}taco) Where S is a regular language ov&rand R, is an AR(a)-ary regular
relation over S. Aoc-structure is said to bautomaticif it is *-automatic for some
alphabetz.

An automatic presentation of a Z*-automatic structur&, = (S {Ra}aco) iS a tu-
ple (4s,{4a}aco), WhereAs is an NWA overX with £(4s) = Sand 4, is an NWA
over ZﬁR(a) such that£(4,) = Ry. A o-structure is said to b@vord-)automatically
presentablef it is isomorphic to an automatic structure ov@r Remark 3.1.1 for our
definition of automatic systems also holds for our definibdautomatic structures.

Example 3.1.6 Presburger arithmeti¢N, +) is well-known to be{0,1}*-automatic
(via the reverse binary encoding of numbers; see Exampld)3.1n fact, the ex-
tension(N,+,|2) with the binary relation; is automatic, where for alh,m € N,

n |, miff n dividesm andn = 2 for somek € N. The structure/N, +,|,) is also
known asBuchi Arithmetic See [BGR10, Blu99, BHMV94] for more details. The
structure({0, 1}*, succp,succy, =) = ({0, 1}*, succp, succy, =) is also word-automatic
[BIu99, BGO04]. In fact, it is still automatic even when extia with an equal-length
binary relationel defined in Example 3.1.1. For more examples, see the recesgysu
[BGR10]. &

The following closure properties are well-known.

Proposition 3.1.1 ([Hod83]) Given an automatic presentatigyof an automatic struc-
ture Sy, = (S {Ra}aco) Over the vocabularg and a first-order query(x) < ¢(y) over
g, the relation[[u]lg, is effectively regular.

We shall next sketch a standard proof of this propositioroime details as it will be
used in the sequel as a backbone of a more complex constructio

Proof Sketch We shall adopt NWAs as representations of regular langua®gppose
thatn = (4s,{Aa},cacT)- Inductively on the structure of the query bodiyy), we
shall construct an NWA ovex'', wherem = AR(v), such that for ally,...,vm€ S, it
IS the case that

(Vi,...,Vm) € [U]le, & V1®...®@VmE L(A).
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An NWA for [[u]s, can later be obtained by taking a product®@f with the regular
tln:=S®... for which an NWA of si m il tructed.
setLm:=S®...® S for which an of sizé|4s||™ can be easily constructed

mtimes
e Base casep :=Ra(X,,...,X,) foranr-ary relationR; and some (not necessarily
distinct) indices < iy,...,ir <m. If 43 = (¥,Q,0,Qo,F) is the NWA forRy
in the presentation, then we construct the NWA, = (XT,Q, %, Qo,F) where

6’(q,(a1,...,am)) = 6(q7(a1177a|r)>

Therefore, we havé (4,) N Ly = [u]]. Note that| 4, || = || 4a||. The time taken
to constructd, is clearly.O(|Z|™ x || 4al|).

e Inductive cased := —(Xi;, ..., X, ) for some indices K iy, ...,iy < m. Define

the new query
' (X1, Xm) = W(Xig, -, X, )

Let 4, be an NWA such that (4,) N Ly = [[u’] which can be obtained by
induction. To obtain an NWA4, such that£(4,) N Lm = [[u]], we determinize
and then complemer,. The numbeiStateg4,)| of states of4,, is at most
exponential in the numbeStates 4, )| of states of4,,. It follows that||.4, || <
22IStatesAy)| The time taken to construgl, is 2°(States Ay, )[+miog(|Z))) on top of
the time taken to construci, .

e Inductive cased := ¢’ (X, ..., %) V" (Xj,, ..., X;j,) for some indices
1<Xy,....%,<m and 1< jg,....jr<m
Define new queries
U/(Xl,---,xm) <_¢/(Xi17"'7xis)
and
0" (X1, Xm) < 0" (Xjys .-, Xj,)-

By induction, we can construct the NWA&, and 4,» such that

L(Ay) N Lm = [V,
L(Ay)N L = [0"].
To obtain an NWA4, such thatL(4,) N L = [V]], we simply perform NWA

union of 4, and 4. It follows that|| 4[| = || Ay|| + || 4y||. The time taken to
constructd, is O(|Z|™x (|| 4y || + ||-4u~||)) on top of the time taken to construct

Ay andﬁluu.
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e Inductive cased := ¢’ (Xi,,..., %) A9 (Xj,,-- -, X;j,) for some indices
1<Xy,....%<m and 1< jg,....jr<m

This case is identical to the disjunction case, but insteadampute the product
automata. The number of states of the resulting NWA is thdyrb(instead of
sum) of the number of states of the two NWAs obtained from atidm. Such is
also the case for the time taken to compute the NWA[tdy.

e Inductive case¢ :=3yd’(x,,...,x%,,y) for some indices ¥ x;,,...,%, <m. By
induction, we can construct an NWA,, such thatZ (4, ) N L1 = [[V'], where
v’ is defined as

O (X1, Xm, ) — O (Xigy - -, X, Y)-

Observe thafu] = {(v1,...,Vm) : Ju € S((v1,...,vm,u) € [U'])}. Therefore,
we need to construct a new NWA/, from 4, in such a way that’(4,) N

(Lmx Z%) = [V]. More precisely, suppose thak = (2, Q2,8,Q3,F>). Let

AL = (£™1 Q% A,Q3,F?) be the NWA such thatq, (as,. . .,an,@n+1),q) € A

iff (0,an+1,q) € 82. Taking a product of4, and A5, we obtain an NWA
al, = (ZT1,Q,¥,Q), F') such thatL (4),) N (Lm x 4 ) = [U"]. We now shall
construct an NWA4, = (27, Q,8,Qo,F) such thatL(4,) N Ly, = [[u] as fol-
lows:

-Q:=Q,
- Qo :=qp,

— foreachge Qanday,...,ane 2, let

5(q, (a1, ..-,am) == |J &(a,(as,.-.,am a)),
acx

and

— let F be the set of statagc Q' from which there exists a pathin 4, on
some wordv € ({1}Mx Z)* to some state ifr.

Such a construction is commonly known as N\Wf#ojection Obviously, we
haveF C F’ but they might not necessarily coincide. The reason fordbfii-
tion of F is simply that, giver{vy,...,Vm) € [[u], the wordu such that

(V1,...,Vm,U) € [[V]
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might have length greater than nfax . ..,vny). Furthermore, the sét can be

computed by the standard algorithm for testing nonemptif@sNWAS, which

requires only linear time. Note thal, = || 4y || x || 4s||. The time taken to
construct4, is at mostO(|Z|™ x || 4| x ||4s||) on top of the time taken to
construct4,y.

This completes our proof of the propositionl

It is easy to see that the aforementioned construction mingnelementary time.
Clearly, the most expensive operation in the construcsoromplementation, which
yields a DWA of exponential size. In contrast, NWA projeatiakes only linear time.
A more careful analysis of the aforementioned constructiomvever, reveals that the
bottleneck of the complexity of the construction comes fribvd number of alterna-
tions between negations and existential quantifiers in itrendirst-order formula: the
former turns an NWA into a DWA of exponential size (for which laoolean opera-
tions can be easily done), but the latter turns a DWA back amdNWA (for which
complementation is expensive).

A better complexity can be obtained for the above propasitidien restricting
to simpler fragments of first-order logic. The most commambed fragment in the
sequel is the class @bnjunctive queries.e., first-order queries(x) < 3ya,...,Y¥nb,
where¢ is simply a conjunction of atomic formulas. The followingoposition can be
obtained in a straightforward way by applying the proof afptsition 3.1.1.

Proposition 3.1.2 Let
U(X17 e 7Xm> — EIylv v 7Yn¢

be a conjunctive query over, where

¢ = Rey (Z1) A+ - ARg (%)

is a conjunction of atomic formulas, whezeC xUYy for each i=1,...,k and each
variable inx occurs in one of; at least once. Given a presentatiqn= (4s,{ 4a}aco)
of theZ*-automatic structures,, an NWA4, accepting]u]s, of size QK || 4]|)
can be computed in time @™ x [1_, |4 ).

Example 3.1.7 In this example, we show how the above Proposition can be tosed
prove that the reachability relation of a transition sysisrtefficiently” interdefin-
able with the strict reachability relation, provided thia¢y are regular. Suppose that
Sn = (S {—a}acacT) IS @Z*-automatic transition system oveCT, presented by the
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presentatiom = ({A4s},{4a},cacT)- Since regular languages are closed under union,
the relation—= (UucacT —a) is recognized by an NWA\( of sizey . acT [-4all @nd

is computable in tim®(|X|? x > acACT | Zall)- As we shall see later, the reachability
relation—*= (UuacT —a) and the strict version-* are in general not regular (in
fact, not even recursive).

Suppose, however, that* is regular and is recognized by the NWR. Ob-
serve now that Proposition 3.1.2 implies that the stricthaaility relation—" is
also regular, for which an NWAR' of size O(||A|| x || R ||) is computable in time
O(|Z3 x ||| x IR |]). This is because the relatien™ is definable in the new struc-
ture &’ = (S —,—*) as follows:x —* y < Jz(x — zA z—*y). Conversely, if—7
is regular and is recognized by the NWR, then so is the relatior-* since—* is
nothing but the union of> and—*. This also implies that an NWA for* of size

O(||ACll + IR |I) is computable in tim®(|Z|? x ([|A[| + IR ). &

It turns out that the above proposition easily extends tantbee general class of
existential positive first-order formulas.

Proposition 3.1.3 Let

¢(Y17-~-,ym) = E|X1,~-~aXnL|J(X17~-~;Xn7Y17~-wym)

bet a first-order formula over the vocabulaoy wherey is a positive boolean com-
bination of atomic propositions with h conjunctions. Givenautomatic presentation
n of an automatic structur&,, an NWA4y accepting[[¢] s, is computable in time

polynomial in||n|| and |||, but exponential in h and# m.

3.1.4 Negative results

It turns out that the nonelementary complexity of the cargton above is unavoidable
[BGO4, Gra9g0], even when the input formula has no free em

Proposition 3.1.4 There exists an automatic structure whose first-order thdwas
nonelementary complexity.

A simple example of an automatic structure with nonelenmgrfiest-order theory is
S2S with descendant [CH90]. Since transition systems ahgunachines are auto-
matic, the following proposition due to [BG04] is immediate
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Proposition 3.1.5 ([BG04]) The reachability problem for automatic transition sys-
tems is undecidable. In fact, it E-complete even for a fixed automatic transition
system.

In fact, the=2-hardness lower bound follows from the fact that the trémsisystems
generated by counter machines and Turing machines are atitaity presentable.
The upper bound is owing to the fact that reachability foroaadtic transition sys-
tems has a finite witness that can be effectively checked. Mieadapt the proof of
Proposition 3.1.5 to show that for the problem of checkiegurrent reachability for
automatic transition systems much harder: given a presentatigrof an automatic
systemSy, = (S {—a},cacT), @n initial configuratiors, € S, and an NWA4, decide
whethersy € Re¢ £(4))[—].

Proposition 3.1.6 The recurrent reachability problem for automatic trangitisystems
is £1-complete.

Proof. To proveZ%-hardness, we establish a many-to-one reduction frorretherent
state properties for nondeterministic Turing machingisen an NTM

M = (Z7r7Q767q07qF)

and a state] € Q, check whethetM have an infinite computation path visiting the
stateq infinitely often. This problem is known to bE%-compIete (e.g. see [Har86,
Corollary 6.2]). Therefore, we may use the constructionutbmatic presentation
for the transition systen®,, = (S, —) generated byM from Example 3.1.5, which
works as well for NTMs. ThereforeM has an infinite computation path visiting
infinitely often iff (go, J) € Redl*({q} x I')[*)[—]. This completes the reduction.
One way to prove membershipﬁi is to establish a many-to-one reduction to the
problem of recurrent state properties for NTMs. More prelgisgiven a presentation
N = (4s,{—a}acacT) for theQ*-automatic systers, = (S, {—a},cacT). an initial
configurationvg € S, and an NWAZg overQ for a setF C S, we construct the NTM
M that has a special statgthat is visited iff a signalling bib is turned “on”. The
machine®/ initially replaces the input word on the tape with, turns “off” the bit
b, and begins “exploring” the transition syste#, from vo. At each stage ofM’s
computation,M will remember on the tape a wond € Q* that is reachable from
Vo, and a bitb signalling whethemw € F. If w € F is signalled, ther will visit
the stateq and then turn off the bib before resuming the exploration &f,, from



Chapter 3. Word/Tree-automatic Systems 69

the currently remembered configuration If w ¢ F, the NTM M will resume the
exploration of&,, without first visiting the state. After this, the machineV will
nondeterministically write down a wosd' € Q* on the tape. Note that this step Mf
might not terminate, but is not important as the resultirfimite computation path will
not visit q infinitely often. In the case whef terminates withw’ fully written on the
tape,M checks whetherw — w, which could be easily done since an NWA fercan
be easily constructed. W — w/, then will set w:=w/, adjust the value of the bit
according to whethew' € L, and continue to the next stagewf/ w, the M simply
enters a halting state. Finally, it is easy to check that RedF) iff the NTM 9 has
an infinite computation path visitingyinfinitely often on the empty input]

Let us briefly revisit the proof of this proposition. For th@pf, it is important that the
NWA 4 in the input has an infinite language. In factdifrecognizes a finite language,
by pigeonwhole principle one of the configurations/04), says, must be visited
infinitely often. This means that there exifitite withessefor positive instances (i.e.
a path from the initial configuratiosy to s, and a path frons to itself), and therefore
is recursively enumerable.

3.2 Tree-automatic systems

In this section, we review the basic definitions and reswltgree-automatic systems
[BLNO7, Blu99, BG04]. We refer the reader to [Bar07, BGR1@] & more up-to-date
exposition of the subject.

3.2.1 Basic definitions

The notion of tree-automatic systems is to a large extentaito word-automatic sys-
tems, except that we use NTAs instead of NWAs to represerdheain and the tran-
sition relations of the systems. To make this notion moreipeg we define the convo-
lution operationz over TREEk(Z) as follows: given two tree$;, T, € TREE,(Z) with

T. = (D1,11) and Ty = (D2, 12), let Ty ® T, be thek-ary tree(D, 1) over the alphabet
>, xXZ,,wherex | :=3U{L}with L ¢ X, such thaD = D, UD; andt(u) = (a3,ay)
wherea; = T1i(u) if u € D;, or elsea; =L. Observe that this is a simple generaliza-
tion of the word case. Figure 3.1 illustrates how this operatvorks. A relation

R C TREE«(Z) x TREE((Z) is said to betree-regular(or simply regular) if the lan-
guage{Ti® T, : (T1,T2) € R} is tree-regular.
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/8 N /<a’ C)\
b \a ® a/ b = (b,a) (a,b)
/ N\ | VRN |
a b b (a,L) (b, 1) L.b

Figure 3.1: A specific example illustrating the convolution operation on binary trees

Example 3.2.1 The identity relation= on TREE((Z) is obviously tree-regular. In fact,

it can be recognized by an NTA with one statewhich only has transitions of the
form (q,(a,a),q,q,...,q) for ac Z. Similarly, theequal tree-domaimelation~y,, on
TREE(Z) (i.e. that two trees have the same tree domain but possitiérefit label-
ings) is also tree-regular, for which an NTA with one stateldde easily constructed.
The tree extension relatiod on TREE(Z) is also easily seen to be regular. In fact, one
may construct an NTA for with precisely two states and at m@3{2|%|) transitions.

&

As in the case of word-automatic systems, we shall not djatsh a relation and
its language representation. Let us now summarize the tiefirof tree-automatic
systems.

Definition 3.2.1 A transition systen® = (S {—a},cacT) iS Said to beTREE(Z)-
automatidf S is a regular tree language ovaREE(X) and each—5;C TREE(Z) x
TREE((Z) is a tree-regular relation. The syste@is said to betree-automatidf it is
TREE((Z)-automatic for some k ang.

A presentatiorof a TREE,(Z)-automatic systeniS { —a}.acT) iS @ tuple

n= (,‘2157 {“qa}aeACT>7

whereAsis an NTA over TREE((Z) and eact; an NTA over TREE((Z) x TREE((Z),
such thatL(4s) = SandL(4,) = {T®T': T —4 T’} for eacha € ACT. We shall use
the notationS,, to denote the tree-automatic transition system of whidcha presen-
tation. A transition systen®’ over ACT is said to betree-automatically presentable
if it is isomorphic to some tree-automatic syst@nover ACT. Clearly, the class of
tree-automatic (resp. tree-automatically presentalyisfems subsumes the class of
word-automatic (resp. word-automatically presentabjejesns.

Remark 3.2.1 Just as in the case of word-automatic systems, our defiritidree-
automatic systems is slightly different from the common mgéin in the literature
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of automatic structures (e.g. see [BG04]); the latter ades with our definition of
tree-automatically presentable systems. Nonethelesis,dpproaches are equivalent
since we are only interested in verification problems, mdtef the expressive power
of certain logics

3.2.2 Examples

We now give two examples of tree-automatic transition syistanore will be given in
subsequent chapters.

Example 3.2.2 A ground tree rewrite system (GTRS) owT (cf. [DT90, L6d03])
is atuple? = (k,Z,A), where

e kis a positive integer,
e > is alabeling alphabet, and

e Ais a finite set of rewrite rules of the forfm, a,t’), wheret,t’ € TREE((Z) and
ac ACT.

The GTRS? gives rise to a transition syste@» = (S, {—a}cacT) WhereS:=
TREE((Z) and, for all treed, T’ € TREE((Z) whereT = (D, 1), we havel —, T’ iff
for some rewrite rulét,a,t’) € 2 andu € D it is the case thatis a subtree of rooted
atuandT’ =TJt'/u]. Itis easy to see that ground tree rewrite systems generaliz
pushdown systems in their expressive power as generattiengition systems.
Transition systems generated by GTRSs can be easily cedsdsitree-automatic
systems as follows. Given a GTRB= (k,Z,A), let 8» = (S {—a},cacT) bE the
transition system generated [y It is easy to produce an NTA that recognizes each
—a. More precisely, an NTA4, for —4 can be either in a “guessing mode”, “idle
mode”, or “checking mode”. Suppodec TREEk(Zi) is the input tree to4,, and let
virt (T) = (D, 1) andu € D. When4, is an idle mode, it simply ensures that the subtree
rooted atu is an identity relation (i.e. the subtree rooteduathen projected onto the
first component coincides with the subtree rooted when projected onto the second
component). Wher, is in guessing mode, it nondeterministically guesses (@sth
transitions) whether the current node is the root of thersabitvhere the rewriting
takes place. When the guess is negat®gchooses one of its children to “pass on”
the guessing mode, while the rest of the children are to ilémiode. When the guess
is positive, itinstantaneouslgwitches to a checking mode. Thép chooses a rewrite
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rule (t,a,t’) € & encoded in its finite memory and ensures that the subtreed@ati
when projected onto the first component coincides w(thinus the padding symbol),
and when projected onto the second component coincides'Withinus the padding
symbol). This can be done Isymultaneouslyerifying the two components.The final
states are declared to be the union of the idle state andates stfter successful checks
have been made.

Let us now measure the computation time to produce a tremvetic presentation
for the transition systems generated by GTRSs. Analyziegatforithm above, it is
easy to see that the NTA oveREEk(Zi) that recognizes the one-step reachability is
of sizeO(||P||) and can be computed in tin@ |Z|? x ||?||). In other words, these two
representations of ground tree rewrite systems are poliallyrequivalent. Therefore,
in the sequel we shall use the term “ground tree rewrite Bystéo refer to either of
these representationd.

Example 3.2.3We now present a generalization of ground tree rewrite systalled
regular ground tree rewrite systems (RGTR@E&)[DT90, Lod03, Lod06]). Intuitively,
RGTRSs extend ground tree rewrite systems in the same wéy-peeognizable sys-
tems extend pushdown systems. More precisetggalar ground tree rewrite system
(RGTRSpverACT is atuple? = (k, Z,A), wherek andX are the same as for GTRS and
Ais afinite set of rules of the forifd, a, 4’), whereZ and2’ are NTAs over REE,(Z)
anda € ACT. This GTRS® gives rise to a transition syste®» = (S {—a}cacT)
whereS= TREE(Z) and, for all treesl, T’ € TREE(Z) whereT = (D, 1), we have
T —4 T’ iff for some rewrite rule(4,a,2’) € A, a treet € L(A4), a treet’ € L(A'),
and a nodes € D it is the case thatis a subtree oT rooted atuandT’ =T|t'/u]. It
is known (cf. [Lod03]) that RGTRSs subsume prefix-recoghie systems, although
the latter could be exponentially more succinct than thenéor

It is not difficult to see that transition systems generatgdRGTRSS are tree-
automatic. This can be proven in the same way as for GTRSsfa&.the verification
stage, we can do product construction. It is easy to seetikatesulting NTA over
TREE(22) is of sizeO(||?||?) and can be computed in tin@(|=|2 x ||2||?). In other
words, these two representations of RGTRSs are polyngnagliivalent. Therefore,
we shall not distinguish them in the sequl.
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3.2.3 Basic closure and algorithmic results

We now generalize the convolution operatoto taken trees ( € Z>1). Givenk-ary
treesT; = (D1,T1),..., Tn= (Dn,Tn) Over the labeling alphab&t we definel; ®...®
Th to be thek-ary treeT = (D, 1) over the labeling alphabé&t] , whereX;, =>U{Ll}
and_L¢ %, such that

e D= ,Dj, and
e for eachu € D, it is the case that(u) = (ay,...,a,), where

a;:{Ti(u> if ue D,

1 otherwise.

Observe that when = 2 this definition coincides with the 2-ary convolution ogera
for TREEK(Z) that we defined earlier. An-ary relationR over TREE,(Z) is said to be
tree-regular(or simplyregular) if the language

{T1®...®Tn : (T]_,...,Tn> S R}

is tree-regular. As before, we do not distinguish a relaéiod its language representa-
tion.

Definition 3.2.2 A TREE((Z)-automaticstructure over the vocabulaxyis a structure
S = (S {Ra}aco), Where Sis atree-regular language oVieREE,(Z) and R, anAR(a)-
regular relation on S. Ao-structure is said to béree-automatidf it is TREE(Z)-
automatic for some integerk 0 and labeling alphabek.

A presentatiom) of a tree-automatic structui®, = (S {Ra}aco) is @ simply tuple
(As,{Aa}aco), Wheredsis an NTA over TREE((Z) with £L(A4s) = SandA4, is an NTA
over TREE((Z") (wheren = AR(@)) such thatL(4a) = Ra. A o-structure is said to be
tree-automatically presentabilgit is isomorphic to a tree-automatic structure oger
Remark 3.2.1 for our definition of tree-automatic systerse &lblds for our definition
of tree-automatic structures.

Example 3.2.41t is easy to see that every*-automatic structure is aREE;(X)-
automatic structure. We now give two tree-automaticalgspntable structures which
are not word-automatically presentable. The first is the struci{i¥ex) over natu-
ral numbers with multiplication (i.e. Skolem arithmetidtach positive integer can
be uniquely decomposed into a product of primes, p%]y .p%, wherep; is theith
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Figure 3.2: Tree representation of the numbers 2,3,5, and 60.

prime anda, > 0. We may then represent each positive integer as a binapwer the
labeling alphabef0, 1,0}, whoseith branch corresponds to the reverse binary repre-
sentation of;. For example, the number 2,3, 5 and 60 can be represented tig¢l

in Figure 3.2. The ternary relatiorn can then be recognized by an NTA which sepa-
rately runs the NWA for adding numbers on each branch (itsy éatreat the number

0 as a separate case). See [BGR10] for more details. Anothere is the structure
(TREEK(Z), =, ~4om), With the tree extension relation and the equal tree domain re-
lation ~4,m. Furthermore, it is still tree-automatic when we extend gtructure with
the binary relationsuccf (1 <i < kanda € X), which extendeachleaf of a tree by its
ith child labeleda. See [BLNO7] for more details. For more examples, see thentec
survey [BGR10].&

Just as for the case of word-automatic structures, the immafja tree-automatic
structure under a first-order query is also effectively-tiegular. The proof of this
result is identical to the word case and so is omitted.

Proposition 3.2.1 Given a presentation of a tree-automatic structure

Sn = (S{Rajaco)

over the vocabularg and a first-order query(x) < ¢(y) overg, the relation[u] s,
is effectively tree-regular.

Just as in the case of word-automatic structures, a bettepleaity can be obtained
when restricting to conjunctive queries.

Proposition 3.2.2 Let
O(X1, -+ Xm) <= Y1, .., Ynb

be a conjunctive query over, where

¢ = Rey (Z) A+ A Rey (Z0)
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is a conjunction of atomic formulas, whegeC xUy for each i=1,...,h. Given a pre-
sentatiom = (A4s, { 4a}aco) Of the TREE,(Z)-automatic structures,,, an NTA4, ac-
cepting[u] s, of size Q([]; || 4|) can be computed in time (&|™" x [, |4 ]]).

Example 3.2.5Just as in the case of word-automatic systems, Propositib@ 8an
be used to show that reachability relations and strict raaidity relations for tree-
automatic systems are polynomially interdefinable. Seerfpk@3.1.7 &

3.2.4 Negative results

Finally, since tree-automatic transition systems germszalord-automatic transition
systems, the negative results from word-automatic trimmsgystems carry over to
tree-automatic transition systems. Ttfeand=1 upper bounds for, respectively, reach-
ability and recurrent reachability also easily carry owetite automatic case.

3.3 Other generic frameworks

In this section, we shall briefly discuss several other gerfeameworks that have
been considered in the literature and compare them withAveedautomatic transition
systems. In particular, we will mention length-preservimgrd-automatic systems,
rational transition systems, Presburger-definable tianssystems, and»automatic
transition systems.

3.3.1 Length-preserving word-automatic transition syste ms

ArelationR C X* x X* is said to bdength-preservingf (v,w) € Rimplies|v| = |w]|.
A word-automatic syster® = (S, { —a},acT) IS Said to bdength-preserving each
relation— is length-preserving. The class of length-preserving wartbmatic sys-
tems are commonly considered in the literatureagfular model checkinge.g. see
[AJNSO04, Bou0Ol1, BIJNT00, BHV04, JNOO, Nil05]), which aims develop semi-
algorithms for dealing with various verification problemgeo generic frameworks
where the domains are represented as words or trees overadphabet. Length-
preserving automatic systems are known to be suitable fatefimg parameterized

2Despite this, nowadays the term “regular model checkingirseto almost exclusively mean model
checking over length-preserving word-automatic systems
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systemswhich are simply distributed protocols with a finite, buboanded, number
of processes (e.g. the thesis [Nil05] gives many examples).

Most verification problems for length-preserving wordeauaatic systems are al-
ways defined slightly differently in such a way that wordsewerylength will have
to be considered simultaneously. For example, to checkystafieparameterized sys-
tems, it is necessary to be able to compptest'(L(4)) or pre*(L(A4)) for an ar-
bitrary NWA 4. Note that, unlike in the case of general word-automaticesys,
computingpost’(sg) andpre*(sp), for any given words € Z*, is decidable since there
are at most 9% reachable configurations fros. In fact, this simple observa-
tion generalizes to most verification problems (e.g. teraplmgic model checking)
when considered over length-preserving automatic triansgystems. On the other
hand, the sepost(L(4)) and pre*(L(A4)) need not be regular nor computable in
general since it can be used to solve the halting problenmBuigng machines (e.g. see
[AJNS04, BINTOO, Nil05]).

So, how general is length-preserving automatic systemsgaosd to the class of
all word-automatic systems? Which verification problenstifi@ general class of all
word-automatic systems can be reduced to the length-piegazase? We have seen
an answer to the first question: length-preserving aut@sgitems indeed are a gen-
eral class of infinite systems, although there are only finiteany reachable configu-
rations from any given configuration. Let us now briefly anstie second question.
A verification problem for the class of all word-automatistms that involvesnly
finite pathscan in some sense be reduced to a variant of the problem awgthle
preserving automatic systems. This includes checkinghedality (i.e. safety). The
reduction is done by treating the padding symhoas a letter in the domain of the
*. That
way, checking whether a configuratiencan reach another configurationcan be

system and composing each resulting transition relatidimthve languag i

reduced to checking whether L*C post'(v L*) in the resulting length-preserving
automatic system. In contrast, such a reduction cannot be fitw liveness problems
including recurrent reachability or for temporal logic nebdhecking. To explain this,
consider as an example the problem of checking whethemimgiven NWAs4 and
4’ over the alphabeX and a length preserving*-automatic systen®, there exists
a configurationv (or for each configuration) in the language.(4) for which it is
the case thav € Red¢ £(2)) is satisfied inG. Since there are only finitely many
reachable configurations from any given configuratipthe infinite path witnessing
ve Red L(4')) in & must eventually loop at some configuratidre £(42'). In fact, it
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Is easy to see that this problem is r.e. or co-r.e., which @®mtrast to the highly unde-
cidable problem of recurrent reachability for the classlbivard-automatic systems
(see Proposition 3.1.6). This gives a theoretical justificethat length-preserving au-
tomatic transition systems anet suitable for dealing with liveness and temporal logic
(e.g. LTL) model checking since most interesting classeasfofite-state systems (e.g.
pushdown systems) could easily generate a simple infintte pa

3.3.2 Presburger transition systems

Presburger transition systems are transition systemsed@sains and transition re-
lations are definable in Presburger arithmetic. More pedgisPresburger transition
systemis a transition systen® = (S {—a},cacT), Where for some first-order for-
mulasé (X, ..., Xk) and Wa(Xq,...,Xk) over (N, +), for eacha € ACT, it is the case
that

o S={(i1,...,ix) EN¥: (N, +) = ¢(iy,...,ix)}, and

o forall tuples(iy, ...,ik), (j1,..., jk) € NK, we have(is, ..., ik) —a (j1.- .-, jk) iff
<N7+> ): l.IJa(i]_,...,ik, jl?"'a Jk)

A transition system is said to Heresburger-presentablié it is isomorphic to a Pres-
burger transition system. Every presburger transitiotesyss word-automatic [BG04,
BHMV94] since the structuréN, +) is word-automatic (as we saw in Example 3.1.6)
and first-order queries are regularity preserving overraat@ structures (Proposition
3.1.1). On the other hand, some word-automatic systemsareven Presburger-
presentable. For example, it can be seen that the word-atitotransition system
({0,1}*,succo, succy, <) is not Presburger-presentable since the first-order thefory
({0,1}*, succo, succy, <) has a nonelementary lower bound [CH90, Sto74], while the
first-order theory of every fixed Presburger-presentaldéesy can be solved in 3-fold
exponential time by any standard algorithm for checkings&adtions in Presburger
arithmetic (e.g. see [Koz06]).

The class of Presburger transition systems (and restigctioereof) has been con-
sidered as generic frameworks for model checking in thealitee and many powerful
semi-algorithms for computing reachable sets and realityatglations using repre-
sentations of semilinear sets have been fully implemerday (see [Boi99, YKB09,
YKBBO5, LAS, ABS01, BFLPO08, FL02]). Although the class ofBburger transition
systems is strictly smaller than the class of word-autorratstems, it still subsumes
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many interesting classes of systems such as Minsky machmg®etri nets, many
subclasses of which we shall encounter in the sequel. Onbkeofmtost appealing
aspects of the class of Presburger transition systemstist tth@ntains many natural
subclasses whose reachability relations are themselesbiiger-definable. This in-
cludes reversal-bounded counter systems ISP 1ba78] and their extensions with
one free counter and/or discrete clocks [ISI2, Iba78, DIB 00]; and many sub-
classes of Petri nets [LS04, Esp97b, LS05a].

One reason to consider the full class of word-automaticsitiom systems instead
of the subclass of Presburger transition systems is thia #re natural models of com-
putation whose reachability relations can be capturedimvitiord-automatic frame-
work, but not within Presburger framework. Two such modetduide pushdown sys-
tems and prefix-recognizable systems. The framework ofbBrger transition sys-
tems is not even powerful enough to capture the transitistesys that are generated
by prefix-recognizable systems; the systé@, 1}*, succo,succy, <) is one such ex-
ample. It turns out that the framework of Presburger tramsisystems is powerful
enough to capture pushdown systems, although not theinabdity relations.

Proposition 3.3.1 Pushdown systems are Presburger transition systems

Proof Sketch Each configuratiofg, w) € Q x I'* of a pushdown systerfi with states
Q=1{0qo,--.,0qn—1} and stack alphab&t= {0,1} can be interpreted (in a bijective way)
as a tuplg(i,bin(1w)) € N x N. Note that the stack content is interpretecoas1w)
instead ofbin(w) so thatw = 000 andw = 0 are not interpreted as the same numbers.
The transition relations—, can also be easily defined as a formdlgq, y1, X2, y2)

in Presburger arithmetic. Obviously the changes in theefisiate unit of? can be
handled easily in Presburger arithmetic. To deal with trengles in the stack content,
first observe that testing whether has a suffix of the fornu € {0,1}* expressed
using a sequence of divisibility tests by 2 (at mpsttimes), which is expressible in
Presburger arithmetic. For example, to check whethéas a suffix of the form 01
can be done by testing that/®1 and 2|y1/2|. The changes in the stack content can
also be deal with using a sequence of divisions and mulépbas by 2 (and perhaps
additionally additions/substractions by a @).

3.3.3 Rational transition systems

Rational transition systems are transition systems whoseadh is a regular set of
words over some alphabet (like word-automatic systems)vemake transition rela-
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tions are “rational”, which is a more general notion thanutag relations. In or-
der to define the notion of rational systems, we need to fisdlir¢he standard no-
tion of finite-state input/output transducers (a.k.a. oradi transducers). Aational
transducer®_ over the input alphabéet is an NWA over the alphabet; x Z¢, where
> =2U{¢e}. Therelatiorrealizedby X consists of precisely all tuplés,w) € 2* x Z*
where, for som% zi } . { Z: } € L(R)C (ZgxZe)*, itisthe casethat=a; ...a, and

w = b;...b,. Note that in this case we do not necessarily haye- |w| since some
of the lettersa;’s andbj’s might bee. A simple example of a rational relation is the
relation{(a",a®") : n € N} over the alphabef = {a}, which can be easily proved to be
not a regular relation by an application of pumping lemmarégular languages. We
refer the reader to the textbook [Ber79] for a more thoroughtiment of rational trans-
ducers and their basic properties.r#tional transition systenms a transition system
S = (S {—a}acacT) Where for some NWAZ and rational transduce{®Ra} . acT:

it is the case tha®= L(A4) and—, is realized byR,. Rational transducers are also
studied in the context of natural language processing [&M00]).

The class of rational transition systems is more general tha class of word-
automatic transition systems, but is not known to be conipar® the class of tree-
automatic transition systems. On the other hand, unlikemaatic systems, many sim-
ple problems are already undecidable for rational tramsisystems. For example, it
is undecidable to check whether a rational transition sydias a self-loop [Mor00],
which is trivially decidable for word/tree automatic systesince the property can be
easily expressed in first-order logic. Other such problambitde checking whether
a transition relation—5 in the system is symmetric, reflexive, or transitive [Joh86]
all of which are easily expressible in first-order logic. pis this, model checking
HM-logic enriched with inverse modality over rational tsiion systems and regular
atomic propositions is decidable [BG09] since the imageasb @eimages of regular
languages under rational relations are effectively regélgartial technique for com-
puting the transitive closure of rational relations has &lsen proposed by Dams et al.
in [DLS02].

In summary, although rational transition systems is a @atclass of transition
systems and is more general than the class of word-autotnatisition systems, it
remains to be seen whether it can be used to model naturakslas infinite-state
transition systems with decidable model checking that caahlready be modeled as
word-automatic systems. We also leave it as an open quektienpositive results in
this thesis can be extended in some way to the class of ratranaition systems.
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3.3.4 w-word automatic transition systems

w-word automatic transition systems can be defined in the sayas word-automatic
transition systems, but using NBWAs instead of NWAs. They ba easily seen as
a natural generalization of word-automatic transitiontesys (cf. [Bar07, BGR10,
Blu99, BGO04]). They are also known to satisfy most propsrtidich are satisfied
by word-automatic transition systems (e.g. closure undetdan combinations and
automata projections, and decidability of first-order tdgBimilar notions can also be
defined forw-word automatic structures. The classuefvord automatic structures is
quite expressive. For example, they include real numbetts addition(R, +) even
with an extra test of whetheris an integer [Blu99, BG04] and other interesting pred-
icates. It follows that any infinite-state transition systevhich can be defined in the
first-order theory of reals (possibly with extra tests fdegers) are als@-automatic.
There are several interesting classes of infinite-stateitian systems that are known
to be definable in the first-order theory of the reals inclgdieal-timed systems (cf.
[CJ99)). In fact, Comon and Jurski showed that even the edzlity relation is de-
finable in the first-order theory of the reals. For these nessit is natural to adopt
w-word automatic transition systems as a generic framewndkansider whether
the results in this thesis for word/tree automatic systeamske proven fow-word
automatic systems. We leave this as future work.

We shall also mention some partial techniques that havedeexioped for restric-
tionsw-word automatic systems. Legayal. [BLWO03, BLW09] have developed semi-
algorithms for computing reachability relations and LTL aebchecking forw-word
automatic systems when the given automata are weak-deistitii These results are
orthogonal to the result in this thesis.



Chapter 4

Algorithmic metatheorems for

recurrent reachability

Recall that theproblem of recurrent reachability over word (resp. tree)t@uatic
systemss defined as follows: given a presentatipof a word (resp. tree) automatic
systemSy = (S {—a}acacT). @n initial configuratiorsy € S, and a NWA (resp. NTA)
4 (called the “target automaton”), decide whethge Rec £(4))[—]. That is, we
wish to decide whether there exists an infinite path fagnm &y, which visits £(4)
infinitely often. Theglobal versionof this problem is simply to compute an NWA
(resp. NTA) representing the sBec L(4))[— 1], if this set turns out to be regular.
These problems are tightly connected with LTL model chegkas we shall see in the
next chapter.

As we mentioned in Proposition 3.1.6, the problem of recurreachability is
Z%-complete (i.e. highly undecidable) for automatic systenhs this chapter, we
shall show that it becomes decidalffieve are given an NWA (resp. NTA) represent-
ing the reachability relation of the automatic system astparthe input In fact,
stronger results are shown in this chapter. Firstly, it$uwat that in this case the set
Red £(A4))[—T] is guaranteed to be effectively regular. Secondly, a setcapre-
sentation of the witnessing infinite path as nondetermmigiichi word/tree automata
can also be computed. As an immediate corollary, when wecesi any subclass
C of word/tree automatic systems for which there exists aorélgn for computing
the reachability relations, we immediately obtain decilitgtfor recurrent reachability
and its global version ovef. In this sense, our result is an algorithmic metatheorem
for decidable recurrent reachability. The time complewitypur algorithm is polyno-
mial in the size of the automataR which represents the reachability relatien™ of

81
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the word/tree automatic syste@y, and the size of the target automat@non top of
the time taken to produc® from the input presentation. We shall present our algo-
rithmic metatheorem for word automatic systems in Secti@énahd for tree-automatic
systems in Section 4.2. In these sections, we shall alsodijiget applications of our
algorithmic metatheorems faniformlyderiving a polynomial-time complexity for re-
current reachability and its global version for pushdowstesns and (regular) ground
tree rewrite systems, and an exponential-time complegitypfefix-recognizable sys-
tems. These turn out to be also optimal for the respectivasemof systems. These
results are already known in the literature (e.g. see [EK8®&3/02, L6d03, L6d06]).
In Chapter 6, we will use these algorithmic metatheoremslériving new decidabil-
ity results for checking recurrent reachability, e.g.,reersal-bounded counter sys-
tems extended with discrete clocks, PA-processes, and-2rdellapsible pushdown
systems.

In Section 4.3, we give an extension of our algorithmic nretatem for recurrent
reachability to handlgeneralized Bchi condition given several automatay, ..., 4,
(instead of one, as for the original problem) decide whetiette exists an infinite path
visiting eachof the sets£(41),..., L(4p) infinitely often. In fact, this extension is a
comparatively simple corollary of our algorithmic metathem for recurrent reacha-
bility over word/tree automatic systems. In this case, hra@exity of our algorithm
becomes exponential mand polynomial in the size of other input parameters, which
we show to be optimal. Using this result, we derive an exptiaketime algorithm
for recurrent reachability with generalized Buichi corahtfor pushdown systems, for
which we give a PSPACE lower bound, and prefix-recognizayptéesns and regular
ground tree-rewrite systems, for which we give a matctiX@ lower bound. Inci-
dentally, this answers an open question by Loding [Lod@sicerning the decidability
of recurrent reachability with generalized Biichi cormtits'.

In practice, it has been observed (cf. [AJNS04, AJRS06, BB, BLW03, BLW09,
DLS02, Nil05]) that partial techniques for computing thaakability relations over
many generic frameworks have not been as successful inqgead partial techniques
for deriving reachability sets, although recent work by K@ al. (cf. [CPRO6Db,
CPRO06a]) sheds a light that they could be made practicaled¢ti® 4.4, we study what
we can deduce when we are given an autom&omhich represents an over/under ap-
proximation of the reachability relation™, i.e., =TC L(R) or L(R) C—T. Such

1Loding [L6d06] remarked that his technique for solvingugent reachability for RGTRSs cannot
easily handle generalized Buichi condition, which he lefaa open problem whether it is still decidable
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techniques could prove valuable when combined with paeighniques for comput-
ing upper/under approximations of the reachability relasi of word/tree automatic
systems.

In the next chapter, we shall apply our results from this tdafor deriving al-
gorithmic metatheorems for decidable LTL model checkinghwdomplex fairness
constraints, as well as model checking extensions@f:¢ (Reach) with recurrent
reachability operators. Part of the result in this chapéexrlieen published in [TLO8].

4.1 The word-automatic case

In this section, we prove an algorithmic metatheorem foididse recurrent reacha-
bility over Z*-automatic systems, which we will apply for deriving an opai com-
plexity of checking recurrent reachability over PDSs arefigrrecognizable systems.
Analyzing the proof of our main theorem, we shall also dedina with an extra
polynomial-time overhead we may compute four “small” wood®r > which repre-
sent periodic infinite paths witnessing positive instarafale problem.

4.1.1 Main theorem

The setting of our algorithmic metatheorems is simple. Lestart with a clasg”

of presentations of word-automatic systems. What conustare sufficient for ensur-
ing decidable recurrent reachability ové? We shall now give one such sufficient
condition.

Definition 4.1.1 A class(C of presentations of automatic systems is said telbsed
under transitive closurig for each automatic transition syste®, = (S, { —a};cacT)
presented by somipe C overZ, the transitive closure- of (U,cacT —a) € ZF X Z*
is regular. Furthermore, the class§ is effectively closed under transitive closufe
there exists an algorithmi/ that computes an NW& ™ recognizing this transitive
closure relation for each input presentatione ¢. We say thatM is an effective
transitive closure witness (ETC-witness)C.

Notice that above we may alternatively define that the naotseachability relations
—* are effectively regular. However, these two definitionsegaivalent since these
two relations are polynomially interdefinable (see Exan®le7). In the sequel, we
shall tacitly assume that/- runs in at least linear time since such an algorithm should
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read the entire input. The output of the algoritiihon inputn is written 2 (n) with
size||M(n)
algorithmic metatheorem for decidable recurrent readityabi

, which obviously satisfieg (n)|| < TIME 5,(|In||). We now state our

Theorem 4.1.1 Suppose&’ is class of automatic systems closed under transitive clo-
sure. Then, given a presentatigne C over Z of an automatic syste®, = (S {—a
}acacT) @nd an NWAZ overz, the set Re@C(A4)) is regular.

Moreover, if C is effectively closed under transitive closure with an EfiGess
M, then an NWA recognizing Rec(4)) of size Q([|M(n)|| + |n]|) x [|M(n)]| x
|4]|) is computable in time TIME:(||n]]) + O(|Z|2 x || (n)||° x ||4]|?).

Observe that once an NWA' recognizingRed £(4)) has been computed, we can
check whethev € Red £(2)) for a given wordv € Z* in time O(|Z| x |v| x ||.4'||) by a
standard membership algorithm for NWAs. In other wordsyassg effective closure
under transitive closure for the clag®f presentations of automatic systems, recurrent
reachability is decidable in polynomial time assuming thatreachability relation is
given as part of the input.

4.1.2 Proof of the main theorem

We now give a proof of Theorem 4.1.1. Firstly, our assumptibdosure under tran-
sitive closure gives an NWAR over the alphabel | x ¥, recognizing the transitive
closure—* of (U,cacT —a)- By definition, we haver € Re¢ £(2)) iff there exists
a sequencgV; }icn of words inZ* with vp = v such thaty,_1 ®Vvi € L(R) andv; €
£(A4) for alli > 0. We now divide the séReq £(4)) into two setsRec¢s(L(A4)) and
Rec..(L(A4)), whereRec¢,(L(A4)) contains words with witnessing sequenog}icn
that satisfies; = vi for somek > j > 0, andRec., (L(A4)) contains words with a wit-
nessing sequengg; }icn that satisfies # v for all distinct j,k € N. Clearly, it is the
case that

RedL(A4)) =Rec(L(A4))URec,(L(A)).

Hence, we may separately construct NWAs ¢ (L(A4)) andRec..(L(A4)), from
which we can easily compute their union. Let us start withethgy case of constructing
an NWA 4,5 recognizingRecs(L(4)).

Lemma 4.1.2 An NWA 4, of size at mos{ 4| x [|R || x (||R ||+ |In]|) recognizing
Rec,(L£(4)) can be constructed in time(@ % x || 4| x |R| x (| R + [In]))-
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4

\' w

Figure 4.1: A witnessing sequence for v € Rec¢s(L(4)) of lasso shape.

Proof. Observe that, for each wonde Z*, v € Rec¢,(L(A4)) iff there exists a word
w € Z* such thatv —* w, w —* w, andw € £(4). The pair(v,w) is a witnessing
sequence of lasso shape; see Figure 4.1. To this end, weysapply Proposition
3.1.2 on the formula

() :=3y(x = yAy =T yAy e L(A)).

Observe that an NWA for-* can be obtained by taking a union of the N\Wafor —
and the NWA (of sizd|n||) for (U,cacT —a)- Therefore, we obtain an upper bound
of ||| x [|R || x (||R ||+ |In||) for the size of4-, and an upper bound @(|Z|? x
14| < [|R ]| % (][R ]|+ |[n]|)) for the amount of time needed to compute. O

Thus, it remains to construct an NWA., recognizingRec., (L(4)).

Lemma 4.1.3 An NWA4_, of size Q|| 4| x || R ||?) recognizing Rec (£(4)) can be
constructed in time Q| x |42 x | R ||3).

The proof of this lemma is substantially more involved thie proof of the previ-
ous lemma. Therefore, we first give the proof idea. Firstlyapplying pigeonhole
principles on word lengths, we can show that it suffices tesmer witnessing infinite
sequencesv; }icn such that there exist two sequendes}icy and{Bi}icy of words

overZ such that:

1. |aj| > Oforalli >0,
2. |aj| = |Bi| foralli € N, and
3. Vi=Po...Bi_10; foralli € N.

See Figure 4.2 for an illustration of witnessing infinite seces of this special form.
Such pairs of sequencés; }icy and{B; }icy can then be represented as a gaif)
of w-words overz U {#}, where # is a new symbol not Bhand

o = OgHaq#...,

B = PBoBuit....
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Vo = dp

vi = Boay

V2 = BoPiaz
vz = [of1f203

Figure 4.2: Witnessing infinite sequences {V; }icn of special form. The lengths of the

words in the sequence are strictly increasing and that, for all i € N, |ai| = |Bi].

The strategy then is to construct an NBVWAthat acceptso-wordsa & 3 correspond-
ing to witnessing sequences of this special form. OBdg constructed, it will be easy
to obtain4_,. If we assume that the NWAZ and®_are deterministic, the construction
of B is then rather immediate. We will, howevegfrain from determinizinghe NWAs
A andR_since this will cause an exponential blow-up in the size efdbtomator.
Instead, by further applying pigeonhole principles on timesrof 4 and infinite Ram-
sey theorem on the runs &f, we will prove sufficiency of infinite sequences of the
above special form that satisfy further technical resoi (see below) as witnesses.
An NBWA B that recognizes such sequences can then be constructetymomaal
time.

We shall now elaborate the details of the proof of Lemma 4.1le8 4 = (X, x
2,,Q,0,00,F) and® = (£,Q,¥,q,F’). The following lemma asserts that we may
restrict ourselves to witnessing infinite sequences of aigp®rm.

Lemma 4.1.4 For every word \e Z*, it is the case that & Rec.. (£ (4)) iff there exist
two infinite sequencely; }icy and {B; }ien of words overz such that

(1) ap=vand|a;j| > Oforalli >0,
(2) |ai| =|Bi| foralli € N,

(3) there exists an infinite rumtof 2 on 3o ... such that, for all ic N, the NWA4
accepts 1 from g, where g= 11(|Bo. . . Bi|),

(4) there exists an infinite rur’ of ® on (Bo x Bo)(B1® B1)... such that, for all
i € N, R accepty; ® Biai4+1 from d where §=17(|Bo. .. Bi—1]).
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Vo V1 Vo

Figure 4.3: An illustration of w-chains.

One direction of the lemma is easy: if (1)—(4) hold, then fribra infinite sequences
{ai}ieny and{B}icn we can form a new sequenée }icn wWith vi :=Bo. .. Bi_10;. Con-
dition (3) ensures that € £(4) for all i > 0, and condition (4) implies that — vi 1
foralli € N. Thisimplies thav € Rec..(£(4)) and thus proving sufficiency in Lemma
4.1.4. To prove the converse, we will prove a more generahlansoncernings-
chains which are simply the transitive closures of any one-diog@l infinite path
(see Figure 4.3). More precisely, IBtC Z* x * be a (not necessarily transitive) bi-
nary relation andJ C =* a language. Atransitive) U-colouredw-chain in Rfrom

a wordv € 2* is an infinite sequencév; }icn of distinct words inZ* such that the
following three properties are satisfied:

e Vo=V,
e for each integer > 0, it is the case that € U, and
e for each pair of integerg> i > 0, we have(vi,vj) € R

Figure 4.3 gives an illustration ab-chains. We write @AIN (U,R) to denote the
set of wordsv € Z* from which there exists & -colouredw-chain inR. Observe
that CHAIN (L(A4), —T) coincides withRec..(L(A4)). The following proposition is a
Ramsey-type result fap-chains in word-automatic systems.

Proposition 4.1.5 Suppose thaf\ is an NWA ove&, and‘7 an NWA oveiz| x 2|
recognizing a regular relation B Z* x Z*. Then, for every word

v € CHAIN (L(N), L(T)),
there exists a word'v’ such that
1. V|=|vjand|V'| >0

2. vovV' e L(T),
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3. there exists an accepting rumof A’ on VW', and a runp’ on 7 on VoV
such that ¢ € CHAIN (L(A9), £L(TY)), where g:= p(|V]), o := p/(]v]), and
A (resp.T9) is the NWAA but with ¢ (resp. § as the initial state.

Proof. Suppose that € CHAIN (L(A(), L(‘T)). Then, there exists a sequence=
{Vi}ien of distinct words ovel such thatyy = v, and it is the case that, for al>

0, the wordy; is in L(A) with accepting rum;, and for all distinct pair of indices
j>1i>0, we haveyy®Vvj € L(T). As there are only finitely many different words
of length|v| but infinitely many words ino, we may assume thaw;| > |v| for all

I > 1; for, otherwise, we may simply omit these words framNow every wordv;,
wherei > 0, can be written ag = uw; for some wordsy;,w; such thafu;| = |v| and
|wi| > 0. As there are only finitely many different words of lengthand finitely many
different runs ofAl of length|v|, by pigeonhole principle there must exist- 0 such
thatn;[0, |v|]] = nk[O, |v|] (and sauj = uy by the definition of NWA runs) for infinitely
manyj > 0. LetV := ux andp :=n|0, |v|]. Therefore, we may discard all wordsin

o with i > 1 such that is not a prefix ofh;. By renaming indices, call the resulting
sequenc® = {V; }iey and, for alli > 1, denote byy; the accepting run al\ onv; that
hasp as a prefix. Notice that is still a witness fonw € CHAIN (L(N), L(7)). So, for
k> j >0, let0j denote the accepting run af onvj ® vi. Let X denote thdinite
set of all runs ofZ7 onV ®V. Notice that it is not necessarily the case tat= 1
since7 is nondeterministic. Therefore, consider the edge-labalalirected graph
& = (V,{Ey}uex) such thaV =Z- and

Eu={{j,k} :0< j <kanduis a prefix ofd; \ }.

Notice that{E,}ucx is a partition of{{j,k} : j # k,k > 0}, and so® is a complete
graph. By infinite Ramsey theorer® has a monochromatic complete infinite sub-
graphH = (V' E,) for someu € X. Setp’ :=u. Notice that if the elements &t
arei; <iz <..., then the rurg;,; (for all k> j > 0) hasu as a prefix. Therefore,
we can discard all wordg (i > 0) in o such thai ¢ V' and by renaming indices call
the resulting sequenee= {Vvi };cn. We now set/’ to be the unique word such that
v1 =Vw. Itis easy to see that (1) and (2) are satisfied. Furthernitasegasy to check
thatv’ € CHAIN (L(N\), £(T9)) with a witnessing sequende; }io, wherew; is the
unique word such tha = v'w; for alli > 0. O

Now it is not difficult to complete the proof of Lemma 4.1.4v8iv € Rec.,. (L(A4)) =
CHAIN (L(A),L(T)), we will inductively construct the desired sequenges}icn



Chapter 4. Algorithmic metatheorems for recurrent reachability 89

and{Bi}icn, along with the runm of the NWA 4 and the runit’ of the NWA R, by
using Proposition 4.1.5 at every induction step. The gisthef proof is that from
the wordv'v’ given by Proposition 4.1.5 at induction stkepwe will setpyx =V and
aky1 = V', and extend the partial rumsand 1’ in Lemma 4.1.4. Notice that we have
V' € CHAIN (L(N9), £(T9)), which sets up the next induction step. See the appendix
for a detailed argument. This completes the proof of Lemrhai4.

It is now easy to construct an NBW& that recognizes>words of the formx @ 3
satisfying

o = OQpH#ai#...,

B = PoHBuit...

for some{a; }icy and{p; }icwy satisfying the conditions in Lemma 4.1.4. The automa-
ton B will attempt to simultaneously guess the rumand 1, while at the same time
checking that the runs satisfy the conditions (3) and (4)amina 4.1.4. To this end,

B will run a copy of 4 and X, while simultaneously also running several other copies
of 4 and R to check that the rung and 1’ guessed so far satisfy the conditions (3)
and (4) along the way. The automat8rconsists of three components depicted as Box
1, Box 2, and Box 3 in Figure 4.4. The first box is used for regdirve prefix of the
input before the first occurrence ﬁ , while the other boxes are used for reading the
remaining suffix. Boxes 2-3 are essentially identical, tieey have the same sets of
states and essentially the same transition functions. Wharrives in Box 2, it will
read a single letter il x < and goes to Box 3 so as to make sure thdt> 0 for each

I > 0. WhenB is in Box 3, it will go to Box 2 upon reading the Iett%rﬂ. We will

set all states in Box 2 as the final states so as to make surafingely many{ Z } is
seen, i.e., the sequencgs }i and{p;}i are both infinite, and each words andp; are
finite.

Figure 4.4: A bird’s eye view of the Blichi automaton ‘B
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More precisely, the NBWAB = (ZZ U { [ Z } } S A S, SF) is defined as follows.
Define
P:=(QxQxQ)U@QxQ xQxQ xQ x{2,3}).

Intuitively, Q x Q' x Q' will be the statesin Box 1 an@ x Q' x Q x Q' x Q' x {i} will

be the states in Box The initial state is defined to ks := (g, qp, ). The first and
the last components in each state are meant for guessingfithieei runsrtandr’. The
second component of each state in Box 1 is used for guessirgfia @f the accepting
run of X ona ® Boa1. The automatorB will finish this guessing when it reaches Box
3 upon the completion of parsirg ® 31. When3B is in Box 2 or 3 reading; ® [3;,
wherei > 0, the third and fourth components of the states are usecthtmking that
Bo-.-Bi—10; ®Po...Ridi+1 € L(R ), which will be completed in the next iteration. We
now formally define the transition function. Let

6(q,b)><5/<q/,{§ )X&(q//’{ED Jifab#£#
AO%¢dm{ﬂ)ﬁ: (0.9".0.9.9".2) Jifa=b=#
0 , otherwise.

and, wherBisinastate il x Q' x Qx Q x Q' x {i}, wherei = 2,3, anda, b +# # we
define

A((ql,qz,q’l,q’z,q’z’,i>, hD = 8(01,b) x & (qz, {;‘ ) x 8(ql1,a) x

¥ (@] 1]) <8 (w[0]) <

jD = (01, 03,91, G2, 03, 2).

1
a

b
b
If g} € F anddq, € F/, then we set

A ((ql,qz,q’l,q’z,q’z’,?»),

Finally, the set of final states ae := Qx Q' x Qx Q' x Q' x {2}. Correctness of this
construction is immediate. Furthermore, it is easy to saettie construction takes
time O(|Z[? x [|A]|? x IR ||*).

Now, from B we can easily compute the NWA ., = (Q', %, &, g3, F1) that recog-
nizesRec, (L(A4)). The automatorfl_, accepts the set of finite wordg such that the
word ap#a1#. .. ® Po#P1#. .. is accepted byB for some{a;}i~o and{B;}icy. There-
fore, we will set the new set of stat€8 to beQ x Q' x Q, i.e., the first component of
B in Figure 4.4. We then apply projection operation on theditgon functionA of B
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to obtaind®. More precisely, ifa € ¥, we set

'((01, 02, 0p), @ UA( q1, G2, ) { D

bez

Finally, the new sef® of final states will be those states@t from whichB can accept
somew-words of the for Z w for somew-wordw. For this, a simple modification of
the standard linear-time algorithm for testing nonemssfer NBWA can be applied
(cf. Proposition 2.2.6), which still takes linear time. &lly, it is easy to check that the
size of the resulting NWA i©(||4|| x || R ||?), and the total time taken to compute it
isO(|Z|2x || R |3 x ||4||?) on top of the time taken to compute. This completes the
proof of Lemma 4.1.3 and hence the proof of Theorem 4.1.1.

Remark 4.1.1 As we mentioned earlier, the proof of Lemma 4.1.3 can be lyrsi-
plified by determinizing the NWAR. By doing this, we avoid the use of Ramsey
theorem, but at the expense of an exponential blow-up,the.algorithm no longer
runs in polynomial time. Such a proof technique (without Rayntheorem) was used
in [KRSO5] for proving a Konig's lemma for automatic paft@ders. In fact, our
proof above directly improves the complexity of the restriben [KRSO5]H

4.1.3 A small witness for recurrent reachability

The following corollary of the proof of Theorem 4.1.1 is rathmmediate.

Corollary 4.1.6 Suppose that is a class of automatic systems effectively closed un-
der transitive closure with an ETC-witne84¢. Then, given a presentatiane C over

Z of an automatic syste®n = (S, {—a},cacT) @Word \p € S, and an NWAG over

>, we can effectively decide whethereyRed¢ £(A4)) and, if so, produce a witness of
the form:

1. (Vo,w) € ¥ x 2* such thaty —* w, w—" w, and we £(4), or

2. (Vo,Wo,V1,W1) € (2*)* such that wheneveps=vpand §:= wow"1‘1v1 (foreach
integer i> 1), itis the case that:

e 5 —* s;j for each pair of integers } i > 0, and

e 5 € L(A4) for each integer &> 0.

Furthermore, the total running time of the algorithm is TIWE||n||) + O(|Z|? x
13 ()13 > (1A% x |vol).
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We shall now sketch the proof of this corollary. Whenewge Red¢ £(4)), we either
havevp € Recs(L(A4)) or vp € Rec..(L(A4)). For the former case, as in the proof of
Lemma4.1.2, we may apply the construction from the Projuws.1.1 on the formula

W(y) :==vo =" YAy =T yAy € L(A)

and obtain an NWAZ/; of sizeO(|vo| x || 4| x ||R || x (][R ||+ n]|)). Therefore, we
may easily compute a witnessing wonde £(4)) such thatw| < ||4/|. For the
casevp € Rec,(L(A4)), we work from the NBWAB that was obtained during the
computation of4 .. From B, we may compute a new NBW#&’' that recognizess-
wordsa ® B € L(‘B) of the form

a = VoHaq #...

B = PBo#Bi#...

for some sequencesy; }i~o and{B; }ien of words inZ*. The NBWA B’ can be com-
puted by taking a product of Box 1 in Figure 4.4 with a simple Al'Wat recognizes
only the wordvp. To obtain the wordsvw, vy, Wy € Z*, we simply apply the standard
nonemptiness algorithm for NBWA off'. In fact, the maximum length of these words
is bounded by the size of the NBWA. The complexity of the algorithm in Corollary
2 is immediate from the complexity of the algorithm from Them 4.1.1.

4.1.4 Two appetizer examples

We now give two immediate applications of Theorem 4.1.1 ferivdng an optimal
complexity (up to a polynomial) of checking recurrent reaaiity of pushdown sys-
tems and prefix-recognizable systems. More concrete exampll be given in later
chapters.

Pushdown systems

Recall that pushdown systems can be thought of as word-atitmsystems (see Ex-
ample 3.1.2). Caucal [Cau90] proved that the reachabgiigtions of pushdown sys-
tems are rational, for which a rational transducer is comipletin polynomial time.
Later in [Cau92] Caucal noted that the reachability refaiare in fact also regular,
for which NWAs can be computed within the same time compjexit
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Proposition 4.1.7 ([Cau90, Cau92])Given a PDSP, the reachability relation—* of
P is regular. Furthermore, an NWA for-* can be computed in time polynomial in
12]].

Notice that this proposition immediately implies the regitl of the strict reachability
relation—, for which an NWA can be computed in polynomial time (see Eplm
3.1.7). Combining this with Theorem 4.1.1, the followingtinem is immediate.

Theorem 4.1.8 Recurrent reachability for PDSs is decidable in polynontirale. Fur-
thermore, the set of configurations R&¢2)) which satisfies the recurrent reachabil-
ity properties is also regular for which an NWA is computahbl@olynomial time.

This theorem is not new. In fact, it can be inferred from aifh@m the result of Loding
[L6d03, Lod06] concerning recurrent reachability of ginal tree rewrite systems or the
result of Esparza, Kucera and Schwoon [EKS03] concerningrhddel checking over
PDSs with “regular valuations”.

For the sake of completeness, we shall now sketch a proofagdBition 4.1.7.
We start with the following well-known result, which can b@pen using the standard
“saturation” construction (e.g. see [BEM97, EHRSO00]).

Proposition 4.1.9 Given a PDSP and an NWA4, one can compute in polynomial
time two automatayre: and Apost recognizing pré(L(A4)) and post(L(A)), re-
spectively.

In fact, the algorithm given in [EHRS00] computes these @atia in cubic time,
and the sizes oflprer and Apesy are at most quadratic ifn4||. Now, given a PDS
P = (ACT,I,Q,d), we writeDom(P) for the set of configurationgu € QI'* such that
((g,a,u),(d,u’)) € dfor somea € ACT, € Q andu’ € I'*. To construct an NWAR

recognizing the reachability relation @ we shall need the following easy lemma.

Lemma 4.1.10 Given a pushdown systefh= (ACT,I",Q,d) and two configurations
01Uz, 02Uz € QI'*, then quy —* gous iff there exists a configurationggs of 2, which
satisfies either guz € Dom(P) or uz = €, and words xv,V» € I'* such that 4 = xvy,

Uz = X2, and qv; —* gguz —™* V2.

This lemma can be easily proved by induction on the lengtthefgath witnessing

giu1 —* ga2u2. Now constructing the NWAR_ for the reachability relatior-* of P is

C

post that rec-

simple. First, we use Proposition 4.1.9 to compute the ng@ andA4
ognize, respectivelypre*(C) and post‘(C) for every configuratior® € Dom(?) U Q.
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Then, on inputgiu; ® gaup, the NWA R _ first remembergqs, gp) in its finite mem-
ory, andguesses configuratiorC € Dom(?) UQ and a position at which the initial
common prefixx in Lemma 4.1.10 ends. The automatgnthen simultaneously runs

the automatazlg@ and 4C _. to verify that the top part; and the bottom pant, of

post*
the remaining input word (preceding the padding symbpkatisfyq,v; € L(ﬂlg@)

andagu; € L(ﬂl‘p:ostk). By Proposition 4.1.9, NWAs fopre*(C) and post'(C) can be
computed in polynomial time for each configurat©re Dom(?) U Q. Hence, we can

also compute the NWAR_ in polynomial time.

Prefix-recognizable systems

We now use Theorem 4.1.1 to infer the decidability of reautrreachability for prefix-
recognizable systems with optimal complexity. Recall thwgfix-recognizable sys-
tems can be thought of as word-automatic systems (see Eg&1ip8). It turns out that
the reachability relations for prefix-recognizable systeare also regular, for which
NWAs can be computed in exponential time.

Proposition 4.1.11 Given a prefix-recognizable systé®||, the reachability relation
—* of P is regular. Furthermore, an NWA fer* can be computed in time exponential
in |2

As for PDSs, this proposition also implies the regularitytiod strict reachability re-
lations of prefix-recognizable systems, for which NWAs cancbomputed within the
same time complexity. To prove the above proposition, weldss the well-known fact
(e.g. see [Cac02, Lod03]) that given a prefix-recognizapgem? = (ACT,I",Q,d)
we could construct another prefix-recognizable sys#m (ACT,I’,Q,d’) such that
each rule((q,a,4),(q,4'),4") satisfies£(2") = *. In other words, therefix con-
straintsin the original prefix-recognizable systems have been rexhoVhis fact can
be proven via the standard technique for prefix-rewriteesyst(cf. [Cac02, EKS03,
L6d03]) of annotating the runs @achNWA representing a prefix constraint @fin
the new alphabet’ and each rule i, which causes the size 6f andd to be ex-
ponential in the number of prefix constraintsdn(but polynomial in the rest of the
parameters). One could now proceed in exactly the same waytlas proof of Propo-
sition 4.1.7 of the previous example, and infer that the mahiity relation for?’ is
regular, for which an NWA can be computed in time polynomid|||.

Combining Proposition 4.1.11 and Theorem 4.1.1, we obtardesired result on
recurrent reachability for prefix-recognizable systems.
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Theorem 4.1.12Recurrent reachability for prefix-recognizable systemddsidable
in exponential time. Furthermore, the set Re¢4)) which satisfies the recurrent
reachability properties is also regular for which an NWA @wputable in exponential
time.

This theorem was previously known, e.g., it can be easilwddrfrom the result of
Kupferman, Piterman, and Vardi [KPV02]. In addition, ithgrout that the complexity
given in the preceding theorem is optimal in the sense tleapthblem isEXP-hard,
which can be easily deduced from the recent result of G§@&108] on theEXP-
completeness of the reachability problem for prefix-recogjple systems.

4.2 The tree-automatic case

In this section, we extend our algorithmic metatheoremdacurrent reachability over
word-automatic systems to tree-automatic systems, whietapply for deriving an
optimal complexity of checking recurrent reachability oxegular ground tree rewrite
systems. The proof in this section is substantially morarigal than the proof from
the previous section since we need to reason about manyetiffieranches of the trees
at the same time. Nonetheless, the proof idea is esserttig@lgame: we encode an
infinite sequence of trees as an infinite tree which will begeized by a nondeter-
ministic top-down Bichi automaton. Therefore, the readedvised to first read the
construction from the previous section.

4.2.1 Main theorem

Let us first state the tree analogue of Definition 4.1.1.

Definition 4.2.1 A classC of presentations of tree-automatic systems is said to be
closed under transitive closuifefor each tree-automatic systedi, = (S, {—a}cacT)
presented by somge C, the transitive closure-* of (U,cacT —a) IS tree-regular.
Furthermore, the clasg is effectively closed under transitive closuféhere exists an
algorithm 94 that computes an NT& * recognizing this transitive closure relation
for each input presentation € C. We say thatM is an effective transitive closure
witness (ETC-witnes)f C.

As before, we shall tacitly assume th#f- runs in at least linear time since such an
algorithm should read the entire input. The output of th@algm M on inputn is
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written M (n) with size||M (n)||, which obviously satisfiesM (n)|| < TIME 4,(|[n|])-
We now state our algorithmic metatheorem for decidable rreati reachability for
tree-automatic systems.

Theorem 4.2.1 Suppose that” is a class of tree-automatic presentations that are
closed under transitive closure. Then, given a presenaticc C of a TREE(X)-
automatic syster®n = (S,{—a},cacT) @nd an NTAZ over TREE(Z), it is the case
that the set Réa_(4)) is tree-regular.

Moreover, if C is effectively closed under transitive closure with an EfiGess
M, then an NTA recognizing Re€(4)) of size Q|| 4| x ||M(n)||?) is computable in
time TIMEy ([In]l) +O(Z[* x [ R]|® x || ]|

Observe that the time complexity obtained in this theordbeiastill polynomial, is
slightly worse than the time complexity obtained in the woade (see Theorem 4.1.1).

4.2.2 Preliminaries

We will first fix some definitions and notations that we will usehe proof of Theorem
4.2.1. Ak-ary (linear) context treeover the labeling alphabét with variablesX =
{X1,..., X} isatreel = (D,1) € TREE(ZU.X) such that for each=1,...,n, there is
exactly one node; € D with t(u;) = X;; furthermorey; is a leaf. The leaves;, ..., u
are also calledontext leavesTo emphasize which variables areTify we will often
write T[X1,...,Xn] for T. Observe that whenever= 0 the context tred is just a
normal tree (a.k.agroundtree). Given ground treds,...,t, € TREE(X), the tree
T[t1,...,tn) is the ground tredl [t1/uy,...,th/un], Obtained by replacing all context
leavesus,...,u, by the ground treess, ... . ,t,, respectively. We also defife® T just
as we defined the operatar for ground trees, but we replace the Iat%é;l } by x.
For a context tred’ = (D/,1’) and a treel = (D, 1), we writeT’ < T if D’ C D and
T(u) = 1(u) wheneveu € D’ andu is not a context leaf.

Given an NTA4 = (Z,Q,d,qp,F) over TREE((Z), we now extend the notion of
runs of 4 to k-ary context tree§ = (D, 1) overX with variablesX = {x,...,X,} and
context leavess, ..., u,. First, we definevirt (T) to be thek-ary treeT’ = (D', 7)
over the alphabel’ := U X U {$}, where $¢ Z, such thatD’ =DU{vi:ve D\
{ug,...,up},1<i <k} and

() = { T(u) ifu e D,
$ otherwise.
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Observe that this definition is to a large extent similar t® $pecial case of ground
trees, except that we treat the context leawes. ., Uy in the original context tre& as
virtual leaves. Arun of 4 onT, then, is a mapping : D’ — Q' that can be defined in
the same way as for ground trees by treating . ., u, as virtual leaves. We say that
is potentially acceptingf p(u) € F for each leati € D’ — {ug,...,un}. In other words,
potentially accepting runsiightbecome accepting after we replace the context leaves
with some ground trees.

We shall also need the definition ohranked treess a conceptual tool. Aan-
ranked treeover a potentially infinite labeling alphabgEtis a tree over the labeling
alphabetz and some direction alphab¥t= {0,...,k}, for some integek > 1, with
a potentially infinite tree domain. Notice that the direntedphabet of unranked trees
are notapriori fixed, although they are finitely branching.

4.2.3 Proof of the main theorem

LetY'={1,...,k}. Let R be the NTA over REE(Z ) x TREE(Z, ) that recognizes
the transitive closure>* of (Uy.acT —a). For the rest of the proof, we writd =
(Q1,61,q%, Fi1) andR = (Qz,ég,qé,Fg). By definition, for every tre§ € TREE((Z),

we haveT € Red.4) iff there exists an infinite sequené®; }; of trees in TREE((Z)
such thaflp =T, Ti_1 —™ T, andT, € £(4) for alli > 0. As in the case of words,
we shall prove that it is sufficient to consider only infinitegsiences of trees of a
special form that can be recognized by a Buichi infinite-tre®matons, after which
constructing the desired NTA' for Rec.2) will be easy. Unlike in the word case,
we shall find it notationally simplamotto treat separately trees with looping and non-
looping witnessing sequences.

Just as in the word case, we shall apply pigeonhole prirgiphethestructureof
the subtrees in the witnessing infinite sequence to obtaitressing infinite sequence
in a special form. The main difference in the tree case isttirmhumber of branches
(as well as the length thereof) of the trees appearing in ftreessing sequence could
all grow indefinitely. To this end, we shall need the follogyidefinition.

Definition 4.2.2 For any context tree Txy, ..., %] = (D’,T') € TREE(ZU{X1,...,Xn})
and atree T= (D, 1) € TREE((Z), we write T[x1,...,%,] C T (orjust T C T) if, when-
ever uy,...,u,, are the context leaves in T labeled hy .x., x,, respectively, it is the
case that

e foreachi=1,...,n, we have y¢ D,
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Figure 4.5: An illustration of the relation .

e D'—{uy,...,un} €D, and
e U =Viri forsomercYandyeDnND.

In other words;T’ C T if all the nodes inT’ are inT except for the context leaves. See
Figure 4.5 for an example. Note that in the word case theioglat simply reduces to
comparing the length of two words. The following lemma gigdsasic fact about the
relationC.

Lemma 4.2.2 Given trees 1, T, € TREEk(Z), there exists a context tree T with vari-
ables x, ..., Xy (for some ne N) such that the following two conditions hold:

(1) T[X1,..., %] E Ty, and
(2) for some treegt. ...ty € TREE(Z), itis the case that Ty, ...,tn] = Ti.

Furthermore, the context tree T is unique up to relabelinthefcontext leaves.

/a\

As an illustration of Lemma 4.2.2, we may taketo be the tree g ¢ andT, to
/ N\

be the right tree in Figure 4.5. The unique context We;atisfyiarllg thte)z two prescribed
conditionsin Lemma 4.2.2 is the left tree in Figure 4.5. Thwopof the lemma is easy,
which we relegate into the appendix. We are now ready to atatgmal form lemma
(analogous to Lemma 4.1.4) for the infinite sequences wstng3 € Req L(4)).

Notation. For the rest of the proof, we shall use the following notatigsiven an
NTA A= (Z,Q,9,q0,F) over TREE(Z) and a statg € Q, we write A’ for the NTA
(Z,Q,9,q,F) obtained by replacing the initial state af with g. B

Lemma 4.2.3 For every tree Te TREE(Z), itis the case that E Red L(A4)) iff there
exists an unranked treg = (D<, T¢) over the labeling alphabet

r o= {(ttx,....,x],0,d) :0€ Q,q € Qa,r € N,t € TREE(Z),
t' € TREE(ZU{Xq1,...,%}), andt{ C t},
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andtz(u) = (oy, Bu[X,- - -,%r],qu,q,) for all u € Dg, such that the following condi-
tions hold:

1. 15(g) = (T,BelX1, - -, X, ), &5, G3) for some context treBe[xa, ..., %] and some
re c Nsuchtha3: C T,

2. forall ue Dz we have

(&) the number of children of u is the same gs r

(b) ay®Bulayt,...,0ur) € L(Kq{Q,

(c) if vi,...,v, are the nodes of, labeled by x,...,X, respectively, then
there exist an accepting rym, of 2% on [0y, . . ., 0yur,] and a potentially
accepting rurp), of % on B, ® By such that, for each& 1,...,ry, itis
the case thatg = py(vi) and d,; = pj,(vi).

Intuitively, the unranked tre€ in the above lemma encodes an infinite sequence of a
special form that witnessés € Re¢£(A4)). In case of word-automatic systems, the
tree T reduces to a single branch which may grow indefinitely. Hmuewn general
the tre€X could have more than one infinite branch, which corresponldgdranches
in the witnessing infinite sequence that grow indefinitetys lof course possible that
all of the branches irft are finite (and henc® is finite) in which case each leaf of
T is labeled by somét ®t'[xq,...,X],q,d) € [ with r = 0. The role ofa’s andf'’s
in the node labels of is very similar to the word case (see Figure 4.2). We shall
now show sufficiency in Lemma 4.2.3. To this end, we shall toes a withessing
sequencg T }i>o out of the the tre&. We shall inductively defingT; }i>o together
with a sequencgC;}i>o of context trees as follows. We s& :=a, =T, Cy := X,
Ty :=Be[ay,...,0r], andCy ;= Be[x], ..., X ]. Suppose thdd;, for some > 1, has been
defined to be the context tr@&[xX",..., X -, %", -+, in ] for all nodesuy, ..., Un
in T of leveli — 1, wheren € N andrul, Ty, € N. We defineCi;; to be T'[o],
whereo replacesx,l:i by Bu;k [x1 - ,xru k] Similarly, we defineT,;; to be T’[0],
whereo replacesxkuj by ayk. See Flgure 4.6 for an illustration. Notice thatfis
ground, thenli1; = T; andCi 1 = C;. By induction, the sequencfT}i>o together
with {Ci }i>o have been defined. It is not difficult to prove by inductiontthae L(4)
andTi_1®Ti € L(R) for all i € Z>1. Therefore, we conclude thiite ReL(4)).

We shall now prove the converse of Lemma 4.2.3. To this engha# prove a tree
analogue of Proposition 4.1.5. Recall from Section 2.5 Red £(4))[R] is defined
even when the relatioR is non-transitive.
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Figure 4.6: An illustration of how the trees Ci; 1 and T 1 are obtained from G;.

Proposition 4.2.4 Suppose\_ and‘Z are, respectively, an NTA ov@REE(X) and an
NTA overTREEK(Z, x X, ), where the relatior.(7') is not necessarily transitive. For
every tree T= (D, 1) € TREE((Z), if T € Red L(N))[L(T)], then one of the following
IS true:

(1) there exists a tree 7= (D', 1") € TREE(Z) such that DC D, T' € L(N),
(T,T) € L(T),and(T',T') € L(T).

(2) There exist ak-ary contexttreé[¥i,...,xn] = (D', ') over the labeling alphabet
> and treest, ...ty € TREE(Z) such that

@ TCT,
(b) (T, T'[ty,...,tn]) € L(T),

(c) there exist an accepting rym= (Dp,T,) of AL on T'[ty,...,ts] and a po-
tentially accepting rup’ = (Dy,Ty) 0of 7 on T'® T’ such that, whenever
1<i<n,itis the case that £ Red L(A%))[L(T%)] where g = Tp(u;)
and d = Ty ().

Note that statement (1) yields an infinite witnessing segeai lasso shape, as was
shown in Figure 4.1 in the word case.



Chapter 4. Algorithmic metatheorems for recurrent reachability 101

Proof. Suppose thal = (D,1) € RedL(N\)))[L(‘T)], but statement (1) is false. Then,
there exists an infinite sequenae= {T }icy of trees such thalp =T, T # Ty for all
distinct indicesj, k (since statement (1) is false), and it is the case that, far>alo,

Ti € L(N) with accepting rum; = (Dp;, Tn;), and for all distinct pair of indices € i <

i, Ti®Ty € L(T). Now, for every tred;, wherei > 0, Lemma 4.2.2 implies that there
exists a unique context tr&®[xi, ..., X, ] = (Dj,T;) with variablesx, ..., x, for some

ni € N, such thatCi C T, andT; = Gi[t},...,t}] for some (ground) treef, ... .t} €
TREE((X). LetH = {Ci[X1,...,Xn] : 1 > 0}. For infinitely manyi > 0, it is the case that
n; > 0, i.e., there exists a node Ththat is not inD; for, otherwise, there are infinitely
many indices such thaD; C D whereT; = (Dj, T;) and, since there are only finitely
many different such trees, pigeonhole principle tells & tine of these trees must
repeat ino, which contradicts our assumption that statement (1) gefaDn the other
hand, it is easy to see that the number of nodes in any coméa@;tin H is bounded
by |Y] x |D|. Therefore, the seé is finite and so is the number of different potentially
accepting runs of\’ on context trees if. So, if we definen := (n;)|p;, i-e., the part
of the run trea); restricted to the domaib; of C;, then by pigeonhole principle there
existsk > 0 such thaCy[x, . .., X ] = Cj[Xa, ..., Xn;] @andn; = nj for infinitely many
indicesjs. Letn:=ny, T'[Xq,...,%n] := Ck[X1,...,X], andn’ = n;. We remove all
elementsT; (i > 0) from o such thaC; # T’ orn{ # n’ and, by renaming indices, call
the resulting sequenee= {T;};cny WhereTop = T. The same is done for the sequence
{ni}i>1 of runs so than; is an accepting rud_ onT; (i > 1) such that)’ < n;. Notice
thato is still a witness folT € Re¢L(N))[L(7T)]. Now let8; , where 0< j <k, be
an accepting run off onT; ® Tx. Let C be thefinite set of all potentially accepting
runs of 7 onT'®T'. The setCis nonempty a3’ @ T < Tj®@ Ty andTj @ Ty € L(T).
Consider the edge-labeled undirected gréph (V,{Eg})oc such tha = Z~1 and

Eo:={{j.k}: 0<j<kand® =6y }.

Notice that{Eg}oc is a partition of{{j,k} : j # k € Z>1}, and soG is a complete
graph. By (infinite) Ramsey theorer®, has a monochromatic complete infinite sub-
graphH = (V',Ey) for somep’ € C. Notice that ifV’ contains precisely the ele-
mentsj1 < j2 < ... thenp’ <6, j, for allk' > k> 1. We now remove all; (i > 1)
from o with i ¢ V' and, again, rename indices. Notice tioats still a witness for

T € RedL(N))[L(T)]. Recall that for each> 1, we haveT, = T'[t1,...,t"] for some
ground treeg!, ... t". Setp :=n; andty = t'1< for eachk = 1,...,n. Letting oy =
{tk}i>1 for eachk = 1,...,n, it is easy now to check that € Req £ (A\(%))[£(T%)]
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with witnessing sequenag, whereq = Tp(Ux) andgy, = Ty (Uk) if Uy is the leaf node
of T’ labeled byx,. So, condition (2c) holds. That (2b) holds is also immedi#s
we already saw thalt’ C T, our proof is completed

In the same way we used Lemma 4.1.5 to complete the proof @fssédyg in Lemma
4.1.4, we can now finish off the proof of necessity in Lemma3it#/ constructing
the treet inductively and adding nodes of heighat stepn € N by using Proposition
4.2.4. Therefore, the proof of Lemma 4.2.3 is complete.

Before we construct a Biichi tree automaton recognizingesising infinite paths
of a special form, we will first show how any unranked tfesatisfying the conditions
in Lemma 4.2.3 can be represented as ranked trees. For aly €D, 1), we write
T for the tree obtained by attaching a new node labeled by thesgenbol # to the
root of T, i.e., T := (1D, T) with T(¢) := # and, wheneveu € D, T(1u) := T(u). Given
an unranked tre&@ = (Dg,Ts) satisfying the conditions in Lemma 4.2.3, we can in-
ductively define &2-labeledY-treeHy for everyv € Dg, whereQ := 52 U {#}. We
setH, := (ay® By) [ﬁﬁ, - ﬁv\rv]. Note thatH, might be infinite for some € D+. If
Hy = (D, 1), we also denote bfull (Hy) the full infinite tree(Y*,1’) such that ifu € D,
thent’(u) :=t(u); if u¢ D, thent’(u) := L where L := { i . In other words, the tree
full (Hy) is the treeH, made full by padding finite branches by

We now construct the NBTAB = (Q,U,d,qo,F). The automatorB accepts pre-
cisely all Q-labeled full infinite binary tredull (Hg), whereHg is generated by some
unranked tre€t satisfying the conditions in Lemma 4.2.3. The constructsowuery
similar to the word case. For notational convenience, wdl skatch it only in the
case ofY = {1,2}, though the construction extendskary trees with precisely the
same complexity. Leqt andq% be new states not i1 UQ,. Denote byJ; (resp.Uy)
the setQ; U {qgt} (resp.Q2U{g¢}). We define

U = (Up x Uz xUz) U (U1 x Uz x U x Ua x Uy).

The start state igo := (q3,03,93). The states irfU; x Uz x Up) are meant to handle
the cases when no # has thus far been see®.byOn the other hand, whe® is

in Ug x Uz x Uy x Uz x Uy, at least one # has been seen. We now formally define
the transition functio®. We first define howB behaves when it is i1 x Uy x Us.
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Suppose that; € Qq, andagp, g, € Q.. For alla,b € Z, we set

)

( (02,02, 9 ), (OR1, ORes Orp)) |
. (OL1,0R1) € 01(01,b),
O( (01, 02, 0p), { ) }) = (02, ORe) € (G, { Z }),

(02:0ho) € 82(0: | 1 |)

\

Forallac s, g1 € FU{qt} andd, € U {g¢}, we set

O((o, G2, o),

)= {((aF 00, @), (aF. 0r. 6B)) * (012 O2) € Bal@2. | * )}

a
1
and, ifg € R, U {2}, we set

8((au, G2, %), L) := {((qF, OF , G ), (O , O , G )) }-
Remark 4.2.1 Observe that, for alh,b € X, we haved((qi,dp, ), { Z }) =0 if at
least one of the following holdsy, = o}, g, = q%, org, = q%. Similarly, fora € Z,

we haved((q1,02,d), { j }) = 0 unlessqy = gt andd, = g2. Likewise, we have

3((qt, 2, q2), { j }) = Qunlessa= L. This means that onc&is in (g¢,q2,q2), itis
“trapped” and is forced to only see the node labhel

Suppose now that € U \ {gt } andgp, @, € U2\ {gZ}. We then set

8((Cl1, A2, G, #) = (01, U, 1, G, o), (G, GF, G2))-

Notice that the state sent to the right child(i#,q%,qé) as the right child of every
#-labeled node ifull (Hg) is L-labeled.

We now proceed with our definition & when B is in U; x Uz x Up x Uy x Ua.
Suppose thags, ) € Q1 andap, g5, o, € Q.. For alla,b € Z, we define

3((n. 0. . 6. 9). | )
as

OL1,0r1) € O1(q, k_J),
g2, Ore) € 02(0p, 2}),

( ) € 3(
( ) € 8

¢ (01, A2, L1, A2, O'2), (GR1, ORe, O ORes Ofe)) | (91 GRe) € 810, @),
(Qf_z,ngz) € 62(q/27 i }),
( ) € 8

qi_/Z?qu 662 q/2/7 b:|)
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If ac Z, g1 € F1, andq; € R, we define

)

6((q17 d2, qél_a q/27 q/2/)7

a
1
as
(dL2, Ore) € 32(C2, { : }),
((q% , AL2, q{_la q{_Z? q|2:)>7 (q% ; OR2; q;?lv q??Z’ q|2: )) (qf_la qg?]_) € 61(q€|_7 a)?

(012, Ge) €32(0. | . |)

If o1, ) € F1andap, o, g € F2, we se®((qu, 02, d), 05, d3), L) := (at, g2, gt , g2, 62 ).
Finally, if (q1,02,0,05,05) € Q1 x Q2 x F1 x F2 x Q2, then we set

{(q17q/2/7q17q27q/2/)} if | :#s

6 , , /, /, “ ,l =
((ql 02,071,092 q2> ) { 0 otherwise.

We now set

e {(6k08.98), (aF G2, OF, 07, GR)}
U QuxQexFixFxQ

It is easy to see tha recognizes precisely all treésl (He), whereH; is generated by
some unranked treg satisfying lemma 4.2.3. Furthermore, checking the dedinitf
the transition functio of ‘B, it is easy to see thatB|| = O(||4]|* x || R ||®) and that
the construction of3 takes timeO(|Z|2 x ||.4|12 x || R ||?).

We now show how to construct fror the automatord’ = (%,Q, &, qp, F’) that
recognizesReq L(A4)). The intuitive idea is similar to the word case: given a tree
T, the automatom’ guesses a treill (Hg), whereH, is generated by an unranked
tree¥ = (Dg, T7) satisfying lemma 4.2.3 such thag(e) = (T ® Be[X1, - - -, X ], G5, G3)
for some context treg[xa, ..., X ]. More formally, we sefy := (U1 x Uz x Uz) and
o = (5,03, 93). The transition function is defined as follows:

(a2 ).a) = U 8((an.ceap). | )
beX |

Finally, we set
(FLU{gt}) x (RU{g3}) x (RU{d?})

Fli= U {(a1.02,%) € Q1 x Q2x Q2 |
B(A-%%) accepts som@-labeled binary tree of the fori}.
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Observe thaF’ can be computed by using the algorithm for checking emsifigs
Biichi tree automata, which runs in quadratic ti®e3|2) = O(|Z|? x ||.4]|* x || R ||®)
(e.g. see [VW86a]). Finally, observe thaf'|| = O(||4|| x || R ]|?) and the total time
taken to computet’ is O(|Z|? x ||4||* x ||R ||®). Theorem 4.2.1 is now immediate.

Remark 4.2.2 Recall that the proof of the analogous statement for the vaotdmatic
case (i.e. Lemma 4.1.3) could be greatly simplified by firseédeinizing the NWAR_

at the cost of an exponential blow-up in the size®pf Our proof for Lemma 4.1.3
provides an exponential reduction in the size&yf although this is not necessary if
complexity is not a primary concern. On the other hand, ibisabvious to adapt such
a technique in the tree case (i.e. to prove Lemma 4.2.3). i$lsisnply because non-
deterministic top-down tree automata are not determimgzimbgeneral. Furthermore,
replacing the NTAR by a bottom-up deterministic automaton does not seem taielp
the construction of the Biichi tree automatBrsince the standard definition of Buchi
tree automata is top-down, which is more natural since tpatitree is infinite. Inci-
dentally, our proof technique above easily yields a germgtabn of the results from
[KRSO05] to the tree-automatic cadll.

4.2.4 An appetizer example

We now give an immediate application of Theorem 4.2.1 foiviteg an optimal com-
plexity (up to a polynomial) of checking recurrent reachigpof regular ground tree
rewrite systems. More concrete examples will be given ingBdre6.

Regular ground tree rewrite systems

Recall that RGTRSs can be thought of as tree-automaticragsi/e now give another
proof of the result by Loding [Lod03, L6d06] on polynoritane procedure for de-
ciding recurrent reachability over RGTRSs. We first recallessic result by Dauchet
and Tison [DT90] (also see [CD®7, Chapter 3]) on the reachability relation for
RGTRSs.

Proposition 4.2.5 The reachability relations of RGTRSs are effectively tegptar
relations. Furthermore, they can be computed in time patyiabin the size of the
input RGTRS.

The proof for the above proposition first constructs “grotmee transducers”, which
can then be easily converted into a tree-automatic presemt@.g. see [CDGO7,
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Chapter 3]). Since reachability relations and strict raddity relations are polynomi-
ally interdefinable for tree-automatic systems (see Exar8{d.5), Theorem 4.2.1 and
Proposition 4.2.5 gives the following immediate corollary

Corollary 4.2.6 Recurrent reachability over RGTRSs is solvable in polyabtime.
Furthermore, the set of configurations R&¢.4)) which satisfies the recurrent reach-
ability property is also regular for which an NTA can be cortgmlin polynomial-time.

4.3 Generalized Blichi conditions

We now consider a more general version of recurrent realifyalésiven a transition
systemS = (S {—a} cacT) @nd the sets,, ..., S, C S, we defineReds,,...,S))

to be the set of aly € S from which there exists an infinite path= ss;... such
that, for each = 1,...,n, we haves; € § for infinitely many j € N. In other words,
RedS,...,S,) contains alls € S from which there exists an infinite path which vis-
its eachS (for all i = 1,...,n) infinitely often. In analogy with finite automata over
w-words, one may call this probleracurrent reachability with generalized’Bhi con-
dition®>. Observe that this definition coincides with the definitidrrecurrent reach-
ability in the case when = 1. On the other hand, it isot necessarily the case that
RedS,...,S,) = RedUL,S) in general since the latter only enforces the existence
of path which visitsat least one Sinfinitely often.

In this section, we shall apply Theorem 4.1.1 and Theoreni4d®show how to
handle generalized Buchi conditions for word/tree autiiergystems. In contrast to
recurrent reachability (without generalized Biichi caiudis), the time complexity of
our algorithm becomes exponential in the numbeaf “target automata”, which we
show to be optimal even for simpler classes of word/treeraatw presentations in-
cluding pushdown systems and ground tree rewrite systerssapfilications of our
main results of this section, we derive algorithms with myati complexity for solv-
ing recurrent reachability with generalized Buchi cormis over pushdown systems,
prefix-recognizable systems, and ground-tree rewriteegyst

2Automata overw-words with generalized Biichi conditions, which recognimeciselyw-regular
languages, are well-studied (e.g. see [Wol00])
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4.3.1 Word-automatic systems

Let us first start with word-automatic systems. The follogviheorem is an extension
on Theorem 4.1.1 to recurrent reachability with generdl2&chi conditions.

Theorem 4.3.1 Suppose thaf is a class of automatic systems closed under transitive

closure. Then, given a presentatigre C over of an automatic syste@, = (S, {—a

}acacT) @nd NWASAy, ..., 4, overZ, the set Re.( A1), ..., L(4n)) is regular.
Moreover, if C is effectively closed under transitive closure with an EfiGiess

M, then an NWA recognizing Ret(4), ..., L(4n)) of size G| R |2 x NI, || 4%

in time (|| [|R |3 x ML, |4 3).

Notice that if the numben of target automata is fixed, then the algorithm runs in
polynomial time. We shall see in Proposition 4.3.4 that tbeplexity in the above
algorithm cannot be substantially lowered.

We now proceed with the proof of Theorem 4.3.1. Observe thagachsy € S
it is the case thadp € Red L(41),..., L(A,)) iff there exists a sequends; }icxn Such
thats —* 5.1 for each integere N, ands,k, € L(.4) for each pair of integers > 0
andi € [1,n]. Therefore, le be the NWA oveiZ | x X, that accepts precisehy™.
Define a new binary relatior-1C Sx S, where for eaclsy, s, € S

n—-1 n
50*131@3517527---,51—1€S</\(3 —"s11)A As eL(ﬂh)) :
i=0 i=1

By transitivity of —*, we see that-; is also a transitive relation. Furthermore, it is
clear that, for eacke S,

se RedL(A),...,L(4n))[—"] & s€ RedZ")[—1].

By Proposition 3.1.2, the relatior is regular for which an NWA of siz®(|| R ||" x
M, ]| 4|) can be computed in im®(|Z|"+ 1 x ||R||" x M\_;]|4]). By Theorem
4.1.1, we can compute an NWA of sid¥||® [|2" x NI, || 4]|?) for the set

RedL(A1),...,L(An)[—"]

in time O(|Z|™1 x || R 12" x N, ||.4 ||3).

4.3.2 Tree-automatic systems

We now proceed to the tree analogue of Theorem 4.3.1.
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Theorem 4.3.2 Suppose thaf is a class of tree-automatic systems closed under tran-
sitive closure. Then, given a presentatigre C over X~ of a TREE(Z)-automatic
systenSy = (S {—a}acacT) @nd NTASA,, ..., 4, over TREE((Z), the set

ReqL(A1),...,L(An))

is tree-regular. Moreover, i is effectively closed under transitive closure with an
ETC-witnessM, then an NTA recognizing Re€(41),. .., L(4y)) of size Q|| R ||*" x
M, [14]%) in time Q(Z[™ x| R %" < Oy [ 4 °).

The proof of this theorem is identical to the proof of Theor1®3.1 (except for using
the tree analogues of the results for word-automatic systeamd hence is omitted.
We shall see in Proposition 4.3.7 that the complexity in theva result cannot be
substantially improved.

4.3.3 Applications

We now apply Theorem 4.3.1 and Theorem 4.3.2 for derivingnogdt algorithms
for recurrent reachability with generalized Buichi coratis over pushdown systems,
prefix-recognizable systems, and RGTRSs.

Pushdown systems and prefix-recognizable systems

An immediate application of Theorem 4.3.1 and Propositidn7is the following
Theorem.

Theorem 4.3.3 Recurrent reachability with generalizediBhi conditions expressed as
NWAsA,, ..., 4, (over the appropriate alphabet) is solvable in exponerttrak over
pushdown systems. Furthermore, when the number n is fixeuthle problem can be
solved in polynomial time.

This result is now new, e.g., it can be derived using the tiegtas from [EKSO03]. It
turns out that the complexity cannot be substantially l@sleas the following propo-
sition shows.

Proposition 4.3.4 The problem of checking recurrent reachability with geriee
Biichi conditions for the class of pushdown systems is P SR#s@dE-

The proof of this proposition, which can be found in the amenis via a simple
polynomial-time reduction from the emptiness of languagtersections of DWAs,
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which is PSPACE-complete [GJ79]. This also shows that time tcomplexity for
Theorem 4.3.1. In fact, combining this proof with BirgetBif92] lower bound for
the smallest size of NWAs recognizing the intersections ¢dnguages of DWAS,
it follows that the size of the NWA foRed¢ L(4,),...,L(4,)) from Theorem 4.3.1
cannot be substantially lowered for pushdown systems.

Another application of Theorem 4.3.1 is the following ré$oif prefix-recognizable
systems.

Theorem 4.3.5 Recurrent reachability with generalizedi&hi conditions over prefix-
recognizable systemskxXP-complete.

As we saw earlier, the problem was alred&fP-complete without generalized Biichi
conditions due to Goller’'s rece&XP-completeness result for reachability for prefix-
recognizable systems [G6I08]. This theorem can also leeratively derived using
the technique from [EKS03, KPV02].

Regular ground tree rewrite systems

We now apply Theorem 4.3.2 to answer Loding’s open quegtiod06] regarding
recurrent reachability with generalized Biichi condisdor regular ground tree rewrite
systems (it was also not known to be decidable even for gringedewrite systems).

Theorem 4.3.6 Recurrent reachability with generalizedighi conditions expressed
as the NTAs7,, ..., 4, for RGTRSs is solvable in exponential time. Furthermore, th
problem is solvable in polynomial time if n is fixed.

It turns out this upper bound is essentially tight even faugd tree rewrite systems,
as the following proposition shows.

Proposition 4.3.7 Recurrent reachability with generalizediBhi conditions for GTRSs
is EXP-hard.

The proof of this proposition, which can be found in the amgenis via a simple
reduction from the nonemptiness problem for the intersastof the languages of
NTAs, which isEXP-complete [CDG 07].
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4.4 Recurrent reachability via approximation

The transitive closure-* of a regular relation- is in general non-recursive (Propo-
sition 3.1.5). In the previous sections, we have shown #ratmrent reachability could
be solved when- is effectively regular. In practice, we cannot always hap&d¢
able to obtain an NWA for—" since deciding whether the transitive closure”

is regular for a given regular relation is already undedelabin this section, we
briefly consider the scenario when we have obtained an NWesegmting an “un-
der/upper approximations” of a regular relatien This scenario is reasonable since
semi-algorithms that aim to compute under/upper approkansa of transitive clo-
sure relations have been developed in the area of regulaelnsbdcking (e.g. see
[AJNSO04, BLWO03, Bou0O1, DLS02, Nil05]). More precisely, pqgse that we are
given a regular relatioR >—™, i.e., a regular relation that overapproximates the real
transitive closure relation. What can we say about the maigiecurrent reachability
problem? Similarly, we may ask the same question when wenateadd given a reg-
ular relationR C—, i.e., a regular relation that underapproximates the raakttive
closure relation. Note th& may not necessarily be transitive. In both cases, our tech-
niques in the previous sections can be easily adapted topgirteal answers for the
original recurrent reachability problem over the originalrd/tree automatic transition
system. We shall first state the result for the word-autarrese.

Theorem 4.4.1 Given an NWA4 over Z and a presentatiom of a Z*-automatic
system&y = (S {—a}acacT): SUPpPOse that-" is the strict reachability relation
of &, and R is a regular relation, given as an NWR, satisfying Ro—" (resp.
R C—T). Then, given a wordyve S, we may check whetheg 2 Red£(4))[R]
in time Q(|Z|? x 2001k x || 4||2) and, whenever w¢ Red £(4))[R] (resp. ¢ €
Red £(A4))[R]) itis the case thaty¢ Red L(.4))[—T] (resp. ¥ € Red L(A4))[—T]).

Recall from Section 2.5 theReq£(A4))[R] is defined even when the relatidtis

non-transitive. In other words, whenevris an upper-approximation ofs*, we

have sound negative tests fay€ Req £(A4))[—T]. In the case wheR is an under-
approximation of—*, we have sound positive tests fay € Re¢£(.42))[—"]. These
simply follow from the simple observations that:

J’_

2 — = RedL(A))[R] 2 Re¢L(A))[—"],

C—" = Re¢L(A))[R SRedL(A))[—"].
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These observations hold even wieis not transitive. In the case wh&is transitive,

Theorem 4.4.1 then follows from Theorem 4.1.1, in which dassttéer computational
complexity that was stated in Theorem 4.4.1 is achievabée (polynomial also in
IR ).

In the case wheR is not transitive, it is also not difficult to prove Theorerd 4..
For this, we will have to go through the proof of Theorem 4.1Rlecall that in the
proof of Theorem 4.1.1 we first divided the $&¢ £ (1)) into two setsRec(L(A4))
andRec., (L(A4)). We may generalize the definitions of these two sets even \Rhen
is not transitive in the obvious way. More precisely, we defip € Rec(L(4))[R]
iff there exists a sequende; }icy such that (1 ®vj € R, for all integersj > i > 0,

(2) vi € L(A) for all integeri > 0, and (3)v; = v; for somej >i > 0. Similarly, we
definevg € Rec..(L(A4))[R] iff there exists a sequendg; }icy such that (1y; ®v; € R,

for all integersj > i >0, (2)vi € £(A) for all integeri > 0, and (3)v; # v; for all

j >1i>0. We may compute an NWA fdRec¢,(L(A4))[R] in the same way we proved
Lemma 4.1.2. In the case &ec..(L(A4))[R], a proof that is similar to our proof of
Lemma 4.1.3 can also be given. Recall that it suffices to denanly witnessing
infinite sequences of words with strictly increasing lesgeee Figure 4.2). Now
observe that the conditions on the runs®fin Lemma 4.1.4 assume that ) is
transitive (see Condition 4). This can however be easilydflxgconsidering each pair
(0, BiBi+1..-Bj—1aj) of suffixes in the witnessing sequence, i.e., by assertiagRh
acceptsaj ® BiBi+1...Bj—10j instead of onlya; ® Biaj;1. In addition, we use the
same definition otv-chains and so Proposition 4.1.5 can be directly used. Now, i
the construction of the NBWAB, we will additionally have to make sure that, for all
integersj > i > 0, the worde ® Bj1...Bj-10] is accepted byR from an appropriate
state. Since there are only finite many state®inwe simply have to keep track of
every possible subset of the stateirto handle this causing an exponential blow-up
in the number of states i}

We shall also state the tree analogue of Theorem 4.4.1, vehichve proven in the
same way.

Theorem 4.4.2 Given an NTAZ over TREE(Z) and a presentation of a TREE,(X)-
automatic systen®,, = (S, {—a},cacT), SUppose that-" is the strict reachability
relation of &, and R is a regular relation, given as an NTR, satisfying RO—*
(resp. RC—T). Then, given a treegle S, we may check whethey & Red L(4))[R]
in time Q(|%|? x 22U%I) x ||4|*) and, whenever oT¢ Red £(4))[R] (resp. b €
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Red £(4))[R) itis the case thatd¢ Red £(4))[— ] (resp. B € RedL(42))[—T]).

Remark 4.4.1 The proof of Theorem 4.4.1 also yields a proof of that “Ramasey
quantifiers” preserve regularity over word-automatic ciees, which was proven by
Rubin [Rub08]. For the tree case, the proof of Theorem 4.feRly a proof of the
regularity-preserving property of Ramseyan quantifiees tree-automatic structures.
This has been independently observed by Kartzow and Kuskgehr.

3Private communication with Kartzow (2010)



Chapter 5

Algorithmic metatheorems for logic

model checking

In the previous chapter, we proved algorithmic metathesriandecidable recurrent
reachability over word/tree automatic systems and showtiiey can be used for de-
riving uniform proofs of decidability (with optimal comptéy) for various recurrent
reachability problems for pushdown systems, prefix-re@aipte systems, and regu-
lar ground tree rewrite systems. Although recurrent relaitibaby itself is a rather
weak property, in this chapter we shall see that the algoithmetatheorems from
the previous chapter can be used to obtain algorithmic metaeéms for decidable
model checking with respect to various logics including L(Hnd fragments thereof)
with “complex fairness constraints” and extensions of fster logic. As we shall
see later in this chapter, they can be used to obtain optiradehthecking algorithms
for pushdown systems, prefix-recognizable systems, andaieground tree rewrite
systems (more applications can be found in the next chapter)

In Section 5.1, we study the problem lofL model checking over word/tree au-
tomatic systems with regular fairness constrainggven a presentation of a Z*-
automatic (resp. REE,(Z)-automatic) syster®, = (S {—a},cacT) @ configuration
S € S an LTL formulad overACT, and a “fairness” NWA (resp. NTA¥ overZ (resp.
TREE((Z)), decide whether, for each infinite path

T[::%Hal S1 —>a282Ha3 PN

in &y, satisfyings € £(A4) for infinitely many indices € N, it is the case that |= ¢.
When(n,so, $, A4) is a positive instance of the problem, we wri®y,so, L(A)) = ¢
and say tha6,, satisfiesp from sy with fairness constraing. Fairness constraints are

113
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natural conditions which allow the users of a model chec&especify which paths
clearly cannotoccur in the actual systems being modeled, i.e., occur antiie ab-
stractmodels. Onlyfair paths then should be considered by the model checker (see
[BBFT01] for a more thorough discussion). As we shall see latgules fairness con-
straints are powerful enough for modeling interestingi@ss constraints. Unlike the
case of recurrent reachability properties, the conditioefi@ctive closure under tran-
sitive closure on a class of automatic systems isot sufficient to imply decidability

of LTL model checking oveC even without the extra fairness constraint. On the other
hand, if we impose an extra condition that the clasis closed under products with
finite systemsdecidability of LTL model checking with regular fairnessnstraints
over( can be retained. The time complexity of the algorithm is exgtial in the size

of the formulap and polynomial in the size of the presentatipaf the system and the
initial configurationsy, assuming an oracle for computing the reachability refetio
We shall also present an extension of this metatheorem tprtitdem of LTL model
checking withmulti-regular fairness constraints (i.e. when we have several regular
constraints4, ..., 4, akin to generalized Buchi conditions), in which case weaobt
the same complexity as the single-regular constraint aatsedponential in the number

n of regular constraints. We shall see in Section 5.4 thatdnelition of closure under
products with finite systems is satisfied by the class of posihdsystems and prefix-
recognizable systems, which yields decidability (withimyatl complexity) of LTL with
multi-regular fairness constraints over pushdown systmisprefix-recognizable sys-
tems.

Closure under products with finite systems is a rather stommglition, which is
not satisfied by many classes of infinite-state systems @a@und-tree rewrite sys-
tems). Such classes of infinite-state systems often hawcigable LTL model check-
ing. In Section 5.2, we propose a weakening of the conditfariasure under prod-
ucts with finite systems that could still be used to obtairoatgmic metatheorems
of fragmentsof LTL with decidable model checking over word/tree autoimatys-
tems. This relaxed condition is calletbsure under taking “subsystemsa classC
of presentations of word/tree automatic systemdased under taking subsysterhs
N = (4s;{Aa}acacT) € C @NAACT C ACT implies that(As; {Aa} , pcT) € C- In
other words, thesubsystenof &y, that is obtained by removing some transition rela-
tions is still presented by some presentation in the adasthis is a rather innocuous
condition which is satisfied by virtually every natural das infinite-state systems that
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is considered in the literatukeWe show that, when this condition is satisfied together
with effective closure under transitive closure, two conmiga@onsidered fragments of
LTL called LTL(Fs,Gs) and LTLget have decidable model checking with multi-regular
fairness constraints. In this case, we show that these nob@eking problems have
polynomial time data complexity (when the number of constsais fixed), assuming
an oracle for computing the reachability relations. We Isbeé in Section 5.4 that
the class of RGTRSs is closed under taking subsystems arefdfeehave decidable
LTL (Fs,Gs) and LTLget model checking with multi-regular fairness constraints (i
fact, with polynomial-time data complexity). In additiowe show that multi-regular
fairness constraints are sufficiently powerful for modwgjlnatural fairness constraints
when we use RGTRSs as abstract models of concurrent progvidinan unbounded
number of processes.

Finally, we conclude this chapter with a result which stigrayiggests that obtain-
ing algorithmic metatheorems for model checking branchimg logics over word
or tree automatic transition systems with good computaticomplexity is difficult.
More precisely, we show that model checking HM-logic (ilee simplest branching-
time logic) is already nonelementary over a fixed word-awttersystem.

Parts of the results in this chapter have previously appeardL10] and [To09a].

5.1 Model checking LTL

In this section, we present our algorithmic metatheoremgézidable LTL model
checking over word/tree automatic systems with regulamnéss constraints. Ob-
serve first that this problem is more general than the proldéchecking recurrent
reachability since the latter can be easily reduced to theada given a presenta-
tionn of a word/tree automatic syste&y = (S, {—a}cacT), @n initial configuration
S € S and a target automator, we havesy € Re¢ £(A4)) iff it is not the case that
(6n,%,L(A)) = L. Therefore, a natural question is whether effective clesu-
der transitive closure over a clagsis sufficient to ensure decidability of LTL model
checking with regular fairness constraints ogerlt turns out that this is not the case
even for LTL model checking without regular fairness coaisits, as the following
proposition shows.

Proposition 5.1.1 There exists a presentationof a fixed automatic syste@, such

ISimilar remark has been made in [May01]
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that:
1. {n} is closed under transitive closure, but

2. LTL model checking oveés, is undecidable.

Proof. We shall give a reduction from the acceptance problem ®uttiversal Turing
machine. Fix a universal Turing machifié = (Z,T, Q,d,qo,gr, D) and its automatic
presentatiom = (4s, 4,) of the transition systen®,, = (S —a) generated byM
from Example 3.1.5, wher®=T"*(Q x I')['* and—4 the one-step reachability relation
of M. Define a new transition relatioracc C Sx Sas follows: from any accepting
configuration of the fornw(gr,a)w, it is the case thatv(gr,a)W — acc W(QF, 2)W
(i.e. a self-loop). Observe thatcc is a regular relation. In addition, we introduce
a “cheat” transition relatior~p C Sx Sthat can take any configuratiane Sto an-
other configuratiorc € S, i.e., —p= Sx S. Observe that-y is a regular relation.
Therefore, the transitive closure ef :=—; U —acc U —p = —p iS also regular.
Let A,cc and 4, be NWAs that recognize, respectivebgacc and —y. Define a new
automatic presentatiayl = (4s, 44, 4p) Which generates the automatic transition sys-
temS, = (S, —a,—acc, —b). Therefore, the clasf)’} of automatic presentations is
closed under transitive closure.

Now consider the LTL formulg :=aU acc Itis easy to see that, for eashe Z*,
it is the case thaby, (0o, D)W = ¢ iff wis accepted byM. O

We shall now introduce the condition of closure under prasiugth finite systems
for a classC of word/tree automatic systems and show that decidabifitf@ model
checking with regular fairness constraints can be retawleen this extra condition
is imposed. Let us begin with word-automatic systems. Gadimite systenfy =
(Q,{Ra}acacT) @nd anz*-automatic systen®,, = (S {—a},cacT) Presented by a
presentatiom, theirproductis the systen x &, = (S, {—4},cacT) Where

e Sisthelanguag®S= {qv: qe Q,v e S} over the alphabepU X, and
e — is such thagv—, pwiff (p,q) € Ry andv —4w.

Obviously, the syster§ x &, is (QU X)*-automatic, for which a presentation is com-
putable in timeO(||§|| x |[n||). Although there are non-unique presentations of the
systemg x &y, for convenience we will define the condition of closure unpied-
ucts with finite systems in such a way that the computatiorefproduct system is
efficient.
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Definition 5.1.1 (Closure under products with finite systemy A class of automatic
presentationg” is said to beeffectively) closed under products with finite systeiins
there exists an algorithm which, given a finite sysig@mver ACT and an automatic
transition systen®y, = (S {—a},cacT) Presented by somg € C, computes a pre-
sentatiom’ € ( for the systen§ x &y, in time Q(||F|| x [In]]).

We now state our algorithmic metatheorem for decidable LTadet checking with
regular fairness constraints over word-automatic systems

Theorem 5.1.2 Suppose thaf is a class of word-automatic presentations that are ef-
fectively closed under transitive closure with an ETC-edstM and are closed under
products with finite systems. Then, there exists an algurithich, given a presen-
tationn of a Z*-automatic syster®, = (S,{—a},cacT): @Wword \y € S, an NWAZ
overZ, and an LTL formulap overACT, decides whethe(Sy,vo, L(A4)) = ¢ in time
linear in |vo| and polynomial in TIME,(2°U1¢1) x ||n|) and||4].

Observe that when the formudais fixed, we obtain the same complexity as for our
algorithmic metatheorem for recurrent reachability (up f@olynomial).

Proof. Let 6y = (S{—a}scacT) b€ the system presented by the input automatic
presentatiom. We apply Vardi-Wolper’s algorithm (i.e. Proposition 2p50n the
negation-¢ of the given LTL formulad yielding an NBWAB = (ACT,Q, d,qo, F) of
size 2l such that£(8) = [¢]. The algorithm runs in time 2190, 1t is clear
that B can be treated as a finite transition system (e.g. by omithegnitial state

go and setF of final states). We then use the assumption of closure unoelupts
with finite systems to obtain in tim@(||B|| x ||n||) an automatic presentatioyi of the
systemB x &y = (QS {—4}.cacT) € C. We may then apply the algorithé onn’

to obtain the transitive closure™ of U,.acT (—4) intime

TIME (| B]| x ) = TIME 52201 x [|n ).

Then, for eaclvp € S, we have(&y,vo, L(A)) ~ ¢ iff it is the case that there exists an
infinite path

U=V —a, V1 —ay - - -
in &, such thaty; € £(A4) for infinitely many indices € N and thatayay... ¢ [§]
(or equivalentlyajay ... € £L(B)). The latter in turn is true iff it is the case that €
RedFS L(4))[—T]. Itis easy to see that an NWA[ for FScan be constructed in
time O(||B|| x |In||)- By Theorem 4.3.1, we may compute an N\Arecognizing the
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setRedFS £(4))[—7] in time polynomial in TIMBy(]|B|| x ||n||) and||4]|. Testing
whetheng € £(4’) can then be done iB((|1Z| +|Q|) x |[vo| x [|4'||), where|Q| < || B]|.
This immediately implies the theoren

This proof also shows that the decidability in Theorem 5HoRls for any logic that
can be converted to Buchi automata, e.g., Regular LTL am@xitension with past
operators [LS07, SL10]. Theorem 5.1.2 can also be exteralked@lt model checking
with multi-regular constraints over word-automatic syategiven a presentation of
aX*-automatic syster®, = (S {—a},cacT) @ configuratiorsy € S, an LTL formula
¢ overACT, and a sequence of “fairness” NWA%, ..., 4, overZ, decide whether,
for each infinite path

T[::SO—>a1 S1 —>a252—>a3

in &y, satisfying3~i(s € £(A4))) for eachj € N, it is the case thatt = ¢. When
(n,%0,9,{A4}]' ;) is a positive instance of the problem, we wii&,, s, { L(4)}] ;) =
¢ and say that, satisfiesh from sy with fairness constraintdy, ..., 4,. This prob-
lem can be defined in a similar way for tree-automatic systérns following theorem
is now immediate from the proof of Theorem 5.1.2 and Theore3ril4

Theorem 5.1.3 Suppose that” is a class of word-automatic presentations that are
effectively closed under transitive closure with an ET@vess and are closed
under products with finite systems. Then, there exists aorighgn which, given a
presentatiom of a Z*-automatic syster®, = (S, {—a},cacT), @WOrd y € S, a se-
quence of NWA$4}! ; overZ, and an LTL formulap over ACT, decides whether
(6n,Vo, {L(4)}",) = ¢ in time linear in|vo| and polynomial in TIME, (2°011) x
Inll) and [Py |14

Observe that Theorem 5.1.2 is the restriction to Theoren3%oh = 1. Also, observe
that Theorem 5.1.3 when the formuias fixed, we obtain the same complexity as for
recurrent reachability with generalized Buichi condii¢ne. Theorem 4.3.1.

We now proceed to the tree case. Given a finite sygem(Q, {Ra} .aocT) @nd
an TREEc(X)-automatic systen®,, = (S {—a}cacT) Presented by a presentatiqn
theirproductis the systen§ x &, = (S, { =4} ,cacT) Where the following conditions
are satisfied:

e Sisthe language containing tre€s= (D, 1) € TREE(ZUQ) for which there is
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atreeT’ = (D',7') € TREE(Z) and a statg € Q satisfyingD = 1D’ U {¢} and

T(W):{ q if w=c¢,

1(1w)  otherwise.

For convenience, we shall writ€ = q(T) in the sequel.

o 01(T1) =4 a2(To) iff (g1,q2) € RaandTy —4 To.

Obviously, the systen§ x &y, is TREE(Z U Q)-automatic, for which a presentation
is computable in tim®(||F|| x ||n||). As for the word-automatic case, there are non-
unique presentations for the systgmw &,,. For convenience, we will define the con-
dition of closure under products with finite systems thauees efficient computation
of the product systems.

Definition 5.1.2 (Closure under products with finite systemstree case) A classC
of tree-automatic presentations is said to (edfectively) closed under products with
finite systemdf there exists an algorithm which, given a tree-automatansition
systemSy, = (S {—a}acacT) Presented by somg € C and a finite syster§ over
ACT, computes a presentatiayi € C for the systen§ x &y, in time Q(||F|| x [|In|]).

We directly state our algorithmic metatheorem for deciddflL model checking with
multi-regular fairness constraints over tree-automatstesns.

Theorem 5.1.4 Suppose that is a class of tree-automatic presentations that are
effectively closed under transitive closure with an ET@vess and are closed
under products with finite systems. Then, there exists aorighgn which, given a
presentatiom of a TREE(X)-automatic systen®, = (S {—a}cacT) atree b €

S, a sequence of NTAs% }! ; over TREE((Z), and an LTL formulap over ACT,
decides whethe(Sy, To, {L(A)};) = ¢ in time linear in|To| and polynomial in
TIMEq, (22000 5 [In|}) and [Py |41

Observe that when the formugais fixed, we obtain the same complexity as for our al-
gorithmic metatheorem for recurrent reachability with agmlized Biichi conditions
(up to a polynomial). In addition, the subcase of LTL modedaking with single-
regular constraints can be obtained wimeis restricted to 1. The proof of Theorem
5.1.4 is essentially identical to the proof of Theorem 5dn8 so is omitted. As in the
word-automatic case, this theorem holds for any logic thattwe converted to Biichi
automata, e.g., Regular LTL and its extension with pastaipes [LS07, SL10].
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5.2 Model checking LTL fragments

Closure under product with finite systems is a strong coowlithat is not satisfied
by many classes of infinite-state systems (e.g. groundréwete systems). In this
section, we study a weakening of the condition of closuresupdoducts with finite
systems calleatlosure under taking subsystenand which fragments of LTL still
have decidable model checking over word/tree automatiesyswhen this relaxed
condition is imposed. Let us first start with the definitiortluk relaxed condition.

Definition 5.2.1 (Closure under taking subsystemsA class of word/tree automatic
presentationg is said to beclosed under taking subsystehgiven an automatic pre-
sentation(4s, { 4a} ,cacT) € C @and a subseACT’ C ACT, the automatic presentation
(s, {Aa} pcT) IS @ISO INC.

As we previously mentioned, this condition is rather weadt mrsatisfied by virtually
every class of infinite-state systems that is considereldariterature. In this section,
we shall show that this condition, combined with effectil@sare under transitive clo-
sure, is sufficient to guarantee decidability of two follagifragments of LTL: LT lyet
and LTL(Fs,Gs). To this end, we shall first show an algorithmic metatheorendé-
cidable recurrent reachability checking on word/tree anattic transition systems with
an extraalmost linear Bichi automatorconstraint.

5.2.1 Almost linear Blichi automata

As we saw from Proposition 2.5.2, LTL formulas can altenelii be represented as
NBWAs. Model checking a given LTL formula then can be redutmechecking recur-
rent reachability of the original system with an additioN&WA constraint encoding
the negation of the LTL formula. We shall now consider a safglof NBWAs called
almost linear NBWAEBRS09], which are sufficiently powerful to represent the Rega
tions of formulas in the fragments of LTL that we will considie this section.

To define almost linear NBWAs, we shall first define the notibhreear NBWAs.
An NBWA 4 = (2,Q,0,qo,F) is calledlinear (a.k.a. 1-weal if there exists a par-
tial order < C Q x Q such thatq’ € 8(qg,a) impliesq < d. Intuitively, the partial
order ensures that onceleaves a statg, it will never be able to come back tp In
other words, graph-theoretically looks like a dag possibly with self-loops, i.e., each
strongly connected component (SCC)Ancontains only a single state. Observe that
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every accepting run ofl must eventually self-loop in one final staje F, i.e.,sinkat
g. In the sequel, thdepthof 4 refers to the length of the longest simple pathdin

Definition 5.2.2 ([BRS09]) An almost linear NBWA4Z over the alphabet is a pair
of a linear NBWAB = (Z,Q, d,do, F) and a functiory mapping each final stateeq F
to an LTL formula ovek of the form

/\GFpi

il
where each pis a disjunction of positive atomic formulas. The languadel) of 4
contains all words we Z® for which there is an accepting run @ on w sinking at
some ¢ F which satisfies W= x(q). The size|4|| of 4 is simply the sum dfB|| and

> qer IX(@)]]-

Almost linear NBWAs are not more powerful than NBWAs in terofsexpressive
power: there is a simple polynomial-time translation frolmast linear NBWAs to
NBWAs [BRS09] by a technique that is similar to the reduction fromegafized
Bichi automata to standard Buchi automata (cf. [WolOOfye shall now prove a
technical lemma that will be used to obtain algorithmic rttetarems for decidable
model checking of LTlet and LTL(Fs,Gs) over word/tree automatic transition sys-
tems. First, let us fix the following notation: given a traimi system& = (S {—3
}acACT) Over ACT, a sequence of subsets= {S}! ; of S and an almost linear
NBWA 4 = (ACT,Q,d,qo,F,X), write Hﬂﬂ%,o to denote the set of all configurations
S € Sfrom which there exists an infinite path

T[:&)—>a151—>a2
satisfyingayay... € £L(A4) and3%i(s € §;) for eachj € [1,n].

Lemma 5.2.1 Suppose thaf is a class of word-automatic presentations that is effec-
tively closed under transitive closure with an ETC witn@$sand is closed under tak-
ing subsystems. Then, there exists an algorithm whichngiygesentatiom of a *-
automatic syster®, = (S {—a}cacT) @Word \y € S, a sequence of NWAS; }! ;
overZ, and an almost linear NBWA overACT, decides whethep\e [ 4]]
), [14ll, and 2y ||

3
Gn {L(A)}H,

in time linear in|vp , but exponen-

, polynomial in TIME;/(||n
tial in the depth of4.

Proof. Suppose thafl = (B,x), whereB = (ACT,Q,d,qo, F) is a linear NBWA over
ACT. Letd denote the depth ofi. Loosely speaking, this lemma can be proven by
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observing that each infinite paty —a, S1 —a, ... Witnessingvg € [[fél]]G AL,
can be divided into an initial finite segmefsp }{_; and the remaining infinite segment
{s}{2,. 1 such that there exists a sequence {p; }|", of states inB satisfying

(1) po=do,
(3) for everyi € [1,m| it is the case thatp;, &, pi+1) € 0 for somea; € ACT,

(4) there is an accepting rw{f...pﬁﬁ“ (with eachj; € N) of B (when viewed as
automata over finite words) an . . . &,

®) ar+1ar42..- ): G </\a:pm66(pm,a) a) /\X(pm>’ and
(6) 3%i >r+1(s € L(A4))) for eachj € [1,n].

Conversely, given two such segments, we may glue them tanoatainfinite path
witnessingvp € [[JZL]]EGW{L%)}L. Our approach is to treat the finite segment and the
infinite segments separately for each patbf SCCs inB.

Fix a patho = {p; }{"; of SCCs inB satisfying the conditions (1)—(3). Of course,
it is the case that is at most the depttl of 4. Combining the assumption of closure
under taking subsystems and effective closure under thramslosure ofC, given any
subseACT’ C ACT, it is possible to compute NWART __, andR*

ACT ACT
for the transition syster&,. This can

, overs? for the
transitive closure relatlons»XCT, and—* ACT'
be done in time polynomial in TIME;(||n||) for each giverACT’ C ACT.

Consider now the relatioRy 1 C Sx Scontaining tuplegs,s’) for which there ex-
ists a pathsg —p, ... —n, & such thatsy = s, s = S, and there exists a run & on
by...b, of the form p(j)0 . p#}T for somejp,..., jm € N. It is easy to compute a con-
junctive queryd1(x,y) with at most 2n= O(d) quantifiers and & = O(d) conjuncts,
each of the fornR"__, or R

ACT ACT
that expresses the set of labalshat takesp; to pj1 (or that self-loops orp;). By

,» which expresseR; 1. That is, we will choosaCT’

Proposition 3.1.2, we obtain an NWA fét; 1 in time polynomial in TIME,/(||n||)
and|| 4[|, but exponential in the depthof 4.
We now consider the relatioR; » C S consisting of elements € S from which
there exists an infinite path
S0 —ay S1 —ay -
suchthagjay... =G </\pm66(pm,a) a) AX(Pm), and3”i(s € L(A4;)) for eachj € [1,n].
Observe that it suffices to show that there exists an algoritt computing an NWA
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overX for Sthat runs in time polynomial in TIME,(||nl]), |2

, and[, |4, but
exponential in the depth off; for, if this is the case, we would be able to easily put

togetherR; 1 andR; > by another conjunctive query with one conjunct and quantifie
(and appealing to Proposition 3.1.2), which will finish thheqf since there are at most
0(]|4||9) paths of SCCs i satisfying (1)—(3).

Thus, it remains to show how to compute an NWA Ryr2. Suppose that(pm) =
/\ikzlGFpi. Sincep; is a disjunction of positive atomic formulas, we may thinkloém
as a subset ACT. We consider a modified transition syst&= (S, {Ea} .acT)
defined as follows:

e S={1....k} xS
e (iv,jw) € E5iff pm € d(pm,a), v—aW, and wheneveir# j, thena < p;.

It is easy to come up with a presentatighin time polynomial in||n|| and||.4|| such
that&’ = &,/. Suppose now thd " is the transitive closure dfj,_acT Ea. Observe
now that

Ro2=RedL(A),...,L(4n), {1} x Z*,... {k} x Z%)[ET].

Therefore, by Theorem 4.3.1, it suffices to show that an NWASfo can be computed
in time polynomial in||4|| and TIME,,(||n||). To this end, observe first that for each
path(io,S) —a, --- —a (ir,S) in &, there exists a path froffig, S) to (ir, s ) of the
form

(io,%0) —a (io, 1) —ay -+ a1 (io,Sr—1) —a (ir,Sr)-

In other words, to reach frorfi,v) to (j,w), we may always simply travel through
only configurations of the fordi} x Sand only at the end switch tgj,w). Since
R?a:pmea(pm,a)} can be computed in time polynomial in TIME(||n||), for each pair
(i,J) € [1,K] x [1,k], we may easily compute a conjunctive quéry j)(X,y) with one
conjunct and one quantifier over the relatio[rRACT,,R;CT, : ACT' C ACT} which
expresses precisely all pairs " of the form(iv, jw). The relationE™ can then be
easily obtained by taking union & = O(||4|) NWAs which represent eadhy j]-

O

We shall now state the tree analogue of Lemma5.2.1. The moofmpletely identical
to the word case and therefore is omitted.
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Lemma 5.2.2 Suppose that” is a class of tree-automatic presentations that is effec-
tively closed under transitive closure with an ETC witnég¢sand is closed under
taking subsystems. Then, there exists an algorithm whiebn@ presentation of a
TREE(Z)-automatic syster®n = (S,{—a},cacT) @tree b € S, asequence of NTAs
{4}, over TREE((X), and an almost linear NBWA over ACT, decides whether
To € Hﬂﬂ%n@(ﬂi)}?ﬂ in time linear in|Tp|, polynomial in TIME,/(||n]|), ||-4||, and
M1 1441, but exponential in the depth of.

5.2.2 LTLet: Deterministic LTL

Deterministic LTL(or LTL 49 is logic proposed by Maidl [Mai00] that captures a com-
mon fragment of LTL and CTL. We start with the definition of thentax of LT Lget

0,0 = p[Xo[oAY [ (PAD)V(—pAD) |
(PAG)U(=pAY) [ (PAD)W(-pAY).

Here p is a boolean combination &fCT. The semantics can be defined in the same
way as for LTL. For examplepW¢' is interpreted as the formulad v (¢U'), i.e.,
theweak untiloperator. Maidl [MaiO0] showed that negations of lgELformulas can

be translated into linear NBWAs efficiently, which is in caadt to the general LTL
formulas.

Lemma 5.2.3 ([Mai00]) There exists a polynomial-time algorithm which, given an
LTLget formula ¢ over Z, computes a linear NBWAL of size @||¢||) such that

L(A-¢) = [-¢].

To obtain our algorithmic metatheorems for Lgl. we simply need to combine Maidl’'s
result above with Lemma 5.2.1 or Lemma 5.2.2.

Theorem 5.2.4 Suppose that” is a class of word/tree automatic presentations that
are effectively closed under transitive closure with an ENi@essM and are closed
under taking subsystems. Then, there exists an algorithichywiiven a presentation

n of a Z*-automatic (resp. TREEk(Z)-automatic) systen®, = (S{—a}acacT) @
configuration g € S, a sequence of NWAs (resp. NTAG)}! ; overZ (resp. over
TREEK(Z)) and an LTlget formula ¢, decides whethe6y,s, {4}, = ¢ in time
linear in |sp|, polynomial in TIME,/(||n||) and[]i; [|-4i||, and exponential ifi||.

In fact, if we also assume closure under products with finjigtesns, a better complex-
ity can be obtained. The following theorem can be obtainetbbgwing the proofs
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of Theorem 5.1.2 and replace the use of Vardi-Wolper’s ¢angbn by Maidl’s result
above.

Theorem 5.2.5 Suppose thaf is a class of word/tree automatic presentations that are
effectively closed under transitive closure with an ET@vessM and are closed un-
der products with finite systems. Then, there exists an éilgomwhich, given a presen-
tationn of aX*-automatic (respTREE(X)-automatic) system®n, = (S {—a}cacT)

a configuration g € S, a sequence of NWAs (resp. NTAS)}!' , over X (resp.
TREEK(Z)) and an LTlges formulad overACT, decides whethe®y, s, { A}, = ¢ in
time linear in|so| and polynomial in TIME,(||¢|| x [In||) and [T, || 4.

5.2.3 LTL(Fs,Gs): LTL with only strict future/global operators

We now proceed to the fragment L{Es,Gs) of LTL with only modalitiesFs and
Gs. This fragment is strictly more expressive than the LTL fremt with the non-
strict versiong= and G of the modalitied=s and Gs as the former can be expressed
in terms of the latter, e.gF¢ = ¢ vV Fs¢. Observe that the fragment LTEs, Gs) is
closed under negation. We next recall a known translatom fitTL(Fs, Gs) formulas

to almost linear NBWAs.

Lemma 5.2.6 ([Reh07, BRS09]) There exists a double-exponential time translation
from LTL(Fs, Gs) formulas$ overACT to almost linear NBWASL overACT such that
[¢] = £(A). Furthermore, the depth o1 is exponential if|||.

It is presently open whether the double-exponential timgeufound from [Reh07,
BRS09] can be improved. To obtain our algorithmic metathesréor LTL(Fs, Gs),
we simply need to combine this lemma with Lemma 5.2.1 and Larbr.2.

Theorem 5.2.7 Suppose that” is a class of word/tree automatic presentations that
are effectively closed under transitive closure with an ENi@essM and are closed
under taking subsystems. Then, there exists an algorithichyiven a presentation

n of a Z*-automatic (resp. TREE,(Z)-automatic) systen®n = (S {—a}cacT): @
configuration § € S, a sequence of NWAs (resp. NTAG)}! ; overX (resp. over
TREE((X)) and an LTI(Fs, Gs) formulad, decides whethe®y,so, {4 }[L; = ¢ intime
linear in |so|, polynomial in TIME,/(||n||) and i, |||, and double-exponential in

1.
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The upper bound in terms of the size of the formula in this teeoseems not optimal.
To improve this upper bound, one has to first answer whetleeugiper bound from
Lemma 5.2.6 can be improved further, which we leave as an ppodyiem.

5.3 Model checking FO..(Reach+ EGF)

In this section, we give algorithmic metatheorems for simgndecidability of an ex-
tension of the logid-Oges (Reach) andFO(Reach), calledFOggs (Reach + EGF) and
FO(Reach + EGF), over word/tree automatic systems.

We define the logi¢Orec(Reach + EGF) as an extension dfOggs(Reach) with
the generalized recurrent reachability operator withegular constraints on the way.
More precisely, the 0gi€Ores (Reach + EGF) overACT can be defined as follows:

e EachFOgeg(Reach) formula overACT is anFOges (Reach + EGF) formula over
ACT.

e Whenever,...,¢, are each affOge(Reach + EGF) formula overACT with
one free variable an® is an NBWA over the alphab@iCT, then

EGFQ;((I)l, .. .,(I)n)
is anFOges (Reach + EGF) formula overACT with one free variable.

e The logicFOgres(Reach+ EGF) is closed under boolean combinations and first-
order quantification, with the standard rules for free \aga.

We only need to provide the semantics for the second rulaétas standard). Given
a transition systen® = (S, {—a} cacT) @ndse S, we define

o & =EGFg(b1,...,9n)(s) iff there exists an infinite path
S—>a1 S1 —ap ) —ap .-

in & such thatyazag... € L(B) and, for eaclj =1,...,n, we haves = ¢; for
infinitely manyi € N.

Observe that the semantics of the operakss z are similar to recurrent reachability
with generalized Buchi conditions. We defifk®(Reach + EGF) as a sublogic of

FOres (Reach+EGF) containing formulas in which each occurence of the readityabi
operatorReach 4(X,y) satisfiesL(4) = I'* for somel” C ACT, and each occurence of
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the recurrent reachability operateGF 3 satisfiesL(B) = ' for somel” C ACT. We
now state our algorithmic metatheorem f@xec (Reach + EGF).

Theorem 5.3.1 Suppose that” is a class of word/tree automatic systems that are ef-
fectively closed under transitive closure and closed umdeducts with finite systems.
Then, given affOgec (Reach+EGF) formulad(X) overACT and a presentation € C

of a word/tree automatic syste®y = (S, {—a}cacT), the set]¢] is effectively reg-
ular. That is, model checkingOges (Reach+ EGF) over C is decidable.

The proof of this theorem can be easily done due to effectoguces under first-order
operations for word/tree automatic systems (Propositi@ri3and Proposition 3.2.1).
When seeing a predicaReach 4(X,y), we first construct a product with the finite sys-
tem 4 and then apply the assumption of effective closure undesitige closure.
Similarly, when we encounteriGF 5 operator, we first construct a product with finite
systemB and then applying our algorithmic metatheorem for recurreachability
with generalized Biichi conditions (Theorem 4.3.1 and Taeo4.3.2). We may also
relax the condition of closure under products with finitetegss and instead use the
much weaker condition of closure under taking subsystemthis$ case, we obtain the
following theorem using a similar proof.

Theorem 5.3.2 Suppose that is a class of word/tree automatic systems that is effec-
tively closed under transitive closure and closed undeingkubsystems. Then, given
a presentatiom € C of a word/tree automatic syste@y, = (S,{—a},acT) @nd an
FO(Reach + EGF) formula$(X) overACT, the set[¢]] is effectively regular. That is,
model checkingO(Reach + EGF) over C is decidable.

5.4 Several appetizer applications

In this section, we give applications of the algorithmic atkeorems that we proved
in this chapter on pushdown systems, prefix-recognizalsesys, and regular ground
tree rewrite systems. More examples will be given in the obapter.

5.4.1 Pushdown systems

Consider the problem of model checking LTL over PDSs. Thislomed complexity
was initially shown to b&eXP-complete by Bouajjani, Esparza, and Maler [BEM97].
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The lower bound in [BEM97] can also be adapted to sl#?-hardness for expres-
sion complexity. On the other hand, the problem is solvable ifor a fixed LTL
formula [BEM97]. These upper bounds also hold for LTL foramilvithregular val-
uations[EKSO03], which are powerful enough for encoding multi-risgdairness con-
straints. Different proofs for these upper bounds have la¢sm given (e.g. [PV04]).
Our techniques from the previous sections (Theorem 5.-dZPaoposition 4.1.7) give
yet another proof for these upper bounds since PDSs arg sasih to be closed under
products with finite systems.

Proposition 5.4.1 Model checking LTL over pushdown systems with multi-redaiea
ness constraints is iIBXP. For a fixed formula and fixed number of regular constraints,
the problem is solvable iR.

In fact, using our techniques, better combined complextylme immediately obtained
for LTL 4et. The following proposition easily follows from Theorem S2and Propo-
sition 4.1.7.

Proposition 5.4.2 Model checking LTke; over pushdown systems with a fixed number
of regular constraints is it.

Our algorithmic metatheorems f60rec(Reach 4+ EGF) can also be used to give de-
cidability of FOges(Reach + EGF) model checking over PDSs, though this is rather
immediate from the decidability of model checking over P&t respect to MSO
formulas [MS85].

5.4.2 Prefix-recognizable systems

We now proceed to the problem of LTL model checking over predpognizable
systems with multi-regular fairness constraints. Thisbpgm is known to beEXP-
complete, even for a fixed formula and no regular fairnessttamts [KPV02]. Com-
bining Theorem 5.1.2 and Proposition 4.1.11, we give yethargroof of this result
since prefix-recognizable systems are easily seen to bedccloxder products with fi-
nite systems.

Proposition 5.4.3 Model checking LTL with multi-regular fairness constrairaver
prefix-recognizable systems is solvabl&XP.
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On the other hand, our algorithmic metatheorem for §fidoes not help lower the
complexity of the problem since model checking a fixed kdiformula (with no reg-
ular fairness constraint) over prefix-recognizable systealreadyEXP-hard, which
follows from theEXP-completeness of checking reachability over prefix-reajrie
systems [G0l08]. In addition, our algorithmic metatheosdor FOges (Reach + EGF)
can also be used to give decidability 6Dre; (Reach + EGF) model checking over
prefix-recognizable systems, though this immediatelyofed from the decidability
of model checking over prefix-recognizable systems witlpeesto MSO formulas
[Cau03].

5.4.3 Regular ground tree rewrite systems

Let us now proceed to the problem of model checking RGTRSsfirdlestart with a
negative result about model checking LTL over GTRSs.

Proposition 5.4.4 The problem of model checking a fixed LTL formula over GTRSs
(with no regular fairness constraints) is undecidable.

This proposition can be easily proved by an easy adaptafitreqroof of the unde-
cidability of model checking LTL over PA-processes [BKR$0® fact, this unde-
cidability result holds for the fragment of LTL only with oggor U, or the fragment
with only operatoiF andX. In addition, observe that the class of GTRSs (or RGTRSSs)
is not closed under product with finite systems, which exygavhy our algorithmic
metatheorems for decidable LTL model checking over traeraatic systems fail in
this case. On the other hand, we can still recover some d#eidieagments as the
following theorem shows.

Theorem 5.4.5Model checking LTke with multi-regular fairness constraints over
RGTRSs is irEXP. Model checking LT(Fs,Gs) with multi-regular fairness con-
straints over RGTRSs is solvable in double exponential. tifugthermore, for fixed
formulas and a fixed number of regular fairness constraintedel checking LTdet
and LTLFs, Gs) over RGTRSs is iR.

This theorem is a simple corollary of Theorem 5.2.4, Theobe®n/, and Proposition
4.2.5. In the case of non-fixed Lk or LTL(Fs, Gs) formulas but a fixed number of
regular fairness constraints, can the complexity of thélera be improved t®? For

example, this is the case for recurrent reachability as vesvetl in Theorem 4.3.6.
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This is unlikely to be the case for LTEs,Gs) since the problem is alreadyNP-
complete even for finite systems [SC85]. However, kdimodel checking over finite
systems is solvable iR [Mai00]. Despite this, this is not the case for GTRSs even in
the absence of regular fairness constraints.

Proposition 5.4.6 Model checking LTke;over GTRSs isoNP-hard.

The proof of this proposition is by a simple reduction frone tomplement of the
hamiltonian path problem, which is given in the appendix. [é&ve the precise com-
bined complexity of LTlget and LTL(Fs, Gs) over GTRSs and RGTRSs for future
work.

An application of Theorem 5.4.5 is for model checking conent programs with
an unbounded number of processes in the presence of faknastraints. GTRSs
are natural models for modeling concurrent programs withigmounded number of
processes, but with only “local communications”. We maykhof each node in a
tree as gorocessin our concurrent programs. Trees ensure a hierarchioattsne
amongs the processes in the programs: a nogéh childrenvl, ..., vk means that
the processedl, ..., vk aresubprocessesf the parentprocess). GTRSs rules ensure
that communications only happen “locally”. Node labelshe trees then correspond
to the finite abstract domains that are obtainegm®dicate abstractionf5S97] (in
the manner of how pushdown systems can be obtained from rsg@jy@ograms, c.f.
[BMMRO1, EK99]). A natural fairness constraint for conaemt programs is that there
is eachleaf proceswill eventually be executed (i.e. there is some rewrite thizt
will used to rewrite a subtree containing this node). Thimfsss constraint can be
modeled using multi-regular fairness constraints as ¥eloFirst introduce two extra
colors{1,2} for the leaf nodes, i.e., i is the original node alphabet, we use:=
{1,2,?} x X for the new node alphabet. We then define a new GTRS which leas th
same rule as the original GTRS, but ensures that internasack labeled by?} x >
while leaves are labeled [y, 2} x Z. Each rule will then allow the color in the leaves
to stay the same or toggle. We then simply have to consideitefiuns where the set
of trees in which all the leaves are labeled{dy x X and set of trees in which all the
leaves are labeled bj2} x > are both visited infinitely often, which can be modeled
using two regular fairness constraints.

We close this section by mentioning the application of Teevb.3.2 to RGTRSS.

Theorem 5.4.7 Model checkind-O(Reach + EGF) over RGTRSs is decidable.
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5.5 A nonelementary lower bound for HM-logic

In Section 5.3, we obtained algorithmic metatheorems faidddle model checking
of FOres(Reach + EGF). The complexity that we obtained was nonelementary in the
size of the formula, which was optimal since there existsedfpushdown system (i.e.
the infinite binary tree) with a nonelementd§ (Reach) theory. A natural question
is whether better upper bounds can be given for weaker lpg&gsEF-logic. In this
section, we shall prove that this is not the case even for Hilcl More precisely, we
shall show that there exists a fixed automatic transitiotesysvith a nonelementary
HM-logic model checking. In fact, the transitive closuretloé union of the transition
relations in this system is also regular, which stronglygasgs that any algorithmic
metatheorem for decidable branching-time logics (like Girid EF-logic) must im-
pose much stronger restrictions for it to have nice compartat complexity proper-
ties. Our nonelementary lower bound also strengthens Bitipo 3.1.4 and answers
an open question from [BG09] on the expression complexityoéial logic over ra-
tional graphs.

Theorem 5.5.1 ([To09a]) There exists a fixed word-automatic transition sysfem
(S{—a}acacT) @nd a state gin & such that checking wheth¢5,so) satisfies a
given HM-logic formula is nonelementary. Furthermore, th@nsitive closure of

UagACT (Ha) is regUIar.

We shall now give a proof for this theorem. Recall thgd, 1}*, succo, succy, <) is the
infinite binary tree with a descendant relation. We shaltt stéth an observation that
the FO* theory of ({0, 1}*, succo, succy, <) is nonelementary.

Proposition 5.5.2 TheFO* theory of({0,1}*, succo, succy, <) is nonelementary.

Although the first-order theory of{ 0,1}, succg,succy, <) was proved to be nonele-
mentary in [CH90], it is not easy to see whetR€X suffices from the proof. Neverthe-
less, one can easily show tH&@* suffices using Stockmeyer’s result [Sto74], together
with a reduction from [CH90], as we shall sketch next. Wets#tath a result which

is a simple corollary of Stockmeyer’s well-known resultd®4] that equivalence of
star-free regular expressions over the alphdbet} is nonelementary.

Proposition 5.5.3 The FO? theory of the clasg” of finite linear orders with a unary
predicate is nonelementary.
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This proposition is a simple corollary of Stockmeyer’s le§bto74] and Proposition
2.5.1. To deduce Proposition 5.5.2, we may simply use thgnpahial time reduction
in [CH90] which, given a first-order sentenpeover C, outputs a first-order sentence
W with one extra variable such théis true inC iff (({0,1}*, succo,succy, <),€) = .
By Proposition 5.5.3, the proof for Proposition 5.5.2 is gbete.

Now define the transition system

T = ({0,1}* x{0,1}* x {0,1}* x {0,1}";
{<io}i4:17 {<i1}i4:17 {<i}i4:17 {=iih<i<j<a, {Gi}i4:1>-
where the transition relations are defined as follows:

o <p:={(W,W):W =w0andvj #i(w; =w,)}. This relation takes thigh com-
ponent to its left child.

o <h:={(W,W):W =wlandvj#i(w; =Ww)}. Thisrelation takes thigh com-
ponent to its right child.

o <i:={(W,w):w <w andVj #i(w; =w,)}. This relation takes thith com-
ponent to its descendant.

o =ij :={(W,w):w =w; andvk(wc =w)}. This relation simply loops if the
ith component equals thgh component.

o Gi:={(W,w):V]j#i(wj=w,)}. This relation takes thith component to any
other word (i.e. global modality).

It is not difficult to give a word-automatic system that isnsarphic to¥ with a regular
transitive closure relation (since we have the global madalG;).

Lemma 5.5.4 The transition systerf is automatically presentable with a regular
transitive closure relation.

Proof. Let := {0,1,#} andX :=I*. Given wordsvi,...,v4 € {0,1}*, we define
vi®'...® V4 to be the wordv; ® ... ® v4 but using # (instead of ) as the padding
symbol, e.g., ® 11®'1®'101 is simply

#

=)
R H#H #

1
#
0
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Let S:={v1® ...® Vg :v1,...,v4 € Z*}. We then define a relatioR, over S for
each relatior in T in the obvious way. For example, the relatien is defined as the
relation{(v,V') € Sx S: (v,V) €<}, }. LetT’ be the system with domaand relations
Ra, Wherea is a relation in%. It is easy to give an NWA4s over X recognizing the
setS. Similarly, it is easy to construct an NWA, over the alphabeX | x 2, for
the relationsR,;. [These NWAs are very similar to the automata in Examplel3].1.
Therefore, ¥’ is a word-automatic system isomorphic3o Finally, observe that the
transitive closure of the transition relationsdh coincides with the regular relation
Sx S, which completes the proof]

The following lemma is now sufficient to deduce Theorem 5.5.1

Lemma 5.5.5 Checking whether a given HM-logic formu¢aover ¥ is satisfied by
(T, (g,€,€,€)) is nonelementary.

Proof. We give a poly-time reduction from tHe* theory of({0,1}*, succo, succy, <
). More precisely, we give a polynomial time computable fiorc from FO* for-
mulasé (X, ..., Xs) to HM-logic formulasA(¢) over the vocabulary of such that, for
eachvy,...,v4 € {0,1}%,

({0,1}",succo,sucey, =) = O (vi,...,va) < T, (V1,...,va) EA() (%)

The function\ is defined by induction oRO* formulas over {0, 1}* succo, succy, <).
First consider the three base cases:

o We set\(x <oX;) := (<p)(=i,j) T.
o We set\(x <1 X)) 1= (<) (=i j)T.
o We setA(x < Xj) := (<i,j)(=i,j) T

It is easy to check that the statement (*) hold for these. Nomsw@er the inductive
cases:

o We seth\(d A Q') :=A(d) AN(P'). Itis easy to see that (*) holds by inductive
hypothesis.

o We setA\(—¢) := —¢. Clearly, the statement (*) holds by inductive hypothesis.
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o We setA(3xidp) := (Gi)A(¢). We now show that (*) holds in this case. Without
loss of generality, let = 1 (the other cases are similar). Lpt= 3Ix;¢. Given
vi,...,Va € {0,1}*, we have({0,1}*, succo, succy, <) = W(v1,...,Va) iff there
existsv; € {0,1}* such that{0, 1}*,succo, succt, <) = ¢ (Vy,Vo,V3,Vva). By in-
ductive hypothesis, the latter statement is tru@iffv}, v2,v3,v4) = A(¢), which
is true iff T, (v1,V2,V3,Vv4) = (Gi)A(¢) by the definition ofG; relation. This fin-
ishes the proof that (*) holds in this case.



Chapter 6

More applications of algorithmic

metatheorems

In this chapter, we will give other applications of our algfomic metatheorems from
the previous chapters. In particular, we will apply our aitgonic metatheorems to
model checking problems over PA-processes, subclassestrohBts (e.g. reversible
Petri nets and 2-dimensional vector addition systems),raversal-bounded counter
systems with discrete clocks and one free counter. Theratlee applications that we
do not mention in this chapter, e.g., for deriving decidapdf LTL with multi-regular
fairness constraints over order-2 collapsible pushdowtesys (combining with Kart-
zow’s recent result [Kar10]).

Notation. We define a notation for LTL model checking with multiplerfass con-
straints. Given an LTL formulé overACT, a transition syster® = (S, {—a} ,cacT)>
and subset$S }1; of S, we write[[¢]|s 50 , to denote the set of configuratioss S
satisfying(8,s,{S}] ;) = ¢, i.e., for each infinite patit=sp —3a, St —a, ... IN &
satisfying3”i(s € §) for eachj € N, it is the case that = ¢. &

6.1 PA-processes

PA [BW90, May98] is a well-known process algebra allowingential and parallel

compositions, but no communication. It generalizes baaralfel processes (BPP),
and context-free processes (BPA), but is incomparable sagmwn systems and Petri
nets (e.g. see [May98]). PA has found applications in therprtbcedural dataflow
analysis of parallel programs [EPOO].

135



Chapter 6. More applications of algorithmic metatheorems 136

We review the basic definitions, following the presentatadi{LS02]: we ini-
tially distinguish terms that are equivalent up to simpéifion laws. Fix a finite set
Var = {X,Y,Z,...} of process variable®rocess termsverVar, denoted byFy,,, are
generated by the grammar:

t,t' ;== 0] X, XeVar | tt' | t|t’

where 0 denotes a “nil” process, ahtl andt||t’ are sequential and parallel compo-
sitions, respectively. Process terms can be viewel-beled binary trees, where

> =Varu{0,|,-}. In particular, inner nodes are always labeled byt *||’, while

leaves are labeled by elementsMaruU {0}. Observe thatfy,, is a regular tree lan-
guage, for which a small NTA can be easily computed from angrgvar. A PA
declarationoverACT is a tuple® = (ACT, %var,A), whereA is a finite of rewrite rules
of the form (X, a,t), whereX € Var, a € ACT, andt € Fyar. We setDom(A) = {X:
(X —1t) € A, for somet € Fyar}, andVary = Var—Dom(A). A PA declaration? gen-
erates a transition relaticfis = (S, {—a},cacT) WhereS= Fvar and—, is defined
by the following inference rules:

— — at) e

t1][to —a tZ/LHtZ t1.to —4 ti.tz X —4t ( )
ty —ath ty —at) .

t1][to —a t1||t2 t1.to —atlsty

Here IsNil is the set of “terminated” process terms, i.esthin which all variables
are inVarp. It is easy to give an NTAR, over TREEx(Z | ) for —5, whose size is linear
in the size||?|| of P. It is defined in the same way as for GTRSs, except that when
it guesses a leaf nodeat which a rule is applied, it must further ensure thagas no
‘’-labeled ancestou such thatv is a descendant af2 and that the subtree rooted at
ul is not a terminated process term. See [LS05a] for further detditee following
proposition is a well-known result concerning PA.

Proposition 6.1.1 ([LS02, LS05a, EP0O0])Given a PA declaratiodd and a NTA4
describing a set of process terms over Var, the set$(jare4)) and post(L(4)) are
regular, for which NTAs can be computed in tim@\@r| x ||| x ||4]|), and one can
construct an NTAR * over TREE(Z | ) for —* in poly-timé.

In this section, we consider only tree languages that aegpgréted as regular sub-
sets offyar. From Proposition 6.1.1, Theorem 5.2.4, and Theorem l2e7#pllowing

LLugiez and Schnoebelen first proved this in [LS02] for a notib tree transducers, but later in
[LSO05a] realized that regular relations suffice
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theorem is immediate.

Theorem 6.1.2 Model checking LTl and LTL(Fs, Gs) with multi-regular fairness
constraints over PA are solvable EXP and 2EXP, respectively. For fixed formulas
and fixed number of fairness constraints, these problemsavable inP.

In the study of PA processes, it is common to use a structqravalence on process
terms. We now extend our results to PA modulo structurahedgeimce. Let= be the
smallest equivalence relation ¢y, that satisfies the following:

t0 =t 0t =t tjo = t tt" = t/|t
O = t||t'||t") ttHt” = t.(t't")

We let[t]= stand for the equivalence classta@nd|L]= for U [t]l=. We writel/ =
for {[t]=: t € L}. It was shown in [LS02] that, for eadhe Fvar, [t]= is a regular tree
language, although the sgt|— need not be regular even for regular Given a PA
declaration? and the transition syste®, = (S, {—a},.acT) 9€nerated by, the
equivalence= generates a new transition systé@y/ =) = (S, {=},.acT), Where
S =19/ =, and[t]= =4 [u]= iff there existt’ € [t]= andU’ € [u]= such that’ —, U'.
We need the following result:

Lemma 6.1.3 ([LS02]) The relation= is bisimulation: for all tt’,u € F/q, ift =t’
and t—4 u, then there exists & %y such thatt—, U and u=U'.

Using this lemma, we may easily show that, for every sequgngé! ; of NTAs
such that eacll () is closed undet=, and every LTL formulap overACT, the set
[¢]le,.(2()yn , is also closed undet. This also implies that

9o, (e, = [®]es iy, )= =t € [0]r/=). (20210, )

The following theorem is then a direct consequence of The@4d..2.

Theorem 6.1.4 Given a PA? = (ACT, Var,A), a sequence of NTAsZ }! ; such that
eachL(4) is closed undet=, an LTLget (resp. LTUFs, Gs)) formulad overACT, and
aprocess termé& Fvay, itis possible to decide whethg® o/ =, [t]=, {L(A)} ) E ¢

in time EXP (resp. 2EXP). Furthermore, for a fixed formula and a fixed number of
fairness constraints, the problem is solvablé’in

To see this, sincéd]e, (2(anr, = [[®lls, (£(a)n,]= We need only test whether
So,t,{L(4)}] 1 = ¢, which can be done by appealing to Theorem 6.1.2.
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The decidability result of Theorem 6.1.4 is known in the alegeof multi-regular
fairness constraints, but without complexity analysis 8509, Reh07]. A natural
question regarding Theorem 6.1.4 is whether multi-regalaness constraints are use-
ful since we need each constraint to be closed uadérhe answer is positive. Recall
from Section 5.4 that multi-regular fairness constraires be used to encode some
natural fairness constraint considered in the verificatbiground tree rewrite sys-
tems, e.g., that each leaf process will eventually be erdcuThe encoding of this
constraint is by additionally coloring the leaf processgthe color ‘1’ or ‘2’. We then
use two regular fairness constraimisand Lp, where£; encodes the set of all trees all
of whose leaves are colored 1, while encodes the set of all trees all of whose leaves
are colored 2. This encoding also works for PA since hottand £, will be closed
under=.

6.2 Reversal-bounded counter systems

In this section, we combine our algorithmic metatheoreramfthe previous chapter
with known results in the literature to obtain new resultsyaodel checking problems
over reversal-bounded counter systems and their extengitth discrete clocks and
one free counter, which were extensions of Ibarra’s re\drsanded counter systems
[Iba78] that were introduced in [DIB00]. We first start with reversal-bounded counter
systems with one free counter, and then extend the resuh Wigesystems have dis-
crete clocks.

6.2.1 Basic model with one free counter

We first define the notion of reversal-bounded counter sysfdra78]. First, the reader
should review the definition of counter systems from Exan3ple4. Consider now a
k-counter system = (ACT, X, Q,A), the transition syster® ,, generated by, and
a path

M=H—>S1—... 9

in &4, Wheres = (i, Nyj,...,Nkj). Intuitively, the number of reversals on a counter
j in Ttis defined to be the number of switches from a non-increasindento a non-
decreasing mode (or vice versa) of the value of the coyntert For example, if the
values offj are 1,1,1,2,3,4,3,2,2,3, then the number of reversalseftiihcounter is
2. Let us make this definition more precise. For e@eh|[1,k|, consider the function
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f; - [0,m] — N defined byfj(i) = n;j ;. Observe thaf simply records the value of the
counterj in configuratiors;. Thenumber of reversals on a counter jims the number
of indicesi € [1,m— 2] for which there exist§ > i satisfying either

] (I) Nji+1=Nji+ 1, (II) Njiva=...=Njj, and (III) Njiryr = Njjir — 1, or
e (i) Njir1=nj;—1, (i) Njit1=...=Njj, and (iii) Nj i1 =Njj +1.

We define thenumber of reversalg) 1tto be the maximum number of reversal on all
countersj in . We say thatM is r-reversal boundedf the number of reversals o/

on all pathsrtin &, is at mostr. In addition, arr-reversal bounded counter system
M is said to have a free counter if there is no bound on the nuoftrerersals made
by the first counter.

We are interested in the problem of model checking LTL formsubver reversal-
boundedk-counter system8/ = (ACT, X,Q,A), whereQ = {qs, ...,qn}, with multi-
regular fairness constraints (again, see Example 3.1 #héorepresentation of sets of
configurations ofM using automata). Note that regular relations are more ez
than Presburger-definable relations as we have noted in jige8ri.6.

Theorem 6.2.1 Model checking an LTL formulg with multi-regular fairness con-
straints over r-reversal bounded k-counter system withatestand one free counter
can be done in time polynomial in the size of each fairnesstcaint, exponential in
n and in the number of fairness constraints, but double exptial in r, k, and||¢||.

In the case of a single Presburger arithmetic fairness @instthis problem was al-
ready known to be decidable [DIP01], but without any comipyeanalysis. In the next
chapter, we shall lower the above upper bound complexityri®yexponential when
there is no extra free counter.

Before we apply our algorithmic metatheorems for provingdilem 6.2.1, let us
make a simple observation that the class-oéversal bounded counter systems with
one free counter (for any fixade N) is closed under products with finite systems.

Lemma 6.2.2 Given an r-reversal bounded k-counter systéfi= (ACT, X, Q,A) with
one free counter and a finite systgrover ACT, the product§ x &,4, can be repre-
sented by an r-reversal bounded k-counter systéhwith one free counter, which can
be computed in polynomial time.

Let us now consider the reachability relations of reversalhued counter systems with
one free counter. We shall first discuss how we may reprekemeachability relations
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of ak-counter system with statesQ = {q,...,gn} as subsets df%. For each pair
0i,q; € Q of states, we may define th&-ary relationR; j such that(ly,...,lx) €
R iff the configuration(qj, lk+1,...,l2) is reachable fronig;,ly,...,lx) in G4. In
other words R, ; encodes the reachability relations @f from configurations of the
form (g, V) to configurations of the fornggj,w). In the sequel, if we say that the
reachability relation of\ is semilinear, we mean that ea}); is semilinear. We need
the following result on the reachability relations of resedrbounded counter systems.

Proposition 6.2.3 ([Iba78, ISD 02]) The reachability relations of r-reversal bounded
k-counter system@( with one free counter are semilinear.

Let us briefly discuss the proof ideas of this propositiond®so, we must first define
the notion of reversal-bounded counter automata, whictbeamderstood as reversal-
bounded counter systems used as language recognizersiffdtente is similar to
the difference between pushdown automata and pushdowensg)st More precisely,
anr-reversal bounded k-counter automatower Z is anr-reversal bounded counter
systemM = (Z¢, X, Q,8), whereX; = U {e}, with an initial stategp and a sefF of
final states. ThéanguageZ () recognized byM contains the set of words € **
for which there exists a path

(p07V0> —>a1 .. —>am (pm: Vm)

in the transition systen®,, generated byM satisfyingpo = do, pm € F, andw =
a;...am. Such a path is said to Eeceptingand thatw is said to beacceptedoy M.
Similar notions can be defined for reversal-bounded couattsmata with one free
counter. The first step in the proof is the following lemmarirgSD™*02].

Lemma 6.2.4 ([ISD"02]) There exists a polynomial-time algorithm which, given an
r-reversal-bounded k-counter system with states @qs,...,qn} with (resp. with-
out) one free counter, computes a r-reversal bounded kieo@utomaton with (resp.
without) one free counter such that the Parikh image of itglaage coincides with the
reachability relations{R; j }i je[1,n-

The Parikh images of the languagereafeversal boundekl-counter automata with one
free counter have been shown by Ibarra [Iba78] to be effelgtisemilinear, which
immediately implies Proposition 6.2.3. We shall state fi@arresult as a proposition
since we will refer to it in the sequel.
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Proposition 6.2.5 ([Iba78]) Given a reversal-bounded counter automaton with one
free counter, the Parikh image of its language is effecyigeimilinear.

We now offer a slight modification of Ibarra’s algorithm fasraputing the Parikh
image of reversal-bounded counter automata to obtain agptadale complexity up-
per bound. It is well-known that semilinear sets od&rcoincide with subsets df
that are definable in Presburger arithmetic [GS66]. If weespnt semilinear sets as
existential Presburger formulas with homogenous linege¢juations of the form

aiXy + ... +amXm ~ b,

whereay,...,am,b € Z and~€ {=,#,<,>,<,>}, as atomic formulas, it turns out
that we can obtain the following upper bounds.

Proposition 6.2.6 We can compute a representation of the Parikh image of the lan
guage of a given r-reversal bounded k-counter automabrwith n states and one
free counter as existential positive Presburger formuldh \inear (in)equations (with
unary representation of numbers) in time polynomial in i arponential in k and r.

The complexity analysis of this proposition can simply beiva=l by replacing the
use of the original proof of Parikh’s Theorem [Par66] in Hags proof of Proposition
6.2.5 by the polynomial-time algorithm from [VSS05] comipgtan existential posi-
tive Presburger formula with linear (in)equations whicpresents the Parikh image of
a given context-free grammar (equivalently, pushdownraata).

Remark 6.2.1 In [Iba78], Ibarra did not provide complexity analysis o lalgorithm.
This complexity analysis, however, can be easily inferrgdubalyzing the algorithm
from [Iba78] after using the algorithm from [VSSO05] instezfdPar66].

Using this proposition, it is immediate that the Parikh imagf the language of
reversal-bounded counter automata with one free courdgeegular (in the sense given
in Example 3.1.4) since linear (in)equations can alwayspé&ced by Presburger for-
mulas. In order to obtain compact automata representatveasvill instead use the

following translation from linear (in)equations to autdimeepresentations.

Proposition 6.2.7 ([BC96, WBO0O0]) Given a homogeneous linear (in)equation of the
form
Xy +...+ampXm~Db
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where a,...,am,b€ Z, ~¢ {=,#,<,<,>, >}, the subset di™ containing valid val-
uations(iy, .. .,im) of the variablegxy, ..., xm) can be represented as an NV¥over
{0,1}™ (in the sense of Example 3.1.4) witff{X0, |ai| + log(|b|)) states. Further-
more, this can be computed in time polynomiafth, |a| + log(|b]).

In other words, NWAs representing linear (in)equationsloamepresented polynomi-
ally in the size of the numbers (with unary representatiobs) exponentially in the
number of summands. In fact, it is known that this upper bocerthot be substan-
tially improved for DWAs [Kla08], which was recently shown hold also for NWAs
[DGH]. Proposition 6.2.7 can be combined with Propositioh.3 from Chapter 3
to obtain a complexity bound on the size of NWA for existelnpiasitive Presburger
formulas with linear (in)equations. The following proptsn can be derived by com-
bining Proposition 6.2.7, Proposition 3.1.3, Propositich 6, and Lemma 6.2.4.

Proposition 6.2.8 There exists an algorithm which, given an r-reversal bowuhkie
counter systemi/ with n states and one free counter, computes an NWW&presenting
the reachability relation of¥/. Furthermore, the algorithm runs in time exponential in
n but double exponential in r and k.

Theorem 6.2.1 is then an immediate corollary of Propos&i@i8 and our algorithmic
metatheorem for LTL model checking over word-automatingréon systems.

6.2.2 Extension with discrete clocks

We now give an extension of Theorem 6.2.1 with discrete dagith no increase in
computational complexity.

Let us first recall the definition of counter systems with dise clocks [DIB 00].
An atomic clock constraindn clocksY = {yi,...,%} is simply an expression of the
formy; ~yj ory; —yj ~ ¢, where~c {<,>,=},1<i,j <tandc € Z is a constant.
Herecis given inbinary. In the sequel, we shall call this constamtclock comparison
constant An atomic counter constrainbn countersX = {Xy,..., X} is simply an
expression of the formy, ~ 0, where~c {=,>}. A counter-clock (CC) constrairé
on (X,Y) is simply a conjunction of a clock constraint ¥rand a counter constraint on
X. Given a valuatiorv : XUY — N to the counter/clock variables, we can determine
whetherB|v] is true or false in the obvious way. K-counter system with t discrete
clocks ovelACT is a tupleM = (ACT, X,Y,Q,A), where

e X={xg,...,X/} is a set ok counter variables
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e Qis a set of states,
e Y ={y1,...,)t} is asetot clock variables

e Ais afinite set ofnstructionsof the form((qg,6(X,Y)),a, (q,v,Y’)), where:

- 0,9 €Q,

— ae€ ACT,

— B(X,Y) is a CC constraint ofX,Y),
— ve {-1,0,1} and

— Y’ CY is aset ofclock resets

A configurationof M is a tuple(qg,v,w) € Q x Nk x Nt expressing the stat@/ is

in, the current values of thke counter, and the current values of thelocks. The
k-counter system with discrete clocksM also generates a transition systémg, =

(S, {—a}acacT) defined as follows:

e S=Qx NXx Nt contains all configurations o/ .

e Given two configurations = (q,v,w) andc’ = (d,Vv/,w'), we havec —, C’ iff
there exists an instructigiig, 6(X,Y)),a, (d,u,Y’)) € A such that

— B[v,w]| holds,
-V =v+4u,and

— If Y =0, then each clock progresses by one time unit.=w+ 1. If
Y’ £ 0, then the value of the clocks ¥{ are reset, while the values of other
clocks stay the same: for eaghe Y’ andy; € Y\ Y/, w{ = 0 andw/ = w;.

We may define the notions of reversal-bounded counter sgsiéth one free counter
and discrete clocks in the same way.

In order to apply our algorithmic metatheorems, first obsahat the class of
reversal-bounded counter systems with one free countediaorete clocks are closed
under products with finite systems. This observation is wamyjlar to Lemma 6.2.2.
We next consider their reachability relations. First reta¢ following proposition
from [DIB*00].

Proposition 6.2.9 Suppose thad/ is an r-reversal bounded k-counter systems with t
discrete clocks and with (resp. without) one free countet.r_be the number of states
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of M and | be the size (in binary) of the maximum absolute valuelok comparison
constants iM. Then, we may compute a-l-reversal boundedk +t + 1)-counter
automataM’ with (resp. without) one free counter such tldt. (")) coincides with
the reachability relation of/. Furthermore, the procedure runs in time polynomial in
n, k, and r, but exponential in | and t.

In fact, in the paper [DIPO1] Danet al. only gave the proof of this proposition when
there is only one free counter and no reversal bounded catheugh they remarked
that this can easily be extended with reversal bounded ecaimthich can indeed be
easily checked. Therefore, we may proceed as for the cakewtidiscrete clocks and
obtain the following theorem.

Theorem 6.2.10Model checking an LTL formulé with multi-regular fairness con-
straints over r-reversal bounded k-counter systgéfmwith n states, t discrete clocks,
and one free counter can be done in time polynomial in thedfieach fairness con-
straint, exponential in n and in the number of fairness caists, but double expo-

¢

comparison constant ifif .

nential inr, k, t,||¢||, and the size (in binary) of the maximum absolute value akclo

This theorem also answers an open question by [2aat) [DIP01] whether recurrent
reachability with one Presburger-definable fairness caimtover reversal-bounded
counter systems with discrete clocks and one free countiEcislable.

6.3 Subclasses of Petri nets

In this section, we shall apply our algorithmic metatheasdrom earlier chapters to
subclasses of Petri nets: (1) 2-dimensional vector add#istems with states, (2)
reversible Petri nets, and (3) conflict-free Petri nets. tAeosubclass of Petri nets on
which we can apply our algorithmic metatheorems is callesidyparallel processes,
which are a subclass of PA-processes which we considerkeraarthis chapter.

Let us first recall the definition of vector addition systemishvstates. For our
purpose, avector addition system with states (VA$SH tuple? = (ACT, X,Q,9),
where

e X={x1,...,X/} is a set ofplaces and

e Jis a finite subset o) x ACT x ZX x Q each of whose member igmnsition
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The transition syster®» = (S {—a}cacT) 9€nerated by is defined as follows:
e S=QxNK and

e for each action symba € ACT, and pair of configuration&ys,vi), (gz,V2) €
Q x NK, define(qy,v1) —a (Gp, Vo) iff there exists a transitiofiqgy, a, u, gp) € &
such thatv = v +u.

Observe that this definition enforces that no place could @damegative in any exe-
cution of the system. We defiretri netsto be vector addition systems with one state,
in which case we will omit the state component when defining Rets. It is not hard

to show that the transition systems generated by VASS amdre¢t are the same, i.e.,
for any given VASSP, we can come up with one-state VASS that simuldteEinally,
observe that VASS can be thought of as counter systems wigfua formulas.

6.3.1 Two-dimensional vector addition systems with states

Two-dimensional (2-dim) vector addition systems with esaare simply VASS with
two places. Leroux and Sutre [LS04] recently showed that¢behability relations of
2-dim VASS are effectively semilinear.

Proposition 6.3.1 ([LS04]) The reachability relations of 2-dim VASS are effectively
semilinear.

This result generalizes an earlier result by Hopcroft ansla[HP79] on the effective
semilinearity ofpost’ and pre* for 2-dim VASS. Nonetheless, no complexity analysis
was provided in [LS04].

Observe now that VASS are word-automatic using the samedargof counter
systems as automata (see Example 3.1.4). Furthermore,weedraarked that semi-
linear sets (or equivalently Presburger-definable suln$éfé) can also be interpreted
as regular languages using the same encoding of tuples dfersiSince 2-dim VASS
are closed under product with finite systems, our algorithmetatheorem for decid-
able LTL model checking with multi-regular fairness coasits imply the following
theorem.

Theorem 6.3.2 Model checking LTL with multi-regular fairness constrairver 2-
dim VASS is decidable.
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For this theorem, we could also replace regular fairnesstcaints with fairness con-
straints expressed as first-order formulas over Buchharétic (see Example 3.1.6),
which generalizes Presburger Arithmetic. In additiorh@ligh it is known that model
checking LTL over all VASS isEXPSPACE-complete [Yen92] (when only infinite
paths are considered), to the best of our knowledge it is egezther the problem is
decidable in the presence of semilinear (let alone, meafufar) fairness constraints.
At any rate, this problem is easily seen as hard as reactyafoitiPetri nets, which is
decidable but not known to be primitive recursive (cf. [M4})8 As we remarked, the
complexity of the construction of the reachability relasdrom [LS04] was not given.
Therefore, we leave it as an open problem to pinpoint theiggezpnmplexity of this
problem.

6.3.2 Conflict-free Petri nets

Let us briefly recall the definition of conflict-free Petri agfor more details, the reader
is referred to [Esp96]. Lef = (ACT,X,d) be a Petri net withk places. Given a
configurationv of 2, and a transitiot = (a,u) of P, we say that is enabled atv if
there existsv € NX such thaw = v+ u. In this case, we write Lwor simplyv LN

if w is not important. We say that is conflict freeif, for eachv € NX, and paird, to

of transitions of?, we havev Y andv 2 impliesv w2 for somew € NK, The
reachability relations of conflict-free Petri nets are kndw be effectively semilinear.

Proposition 6.3.3 ([LS05a]) The reachability relations of conflict-free Petri nets are
effectively semilinear.

Combining this with our algorithmic metatheorem for reemtrreachability with gen-
eralized Buchi conditions, we obtain the following theore

Theorem 6.3.4 Checking recurrent reachability with multi-regular faigss constraints
over conflict-free Petri nets is decidable.

Since no complexity analysis was provided in [LS05a], wevdethe complexity of
this problem for future work. Finally, since it is easy to ghat conflict free Petri
nets are closed under taking subsystems, our algorithnmiathe®mrems for LTketand
LTL (Fs, Gs) imply the following theorem.

Theorem 6.3.5Model checking LTl and LTL(Fs, Gs) with multi-regular fairness
constraints over conflict-free Petri nets is decidable.
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6.3.3 Reversible Petri nets

A Petri net? = (ACT, X, d) is said to beeversibleif for each transitiort € 9, there
exists a transitiot! € & such that’ is an inverse of the relatiof, i.e.,

L= {(v,w) ‘w b V}.

For a more thorough treatment of reversible Petri nets, Y&z the reader to [Esp96].
The reachability relations of reversible Petri nets arevkmto be effectively semilin-
ear.

Proposition 6.3.6 ([LS05a]) The reachability relations of reversible Petri nets are ef-
fectively semilinear.

Combining this with our algorithmic metatheorem for reemtrreachability with gen-
eralized Buchid conditions, we obtain the following thexor.

Theorem 6.3.7 Checking recurrent reachability with multi-regular faigss constraints
over reversible Petri nets is decidable.

Again, since no complexity analysis was provided in [LSQ%ag leave the complexity
of this problem for future work.
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Chapter 7

Reversal-bounded counter systems

and their extensions

Minsky’s counter systems are well-known Turing-powerfubaels of computation.
Hence, to obtain decidability, restrictions need to be isgab We have seen in Chap-
ter 6 that reversal-bounded counter systems, which wetialipiproposed by Ibarra
[Iba78], are not Turing-powerful since they have decidabéehability and LTL model
checking with complex fairness constraints. Furthermaresaw that this is true even
in the presence of one free counter and any number of discl@tks. In this chap-
ter, we shall investigate such models more thoroughly, @alie with regards to the
precise complexity of model checking problems.

We saw in Chapter 6 that our algorithmic metatheorem for LTadel checking
with fairness constraints, combined with the result of [DO®, ISD*02, Iba78], yields
decidability of LTL with fairness constraints oveireversalk-counter systems with
discrete clocks and one free counter, which was left operyliyamget al. [DIP01]. In
fact, the complexity upper bound that we obtained was doekpenential time, even
for afixed LTL formula. This is far worse than the best knowmgdexity lower bound
for the problem, which is PSPACE-hard due to the presenca ahaounded number
of clocks or binary representation of numbers in the cloagkst@ints [CY92] (also see
[AMO4]). In this chapter, we shall rectify this problem ireticsase of reversal-bounded
counter systems with discrete clocks, but without one fraeter.

Recall from Chapter 6 that the results of [D1B0, ISD" 02, Iba78] yield a double-
exponential time procedure for computing an NWA represgnthe reachability re-
lation of a givenr-reversalk-counter systemg with t discrete clocks and one free
counter. More precisely, ifi is the number of states @, the complexity of this pro-
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cedure is exponential in, and double exponential n(in unary),k, t, and the size of
the binary representation of the maximum number appeanintpck constraints irP.
We observe that the constructions from [DI&0, ISD"02, Iba78] substantially rely on
Ibarra’s original algorithm [Iba78] for the computationsgmilinear sets representing
the Parikh image of the language recognized by reversatdedicounter machines.

Ibarra’s original algorithm [Iba78] has been observed bya&wand Ibarra [GI81]
to give non-optimal algorithms for solving various probkefe.g. nonemptiness) for
reversal-bounded counter machines. Gurari and Ibarreopegpa new technique for
deriving a PSPACE upper bound for nonemptiness (and theretachability) for
reversal-bounded counter machines. In fact, the proced({&81] runs in polynomial-
time when the parameterandk are fixed constants. Later, Howell and Rosier [HR87]
improved both the upper bound and lower bound for nonemgsinéreversal-bounded
counter machines even in presence of one free counter. Tiogyesl that the problem
is NP-complete when at least one of the parameatensdk is not fixed. Again, the
technique of Howell and Rosier’s avoids the use of Ibarraigial algorithm from
[Iba78].

A careful look at Ibarra’s algorithm [Iba78] reveals thaé thottleneck of its run-
ning time is due to the use of Parikh’s Theorem [Par66]. Itloarasily checked that
Parikh’s construction of the Parikh images for CFGs (or,hejantly pushdown au-
tomata) runs in exponential time and may output a unioexpbnentiallynany linear
sets in the worst case. In the case atversalk-counter machines without one free
counter, Parikh’s construction was applied in [Iba78] td\MJIA that is obtained from
the input reversal-bounded counter machine of size expg@hénr andk, and polyno-
mial in the numben of states of the counter machine. The exponentiallity ofidhar
construction then gives double exponential complexity andk, and exponential in
n for computing the Parikh images of reversal-bounded caountechines. Although
several different proofs for Parikh’s Theorem with diffetrdlavours and techniques
exist in the literature (e.g. see [Esp97b, Koz97, SSMH04S088), it can be easily
checked that all of these constructions could produce st éegonentially many linear
sets in the worst casaven when the size of the alphabet is restricted to one

The first hint that better upper bounds could be obtained f@fAN is due to
Chrobak [Chr86] and Martinez [Mar02], who showed that thexists a polynomial-
time algorithm which, given an NWA over an alphabéeX of size 1, computes a union
UM ,{a +tbi : t € N} of polynomially many arithmetic progressions — whose dffse
a; and perioddy; are bounded polynomially in the number of states — reprasgnt
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the Parikh imageP(4) of 4. [Unfortunately, the proofs in [Chr86, Mar02] contain
a subtle error, which were recently fixed by the author in Pl@dd A generaliza-
tion of Chrobak-Martinez’s Theorem has been recently disced independently by
Kopczynski [Kop10] and the author [To10] with different pfe (see also the merged
paper [KT10]). These results give an algorithm which, gieenNWA with n states
over an alphabet of size> 1, computes a union of linear sets with at mkgieri-
ods and total size2¥*°9" (with unary representation of numbers in the output), i.e.,
polynomial for all fixedk. Previously, it was not even known whether the number of
periods in the linear sets could be made independenteatept for the special cases
whenk = 1 [Chr86] andk = 2 [Abe95]. Furthermore, the running time of our algo-
rithms is polynomial im and exponential ik, i.e., polynomial wherk is fixed. This
chapter primarily aims to present the author’s proof [Tod0fhis normal form theo-
rem for NWAsand show how they can be applied to obtain optimal modellchgc
complexities of reversal-bounded counter systems and ¢xé@nsions with discrete
clocks.

This chapter is organized as follows. In Section 7.2, we @r@VvCaratheodory-
like” theorem for linear sets.Caratheodory’s Theorem for convex coriesa well-
known result from the study of convex sets [Zie07] that dEthe convex congen-
erated by the vectors M = {v1,...,vn} C RX could be subdivided into convex cones
that are generated by subs8ts V of size at mosk. More precisely, this fact can be
written as

congV)= [ J cong9),

SCV,[§ <k
where, ifS= {wy,...,w, }, we definecong(S) := {3{_;tiwj : t1,...,t € R>o}. Ob-
serve that the number of cones on the right is only exporiéntia(and polynomial
in m). Our Caratheodory-like theorem for linear sets simplysstinat, given the set
V = {v1,...,vm} € NX, the linear seP(0;V) can be written as a union oflinear
setsP(w1;S),...,P(wr;S), where eacl is a subset oV of size at mosk and
the parameter, as well as each number in each offagf is bounded exponentially
in the dimensiork, but polynomially inm and the maximum numbex occuring in
vectors inV. Furthermore, the linear seBw1;S),...,P(w;;S) can be computed
in polynomial time provided that the dimensiénis fixed. In fact, we shall prove
a more general version of this Caratheodory-like Zelinear sets. In Section 7.3,
we shall use this Caratheodory-like theorem for linear t@tsbtain a normal form
theorem for Parikh images of NWAs. We shall also show in tkiien that the up-
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per bound complexity given by this normal form theorem istignd that the same
upper bound doesot hold for CFGs even over the fixed alphatet {a}. Before
showing how the normal form theorem can be used to improveehadgecking com-
plexities of reversal-bounded counter systems and thé#neions, in Section 7.4 we
give three simple applications of our Caratheodory-likeotlem for linear sets and
normal form theorem for Parikh images of NWAs: (1) polynohtime fragments of
integer linear programming, (2) decision problems for ldarmages of NWAs, and
(3) Presburger-constrained graph reachability. In Sectid, we use our normal form
theorem to obtain optimal complexity for the problem of mloclgecking LTL with
complex fairness constraints ag#-logic over reversal-bounded counter systems and
their extensions with discrete clocks. Moreoever, we sstadw that model checking
CTL is undecidable over reversal-bounded counter systathsutdiscrete clocks.

7.1 Preliminaries

In this section, we shall define notations that will be usedufghout this chapter. Fix
an NWA 4 over some alphabét Given a patht= ppaz ... pminan NWA 4, we shall
write 2(1) to denote the Parikh imagg(a; . ..an) of the path labelsy ... am.

We shall now fix some matrix notations. Given tweby-n 0-1 matricesM =
[Mi,jlnxn and M’ = [n{7j]nxn, we write M ¢ M’ to denote the matrit” = [n{fj]nxn
with m’fj = Vie1 (Mg A n{q). The operatow is often referred to aboolean matrix
multiplication, which can easily be evaluated@{n?). We also writeM v M’ to denote
the application of the boolean operatigrcomponent-wise, i.e., resulting in a matrix
M’ = [n{fj]nxn with m’fj =m;V ”\{71- In the sequel, we shall also wrikd[i, j] for the
(i, j)-componentn j of M.

Above we have defined the notions of convex cones. We now defisienilar
notion when the coefficients of the linear combinations atirals (instead of non-
negative reals). Given a finite subsbf vectors overZX, let coney(S) denote the
linear setP(0; S). We now state a very simple fact about arithmetic on sendlisets
which we will frequently use in this chapter.

Fact 7.1.1 Suppose thatiS= U{_; P(vi; i) C Nand $ = U\_; P(wj;W;) C N¥. Then,
it is the case that 5+ S = U{:lutjzlP(vi +wj;Vi UW,). In addition, we have
P(v;S) = v+ coney(S).
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7.2 A Caratheodory-like theorem for linear sets

In this section, we shall prove a Caratheodory-like theol@ntinear sets of the form
coney(V). This will also imply a Caratheodory-like theorem for gealdmear sets
P(v;V) =v+coney(V).

Theorem 7.2.1LetV:= {v1,...,vm} C ZX\ {0} with m> 0. Let ac N be the max-
imum absolute value of numbers appearing in vectors of V.nTties possible to
compute in timgO(klog(m+’log(ka)) 5 sequence df-linear baseswy; Sy), ..., (Wi S.)
such that

U
coney(V) = | JP(w;; )
i—1

where the maximum absolute value of entries of emcs O(m(k?a)%*3), each $is
a subset of V withS| < k, and p= O(m?(k2a)2<+3¢) . Furthermore, if VC NK, we
have{ws,...,w,} C NK,

Observe that this theorem causes only an exponential bppw-uhe dimensiork.
Moreover, each se§ contains at most generators. To prove this theorem, we start
with a slight strengthening dhe conical version of Caratheodory’s theorémmm the
theory of convex sets [ZieO7, Proposition 1.15]. The prsdjiven in the appendix.

Lemma 7.2.2 LetV:={vi,...,vm} C ZX\ {0} with m> 0. Let ac N be the maximum
absolute value of numbers appearing in vectors of V. Thag,gbssible to compute
in time20(klogm+logloga) 5 sequencesS..., S of distinct linearly independent subsets
of V with d elements, wherea{1, ... k} is the rank of V, and

congV) = Lrjcone(S,).
i=1

Let us first explain the idea behind the rest of the proof ofoFam 7.2.1. Intuitively,
Lemma 7.2.2 says thabngV) C RK can be subdivided into smaller subcones with
exactlyd € {1,...,k} generators wherd is the rank ofV. This lemma immediately
gives anupper boundor coney(V) as the union of thénteger pointsn congS); in
general, the latter contains many more points tbamey(V). On the other hand, we
havelJi_; coney(S) C coney(V), where the inclusion is strict in general. It turns out
that an equality can be achieved by first making a “feluplicatesof eachconey(S)
and thershiftingthem appropriately by some “small” integer vectors.
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We now prove Theorem 7.2.1. First invoke Lemma 7.2.2/oand obtain lin-
early independert-subsetsy, ..., S of V, whered =rank (V) andr < mkK, satisfying
congV) =Uj_; congS;). Then, it follows thatoneV ) NZK = Jj_; (cong(Sj) N ZK).
To compute the integer vector “shifts”, we shall need to agefire notions o€anonical
andminimalvectors.

Characterization via canonical and minimal vectors

Suppose now that € congS;j) N A andSj = {us,...,uq}. We make several simple
observations:

(O1) There exists ainiquevector [v] € {—ka,...,ka}n congS;j) and uniquenon-
negative integers, ..., such that: 1y = [V] +Z$':1$ uj, and 2)[v] = Zidzltiui
for some (unique) & t1,...,tqg < 1. To see this, observe that by linear inde-
pendence 0§; there exist some unigug,...,Aq € R>g such thav = Zidzl)\iui.
Simply lets := |Ai], ti :=Aj — 5, and|v] := Zidzltiui. Uniqueness is immediate
from uniqueness ofy, ..., Ag.

(02) GivenV' € cong(Sj) NZK, we writev ~ V' iff [v] = [V/]. Itis easy to see that is
an equivalence relation of finite index (there are at njka+ 1) equivalence
classes). Ifv] =v, the vectow is said to be aanonical representativef the
equivalence clasfu € cong(S;) NZK : [u] = v}. In this case, we will also call
anSj-canonical vectoror simplycanonical vectowhenS; is understood.

(03) If v is in coney(V) NcongS;), thenv + =%  suj € coney(V) N congS;) for
everyss,...,Sq € N.

We shall now use these observations to define a natural watidled partial ordes;
onconey(V)NcongS;); note thatoney(V)NcongS;) # 0. Givenv,w € coney(V)N
congS;j), we write v <; w iff, for some (unique)Sj-canonical vectorg and some
(unique) coefficients,,...,sg € N andty,...,tg € N, it is the case that: Iy = vp+
Zid:lsui, 2)wW = vo-i—Zid:ltiui, and 3)(sy,...,S4) < (t1,...,tg). The following simple
lemma shows thatl; is a well-founded partial order, and characterizgsminimal
elements.

Lemma 7.2.3 The relation<; is a well-founded partial order oconey (V) NcongS;).
Furthermore, a vectov € coney(V) NcongS;) is <j-minimal iff none of the vectors
(v—uy),...,(v—ug) are incongy(V) N congs).
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Proof. That<j is a partial order is due to:

e ObservationgO1) and (0O2): the uniqueness of choice of canonical vectgr
and coefficients,, ..., sq € N for each vectow satisfyingv = vo+ Zidzlsi uj.

e That= is a partial order oiN¥.

To see thatd; is well-founded, assume that there exists a strictly destmgssequence
V1D VD>j.... Letvi =vo+ Z‘J?':ls'ij u; for some unique canonical vecta = [v;] and
unique coefficiental = (},...,s}) € N9, In this way, we generate a strictly decreasing
sequenca! - a2 - ... for the well-founded partial order on NK, and therefore a
contradiction. Thusg; is a well-founded partial order aroney (V) NcongS;).

Given a<j-minimal vectorv € congy(V) NcongS;), it is obvious that none of the
vectors(v —uy),..., (v —ug) cannot be irconey(V) NcongS;). Conversely, given a
vectorv € congy(V)NcongSj) which is notJtj-minimal, we could find another vector
V' € congy(V) NcongS;) such that’ <ijv. Using ObservatiofO3), it is easy to show
that at least one of the vectofé—uy),..., (v —ug) is in coney(V) NcongS;). O

Lemma 7.2.3 and Observati¢g®3) immediately implies thatoney(V) is a union of
linear setP(v; Sj) taken over allj = 1,...,r and<j-minimal vectorsy.

Lemma 7.2.4 The following equality holds

r
coney(V) = | JJP(v;S)),
j=1vVv
wherev is taken over alklj-minimal vectors.

Proof. (2) Obvious.

(C) If v € coney(V), thenv € congS;) NZX for somej € {1,...,r}. By Lemma
7.2.3, there exists & j-minimal vectorv’ satisfyingv’ <; v. Observatior{O3) implies
thatv € P(V;§j). O

Note also that i¥/ C N, then all<j-minimal vectors (X< j <r) are also nonnegative.

A roadmap for rest of the proof is as follows. We shall showt gzch<j-minimal
vectors cannot be too large and can be efficiently enumeraieid will immediately
give us the desired sequence of linear bases. The proofsoithirequire connections
to integer programming, and the use of dynamic programming.
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Bounds via integer programming

For eachSj = {uy,...,uq}, we shall now show that aflj-minimal vectorsv cannot
be too large. To this end, for each canonical veetpe cong(S;) NZX, consider the
integer linear programi\x = vg (x = 0), whereA is thek x (m+ d) matrix consist-
ing of columnsvy,vo,...,Vm, —U1,—Uo2,...,—Ugq (in this order) and is the column
(m+ d)-vector consisting of the variables, ..., Xm, Y1, ..., Yqd (in this order). The fol-
lowing simple lemma shows that-minimal solutions to such integer programs — as
we shall see, they cannot be too large as well — provide uppends for how large
<j-minimal vectors can be.

Lemma 7.2.5 For every<j-minimal vectow € coney(V) NcongS;), letvg := [v] and

t = (t1,...,tq) € N9 be the unique coefficients such that vo+ Zidzltiui. Suppose
also thatc = (cy, ..., Cm) is @ <-minimal solution to the integer progratf” ;xvi = v
(x = 0). Then, the vectow := (c,t) € N™d js a <-minimal solution to the integer
program A = vg (x = 0).

Proof. Thatw is a solution is immediate. To show-minimality, consider a vector
U= (cp,...,Cnt,...,t}) € N™d sych thats < w andAu’ = vo. Definev’ :=vo+
>4 |t/ui and thusv’ = =M c/vi. This means that’ € coney(V) N congS;) and, by
<j-minimality of v, it follows thatv’ = v and thug/ =t; for every 1<i <d. Thatcis
a =-minimal solution to the integer progral" ,xv; = v (v = 0) implies thatc = ¢

for every 1<i < mand, thusy =w. O

Consider the sdt) of all vectorsvg + Zﬁ'zls-ui, wherevg ranges over all canon-
ical vectors andsy,...,Sq ranges over alt-tuples of nonnegative integers such that
(c1,...,Cm,S1,...,S) IS @ <-minimal solution to the integer progradx = vg, for
somecy, . ..,Cm € N. We shall see now that the maximum absolute v&@a¢ numbers
appearing irJ exists, which immediately gives an upper bound for the maxmab-
solute value of entries oflj-minimal vectors. The following general lemma, whose
proof is a straightforward adaptation of the proof of [PapBiieorem p. 767], yields
an upper bound foB.

Lemma 7.2.6 Let A be a kx n integer matrix and a k-vector, both with entries in
[—t,t] N Z, where te N. Then, every<-minimal solutionx € N" to Ax =b (x = 0) is
in {0,1,...,n(kt)%+11n,
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Notice that the maximum absolute value of numbers appeariogr integer programs
cannot exceet:= ak (which could appear on the right hand side of the equatidn). |
M := (m+Kk) (kt)%+1, it follows thatB < akM+ak < N := (m+k) (k?a)%*2 + ak. This
completes the proof a@xistencdor Theorem 7.2.1 and gives us the desired bounds for
the parametep and the maximum absolute value of entries of eaglin Theorem
7.2.1. It remains to show how to make this algorithmic.

Computing canonical and minimal vectors

We first show how to compute all the canonical vectors. SinaasSian-elimination
over rational numbers can be implemented to run in time pwlyial in the total
number of bits in the input matrix [Edm67] and that edghis linearly indepen-
dent, we could easily compute &j-canonical vectors (for alj € {1,...,r}) in time
20(klog(ka)-+klogm) Ky, going through all candidate vectars {—ka, ..., ka}* and check-
ing whether there exist8 t1,...,t3 < 1 such thaEid:ltiui = V. [Transform into row-
reduced echelon form to compute tineiquesolution, if exists. Sinc&; U {v} C ZK,
the coefficientsy, ..., tq will be rational.]

For each fixed € {1,...,r} and each fixe;j-canonical vectovo, we now show
how to compute the set of aiflj-minimal vectorsv such thatlv] = vo by dynamic
programming in time @klogm+k*log(ka) - Opserve that since there are at ma@ak-+
1)k = 20(Klog(kam) nossiblevg, doing this forall canonical vectors would take time
20(klogm+Kklog(ka)  which is also the total complexity of the algorithm. To thisd, we
first fill out in stagesa tableT; which keeps track of all vectorse {0, 1,. ..,N}kﬁ
coney(V). At stageh=12 ... .m, we collect all vectors that can be written as
>N .cvi, where 0< ¢ < M. Since the size of the table is at mdgf(klogN) —
klogN bits are used to identify each element in the table with an@atedk-tuple —
this could be carried out in tim®(m(N¥(klogN))2) = 20(klogm+k?log(ka)) - \we then
fill out in stages another table, which keeps track of all vectorse {0, 1, ..., N}kﬂ
P(vo;Sj). This could be done id stages, similar to the computationTaf and could be
implemented to run in im©(k(NX(klogN))2) = 20(klogm+k*log(ka)) - \ve then simply
compute a new tabl& = Ty N T, from which we eliminate vectors that are nof-
minimal by using the characterization gfi-minimal vectors from Lemma 7.2.3. All
in all, this could be implemented to run in tim@(logm+k*log(ka)).
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7.3 Parikh images of regular languages

7.3.1 A normal form theorem

In this section, we shall apply Theorem 7.2.1 to obtain a mbriorm theorem for
Parikh images of NWAs.

Theorem 7.3.1Let 4 be an NWA with n states over an alphabeof size k. Then,
there exists a representation of the Parikh imag®< (1)) of 4 as a union of linear
sets Bv1;S1), ..., P(Vm; Sm), where the maximum entry of eaghis O(nd(k+1) k3k+6),
each $is a subset of0,...,n} with |§| < k, and m= O(n¥+3k+3i4+6) " Eyrther-

more, this is computable in tin@P(*log(kn)

Observe that this theorem causes an exponential blow-ygdrothe size of the alpha-
bet. Efficiency could be improved by outputting numbers imeloy.

We shall now prove this theorem. Lat= (%, Q, d,do, qr ) be a given NWA, where
|IQ| =nandX ={a,...,a}. Throughout the proof, we shall use the notion of “cycle
type”. A cycle typds a Parikh image € NK of any wordw € =" such that there is
a pathrtof 4 onw from some (not necessarily initial) stapeto itself. The cyclatis
said towitnessv. Observe that the sum of the components of any cycle typeotann
exceed.

Characterization of P(L(A))

We start with a characterization of the Parikh imagd@af terms of Parikh images of
“short” paths together with some cycle types. Given a pathpoaip:...a/pr of 4
from the statepp to the statepy, let S; C {0,...,n}K be the set of all the cycle types
that are withessed by some cycles= pyp] ... pipy in 4 such thatp! = p; for some
i€{0,...,t} andj € {0,...,r}. Thatis,C andtmeetat statep/ = p;; see Figure 7.1.
Now defineT to be the linear se®(P(1); Sy).

Lemma 7.3.2 The following identity holds:
P(L(A)) =JTn
Tt

wherettis taken over all accepting runs of of length at mostn — 1)2.

To prove this lemma, we shall make use of the following sinfigt#, whose proof (in
Appendix) is to a large extent similar to the well-known fé&@m graph theory that
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Pi =Dj

Figure 7.1: The path 11 (solid line) meets with the cycle C (broken line) at the state
P, = pj (filled circle).

-7~ 02
N
q2 .\
7T/ ,\ //C1
o/\/—;"\/-o
q0 q3

Figure 7.2: The path Ttis defined as follows: from (g it walks to g1, continues to g (via
half of cycle Cy), takes the cycle C, once, and then proceeds to q; (via the rest of cycle
C1) and straight to g3. The decomposition is TU (in solid line) and the cycles C; and C;

(in broken lines).

the existence of a path between two given points impliesxistence of ssimplepath
between the same given points.

Fact 7.3.3 Given an NWAZ with n states and a patitin A2 from q to d, there exist
a simple patht from g to d and finitely many simple cycles C..,C;, (possibly with
duplicates) such that

h
ﬂm:ﬂM+Z?@)

An illustration of this simple fact is given in Figure 7.2.

Proof of Lemma 7.3.2(C) Assume that € P(£(A4)) and leto = poaip1...arpr be

an accepting run itd such that?(o) = v. We shall construct another accepting run
o’ in 4 of length at mostn— 1)2. For each statg occuring ing, let|(q) be thelast
(i.e. maximum) index € {0,...,r} such thatp; = g. Let us write down all such(q)

in an increasing order, e.gg < i1 < ... <lisg=r. Note thats < n. By Fact 7.3.3,
each subpatiolij,ij1] of o can be decomposed into a simple paghfrom p;; to
pi;,, Of length at mosh— 1 and finitely many simple cycles (possibly with duplicates)
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Ci,...,Cn each of length at mostsuch thatP(1ti,ij1]) = P(11) +Zih:1£P(Ci). Such
a decomposition result, however, might allow some cygléo avoid (i.e. not meet
with) 11;. For example, in Figure 7.2 the cydls does not meet with the patif. On
the other handC; mustvisit some states ofy,, ..., pi; as this sequence contains alll
states ino. Thus, we simply define’ to be the accepting patlhy©om @ ... ® Ts_1 of
length at mostn— 1)2. It follows thatv € Ty.

(D) Conversely, lev € T, for some accepting rumiin 4 of length at mostn — 1)2.
Then, if Sy = {v1,...,vs}, thenv = P(1) + 2> _,tjv; for somety,...,ts€ N. LetC; be
a cycle in4 that meets withtand satisfie®(C;) = v;. We can construct an accepting
patho in 4 with ?(o) = v as follows: start fronTt as the “base” path, and for each
i €{1,...,s}, attacht; copies ofC; to one pre-selected common stat&pandr. O

As an immediate corollary of Lemma 7.3.2, we have:

Proposition 7.3.4 Let 4 be an NWA with n states over an alphaketf size k. Then,
P(L(A4)) can be represented as a union of linear set8PS; ), ..., P(Vm; Sn), where
vi € {0,...,(n—1)?}¥ and the components of each vector jrc&not exceed n.

Remark: A slightly stronger version of this proposition was claimed[SSMO07],
where the maximum component of eaghcannot exceed. Their proof turns out
to have a subtle error that also occurs in the proof of Chrddakinez Theorem
[Chr86, Mar02], which was recently fixed in [To09b]. In fagte show in Propo-
sition 7.3.10 below that our quadratic bound is essentiiymal, i.e., it cannot be
lowered too(n?).  (End Remark

Observe now that the proof of existence in Theorem 7.3.19ergmlly immedi-
ate from Proposition 7.3.4 and Theorem 7.2.1. We will nexiskhat an algorithm
for computing the desired semilinear basis can be obtaisgdja dynamic program-
ming.

Dynamic programming algorithm

We first show how to compute all the cycle types@f More precisely, lelQ =
{90, .--,0n-1}, wheregn_1 := g, and letl = {(ts,...,t) € NK: 3Kt < n}. For
each vectow € NK, we write M, = [ jInxn for the n-by-n 0-1 matrix whereg; j = 1

iff there exists a patm from g; to q; with (1) = v. We are interested in computing
all matricesM, for eachv € |. Observe that the naive algorithm, which runs through
all paths of4 from q; to g; with (1) = v, has time complexity that is exponential
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in n. We will give an algorithm for computing these in tim&®°9" ysing dynamic
programming. To this end, let us derive a recurrence reldtocomputingM, based
on My with v/ <v. As a base case, we first observe thktis the n-by-n identity
matrix. Furthermore, each matriMg could be constructed easily from the transition
relationd of 4. [Recall that{e }¥_, is the standard basis f&*]

Lemma 7.3.5Letv = (rq,ro,...,ri_1,ri +1,ri41,...,rg) with each r € N. Then, the
following identity holds:
M\/: \/Mu.Ma.MW

u,w

whereu ranges over all vectors v whose ith entry is 0, angl is the vectorv — g — u.

Intuitively, this recurrence relation can be derived by efsg that a patht with
(1) = v can beuniquelydecomposed into three consecutive path segnmantsy,
andTi with P(1y) = u, P(T®) = g, andP(13) = w, for someu andw satisfying the
prescribed condition. The path segmaptcontains thdirst occurence of the lettesx;
in the pathrt. The proof of this lemma can be found in the appendix. Thevalhg
lemma, whose proof is also in the appendix, is a simple agpiptic of Lemma 7.3.5
and dynamic programming.

Lemma 7.3.6 We can computéMy }y¢; in time20(klogn),

For eachi € {0,...,n—1}, let; be the set of all cycle types withessed by some
cyclett= pops...pPo in A with p; = gi. Since{My }v¢| have been computed, all sets
[ could be computed withi®(n*+1) extra time.

We now show how to computg(£(4)) in time 20¢10akn) Tg this end, we shall
use another application of dynamic programming based onni&m.3.2, Theorem
7.2.1, and the setd}-, which we already computed. For each0 < (n— 1)2
and each G< j < n, let T j := Uy Tr Wherertis taken over all paths it of lengthi
from go to q;. By Lemma 7.3.2, it is the case th&(L(A4)) = Ui(igl)z
thatqn_1 = gr by definition. We shall now derive a recurrence relationTiqr

Tin—1; recall

Lemma 7.3.7 It is the case thatdg = {0} and Tpj = 0 for each je {1,...,n—1}.
Wheneveri>0and je {0,...,n—1}, we have

n—1

Tj=J | T-wn+ U P(e,lj)
h=0 1<1<k,(an,a,0j) €0
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This recurrence relation can be derived by observing thettygvathrt of lengthi from

o to gj can be decomposed into the patjd,i — 1] ending at some statg, and the
pathtii — 1,i] = ghayqj. The cycle typed j can be “used” since; is visited. The
proof is in the appendix.

To finish the proof of Theorem 7.3.1, it suffices to give an athon with running
time 2 109(kn) for computing a desired semilinear baBig for each seff; ;. The
algorithm runs in(n — 1)2+ 1 stages, where at stage- 0,...,(n— 1)2 the set, | is
computed. Obviously, we first s€& o = {0} andPyj = 0 for eachj € {1,...,n—

1}. Inductively, suppose tha@ p = {(vI; )}, has been computed for eabhc
{0,...,n—1}. We will show how to comput&_ ; for any givenj € {0,...,n—1}.
For eachh € {0,...,n—1}, let J, denote the set of numbers {1,... k} such that
(Gh,&,0j) € 8. Therefore, we have h+Ucy P(@; ) = U Uiey, P(VE+ e U
;). We use the algorithm from Theorem 7.2.1 to compute ano#mailimear basis for
eachP(v] +e;9UT;) and then compute unions in the obvious way to obRA |
(note: duplicates is removed). The output of this algoriteid = Ui(zl)z P.n-1. The
correctness of the algorithm is immediate from Lemma 7.3.7.

We now analyze the time complexity of this algorithm. By iotan, it is easy
to see that at every stage of the algoritsru; C {0,...,n}¥ holds for eachh €
{0,...,n—1} andse {1,...,m,}. Therefore, the maximum component over all offsets
in the semilinear basi8 ;1 j is at most -+ O(n3k+1k#+6) wherea is the maximum
entry in each/Q +gqoverallhe{0,....n—1},1 € J5, ands € {1,...,my}. Note that
the summan@®(ndk+Dk#*+6) is due to an application of Theorem 7.2.1. By induction,
at stage the maximum component over all offsets{iR ;}7 is i x O(n3kTDk6),
This means that the maximum entry of each offsd® ia O(n®*°k*+6) and the num-
ber of linear bases iR is O(n+3+5k4+6) (since duplicates are always removed). It
is also easy to see that at each stagiee algorithm runs in time2<°1090k)  primar-
ily spent in the algorithm from Theorem 7.2.1. All in all, callgorithm runs in time
20(K*Iog(nk)) which is also the complexity of the entire procedure.

7.3.2 Complementary lower bounds

We shall now prove three lower bounds to complement eadigults in this section.
We start by proving thatverysemilinear basis for the Parikh image of a DWA can be
large in the size of the alphabet.

Proposition 7.3.8 For each ke Z-o and each integer o~ 1, there exists a DWA, ¢
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over the alphabeky := {ay,...,a} with n+ 1 states whose Parikh image contains at
least f~1/(k— 1)! linear sets.

Proof. Let 4,k = (Q={do,...,0n},d,0o,qn) with d(q;,a) = gj+1 for eacha € Z, and

0 <i < n. This automaton has a finite language, x) with Parikh imageP(L(4nx))
containing precisely albrdered integer partition®f n into k parts, i.e., all tuples
(Ng,...,nk) with S, ng = n. Since the seP(£(4nx)) is finite, each ordered inte-
ger partition(ny, ..., nk) of n must appear in precisely one linear set. Finally, it is easy
to check (e.g. see [vLWO1, Chapter 13]) that the number dcér@d partitions of into

k parts equalg™ ;1) > nf-1/(k—1)1. O

This proposition implies that, for every fixéd> 1, there exists infinitely many DWAs
{4n} over an alphabet of sizewhere 4, has sizeO(n) but P(L(4,)) must contain
Q(nk-1) linear bases. Therefore, this shows thaannotbe removed from the expo-
nent in Theorem 7.3.1. In addition, observing that the DW#et tve constructed have
equivalent regular expressions of s@2én), Proposition 7.3.8 also gives lower bounds
for Parikh images of regular expressions.

Next, we show that Theorem 7.3cannotbe extended to languages of CFGs
(equivalently, PDAs). More precisely, we show that the nendf linear sets for Parikh
images of CFGs could be exponential in the size of the CFGs.

Proposition 7.3.9 There exists a small constantcZ-o such that, for each integer
n > 1, there exists a CFGj, of size at most cn over the alphal¥®t= {a} whose
Parikh image contains preciseB linear sets.

Proof. We will construct a CF&G,, such thatP(L(Gn)) = {0,1,...,2" — 1}, each of
whose elements will appear in precisely one linear set. Oustruction uses the lower
bound technique in [PSWO02].

Our CFGG, contains nonterminal§ {A}"4, and{B;}["4, and consists precisely
of the following rules:

S — Ag...A1

A — €& foreachO<i<n

A — Bj foreachO<i<n

Bi — Bj_1Bi_1 foreachO<i<n

Bo — a
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The initial nonterminal is declared to I& It is easy to prove by induction that, for
each wordw € *, B; =* wiff w=a?. This implies tha#y generates eitheror a2.
Thus, we see that(G,) = {a : 0 < i < 2"}, which easily yields the desired resut.

Finally, we give a lower bound proving the tightness of qadidrupper bound in
Proposition 7.3.4, even when restricted to DWASs.

Proposition 7.3.10 For each positive integer i+ 2, there exists a DWA,, with 2n+ 3
states such that i?(L(4,)) = Ui_1P(vi;S), then one entry in somg is at least
n(n+1)/2.

This proof is given in the appendix. In fact, the construd®dA 4, has an equivalent
regular expression of sizZ8(n) as well, therefore yielding the same quadratic lower
bound for regular expressions.

7.4 Three simple applications

In this section, we shall give three simple applications of main results in pre-
vious sections not all of which are related to model checkiflg polynomial-time
fragments of integer linear programming, (2) decision peots for Parikh images of
NWAs, and (3) Presburger-constrained graph reachabfgywe shall see in the next
section, some of these results will be used to obtain batteptexity upper bounds for
model checking over reversal-bounded counter systemshadeixtensions with dis-
crete clocks. Other applications of the main results in tle®ipus sections including
polynomial PAC-learnability of semilinear sets (with upaepresentation of numbers)
can be found in [To10].

7.4.1 Integer programming

Integer programmindlP) is the problem of checking whether a given integer paiagr
Ax = b (x = 0), whereA is ak-by-minteger matrix and € Z¥, has an integral solution.
This problem is a standard NP-complete problem in compartaticomplexity (cf.
[PS98]). We shall mention two well-known polynomial-tinragments of IP and then
give a generalization that subsumes both.

The first polynomial-time fragment of IP, due to Lenstra [B8 is obtained by
fixing the numbem of variables in the integer programs. More precisely, Lenst
showed that IP is solvable in time polynomial in the size @fitiput and exponential
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in m. The complexity of Lenstra’s algorithm has been improve&bynan [Kan83] to
m°™MLlogL, whereL is the input length. Let us now mention the second polynomial
time fragment, due to Papadimitriou [Pap81]. Firstly, olsee¢hat wherk = 1 is fixed,
IP reduces to the well-known NP-complete knapsack problefm[PS98]). On the
other hand, the knapsack problem is easily seen to be pselydomial-time solvable
(cf. [PS98]), i.e., solvable in polynomial-time when nurgéen the input are repre-
sented in unary. The second polynomial-time fragment o§&bitained by restricting
the numbeik of equations in the integer programs and enforcing the nusnibethe
input to be represented in unary. Therefore, it is a germtatin of the knapsack prob-
lem when numbers in the input are represented in unary. Rajadu [Pap81] gave
an algorithm for solving IP that runs in tim@@logm+k*log(ka) \wherea is the max-
imum absolute value of numbers appearing in the input. Thimediately yields a
polynomial-time algorithm for the second fragment of IP.tide that the complexity
of the algorithm is exponential unleass represented in unary akds fixed.

We now present a generalization of the two aforementiongghpmial-time frag-
ments of IP. LetPy ,, be the problem of deciding whether an integer progfam= b
has a non-negative integral solution, whbre Z¥ is represented in unary ardis a
K'-by-m'’ integer matrix of the form
A1 | A
A3| O

for ak-by-m matrix A; and a(k’ — k)-by-m matrix A; where numbers are represented

A= (7.1)

in binary, and &-by-(m’ —m) matrix A, where numbers are represented in unary. The
bottom right block ofA is simply a(k’ — k)-by-(m’ — m) matrix full of zeros.

Proposition 7.4.1 For fixed integers k> 0 and m> 0, the probleniPy n, is solvable in
polynomial-time.

Proof. Let Ax = b be the given integer program, whefeis of the form given in
Equation 7.1 above. Lety = m' —m. Write the given integer progradx = b in an
equational form:

ag1X1 + ... + amXm + Ciy1 + ... + CimYm = b
axiXt + ...+ A&mXm + Ckyr + ... + CGmYm = bk

&r11X1 + ...+ &rimXm = bxi1

QX1 + ...+ Am¥m = by.
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Foreach =1,...,m, let us writec; for theith column vector ofy, i.e., the transpose
of the row vector(cy,...,C;). LetV = {cy,...,cm, } and denote by be the max-
imum absolute value of numbers¥h By Theorem 7.2.1, we may compute in time
20(klogmy-+k*log(kad) 5 sequenc®(wy;Sy), ..., P(wy;S) of linear sets with

;
coney(V) = | JP(W;;S),
i=1

where the maximum absolute value of entries of aacls O(my (k?a)2<+3), eachS is
a subset o¥/ with |S| = rank (V) < k, andr = O(m2(k%a) 2“3 Letd = rank (V),
which we can compute in polynomial time using Gaussian elation. Therefore,
Ax = b has a non-negative integral solution iff for so@w;;S;), say withw; =
(s1,...,%) andS; = {c,, ..., Gy}, the following integer prograrR; in equational form
has a non-negative integral solution:

ag1Xx1 + ... + amXm + CLpy1 + ... + CLigVd = bi—s
a1Xt + ... + a&mXm + CkiyYr + ... + Ckig¥d = bk—
&+11X1 + ...+ A&rimXm = Dbyt
X oo+ Aemm = by

Note that the size of eaali; when the numbers are given in binary representation is
at mostkL, whereL is the size of the original integer program. Hence, the siza®
integer progran®; is at mostkL. Therefore, Kannan’s algorithm [Kan83] can solve
each integer program; in time O((m-+ k)™ kLlog(kL)), whereL is the size of the
input. In the worst case, we will have to run Kannan’s aldomton eachP;. Allin all,

the total running time is

20(k|ogm1+k2|09(ka)) n O(m%k(kza)2k2+3k < (m+ k)9(m+k)k|_|og(kL)),

which is polynomial wherk andm are fixed constants, aralis represented in unary.
O

7.4.2 Decision problems for Parikh images of NWAs

We now give another application of the main results from ttevipus sections to the
following decision problems for Parikh images of NWAs: mearghip, disjointness,
universality, and equivalence. The result for memberslaip wdependently proven by
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Kopczynski [Kopl10] and the author [To10]. The results fagjdintness, universality,
and equivalence were initially shown by Kopczynski [Kopl@ifferent proofs are
given below.

Membership

The membership problem for Parikh images of NW&\defined as follows: given an
NWA 4 overX = {a1,...,a} and a tupleb € NK given in binary, decide whether
b e P(L(A)). Similar problems can be easily defined for DWAs, regularessions,
CFGs, and PDAs. It is known that the membership problem feoikPamages of
NWAs is solvable in NP (e.g. see [Esp97b, Huy83, VSSO05]).uihs out that this
upper bound is tight.

Proposition 7.4.2 The membership problems for Parikh images of DWAs and regula
expressions are NP-hard, even when numbers in the inputieea ¢ unary.

The proof is given in the appendix. The lower bound for DWAI#ained by a
reduction from the well-known NP-complete hamiltonianfpptoblem. On the other
hand, NP-hardness for regular expressions is obtained bguction from a variant
of 3SAT. The lower bound for DWAs was also independently prolay Kopczynski
[Kop10].

In contrast to Proposition 7.4.2, the membership problemPfarikh images of
NWAs becomes solvable in polynomial time when the &iné the alphabet is fixed.

Proposition 7.4.3 ([Kop10, KT10, To10]) Given an NWAZ with n states over the al-
phabet> = {ay,...,ax} and a tupleb = (by,...,bx) € NK written in binary with b:=
max,<i<x{bi }, checking whethds € 2(£(2)) can be done in timaC(K*log(kn) +loglogb)

This proposition can be obtained almost in the same way aopoBition 7.4.1. That
is, we first use Theorem 7.3.1 to compute a union of linearRgts; S,), ..., P(Wr;S)
with at mostk periods that such tha(L£(4)) = UJ{_; P(w;; S). Then, we simply need
to test whether there exisits= 1, ...,r such that € P(w;;S), which can be done by
Kannan’s polynomial-time algorithm (as in Proposition.T)4

Let us finally remark that Proposition 7.4.3 cannot be exteitd CFGs (or equiv-
alently PDAS).
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Proposition 7.4.4 ([Kop10, KT10, To10]) The membership problem of CFGs over the
alphabetz = {a} is NP-hard.

This proposition improves the known NP-hardness lower ddonthe problem over
a non-fixed alphabet (e.g. see [Esp97b, Huy83]). The protfisforoposition is by a
simple reduction from the knapsack problem using the seteincoding of numbers
given in the proof of Proposition 7.3.9. In fact, the lowenbd is optimal since the
membership problem of CFGs is solvable in NP [Esp97b, Huy83]

Disjointness

Thedisjointness problem for Parikh images of NW#slefined as follows: given two
NWAs 4 andB overZ = {ay,...,a}, decide whetheP(L(A4))NP(L(B)) = 0. Sim-
ilar problems can be easily defined for CFGs. First of allsitaisimple corollary
of the result of [VSS05] that the disjointness problem forilaimages of CFGs is
in coNP. This is because there exists a polynomial time d@lgarwhich, given two
CFGsG; and G, over the alphabeX = {ay,...,a}, computes an existential Pres-
burger formulady(x1,...,x) andda(x1,...,x) such that, for each= 1,2 and num-
bersmy,...,m¢e N,

(N, +) = ¢i(my,...,me) < (my, ..., m) € P(L(G)).

Testing whethe?(L(G1)) N P(L(Gy)) # 0 then corresponds to checking whether

(N, +) = 3xg, .o X (P1(Xa, - X) Ad2a(Xe, - -, X)),

which can be done in NP since checking existential Presbdayenulas is in NP
[GS78]. It follows that checking whethe?(L(G1)) N P(L(Gz)) = 0 is in coNP. In
fact, a matching coNP lower bound has been shown by KopczjKeg10] even for
CFGs over the fixed alphabéa}. This simple proof technique also gives an easy
polynomial-time upper bound for disjointness problem farikh images of NWAs for
a fixed alphabet size, which was first shown by Kopczynski [Kijpusing a different
technique, i.e., by observing that Theorem 7.3.1 holds AN with negative inputs.

Proposition 7.4.5 The disjointness problem for Parikh images of NWAs over a fixe
alphabet> = {a,...,a} can be decided in polynomial-time.

We now sketch a proof of this proposition. Given two NWAS, 4, over Z with
(respectivelyn; andny states, we may apply Theorem 7.3.1.8nand 4, to obtain
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in polynomial time two semilinear bas&® = {(v1;S1),...,(Vm;;Sw)} and B, :=
{iwy;S)),..., (Wm,; Sy,) } for, respectively, the Parikh images 6f(4;) and L(A,)
such that|S| < k and |S’j| < k. We shall now state an easy fact relating semilinear
bases and existential Presburger formulas.

Fact 7.4.6 Given a semilinear basi8 = {(v1;S)), ..., (v;;S)} overNK with |S| =m
for eachl <i <r, there exists an existential Presburger formdlé, ..., xy) of the
form

¢(X17"'7Xk> - HYL,quJ(Zy)

such thatp is quantifier-free and, for each sequenge i.,ix of nonnegative integers,
it is the case that

(N,+) E ¢(i1,...,ik) < (i1,...,ik) € P(B).

Furthermore,||¢|| is linear in ||B|| (even with binary representation of numbers) and
that$ can be computed in linear time.

Example 7.4.1 We shall give an example of how the translation from Fact67ig.
performed. Suppose we have the semilinear basis

B ={((10,3);{(1,2),(8,7)}),((5,5);:{(7,1),(2513) 1) }.

The existential Presburger formula that repres@f) is simply

b (X1, %2) == Jy1, Y2(W1(XY) V W2 (X,Y)),

where
W1(Xy) := (x1 = 10+ Y1 +8y2) A (X2 = 3+ 2y1 + 7y2)
and
Wa(XY) := (X1 = 54 7y1 + 25y2) A (X2 = 5+ y1+13y2).
)

Therefore, we compute existential Presburger formpiés, ..., xx) andz(x, . . ., X«)
each with at mosk quantifiers, which represem; and B,, respectively. Hence, we
have

P(B1) NP(B) #0< (N, +) = 3xq, ..., Xk(d1(X) A P2(X)).
Clearly, we can move the existential quantifiergirand¢- to the front of the formula

(after introducing new variable names) yielding an exiséformula® with 3k quan-
tifiers. That is, the formul@ has a fixed number of quantifiers regardless of the input
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automatad; and4». Since checking existential Presburger formulas with alfixem-
ber of quantifiers can be done in polynomial time [Len83, 8tédso see [Gra88)), it
follows that checkind®(‘B1) NP(B>) # 0 can be done in polynomial time. Proposition
7.4.5 immediately follows.

As a final remark, Proposition 7.4.5 is tight in the sense #@flatving unbounded
alphabet size makes the problem coNP-complete [Kop10].

Universality and equivalence

The universality problem for Parikh images of NWhsdefined as follows: given an
NWA 4 overZ = {ay,...,a}, decide whethe®(L(4)) = NK. Theequivalence prob-
lem for Parikh images of NWAs defined as follows: given two NWAg; and.4, over
> ={a,...,a/}, decide whethe(L(41)) = P(L(A2)). Kopczynski [Kop10] was
the first to observe that Theorem 7.3.1 yields coNP upper dotor these two prob-
lems in the case of a fixed alphabet size. In fact, there is ahimag coNP lower bound
for these two problems even in the case of alphabet of sizé&ithwvas first shown by
Stockmeyer and Meyer [SM73]. The precise complexity in thgecof unbounded al-
phabet size is only known to be in between coNEXP and coNPIRpKT10]. In the
following, we shall employ the same technique that we us#®disjointness problem
above to rederive Kopczynski’'s coNP upper bound for unadéysand equivalence.

Proposition 7.4.7 Universality and equivalence problems for Parikh imagekl\8fAs
over a fixed alphabeftay, . ..,ax} are in coNP.

Our proof is similar to the proof of Proposition 7.4.5, bustead uses Gradel’s result
[Gra88] that evaluating Presburger formulas of the fosyy(x,y) is coNP-complete
provided that the number of variablesxmndy is fixed. For example, for the univer-
sality problem, we invoke the algorithm from Theorem 7.8.t@ampute in polynomial
time a semilinear basis (each of whose linear bases has akmesods) that repre-
sents the Parikh image(L(4)) of the given automatos. Using Fact 7.4.6, we may
then compute an existential Presburger formp(a, ...,Xxc) with k quantifiers that
represents?(L(A4)). Checking universality ofP(L(A4)) then amounts to checking
whether(N, +) = Vxd(x, . ..,X), which is in coNP by [Gra88] since the number of
quantifiers in this formula is at mosk2 The coNP upper bound for the equivalence
problem can be derived in the same manner.
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7.4.3 Presburger-constrained graph reachability

Presburger-constrained graph reachabilisya simple extension of the standard graph
reachability problem: given a transition syst@n= (S, {—a},.acT) Over the action
alphabetACT = {ay,...,ak}, two configurations,t € S, and an arbitrary Presburger
formula (a.k.a.constrain) ¢(x,,...,%;,) (with 1 <i; < ... <i; <Kk), decide whether
there exists a path
S0 &y -+ aiy Sm

such that, if(iq,...,ix) = P(a...&,), then(N,+) = ¢(i1,...,ix). Problems related
to Presburger-constrained graph reachability have beelest in the context of path-
gueries over graph-structured databases (cf. [BHLW10, B®%YHPWO09a, MW95]).
Presburger constraints are natural since in many cases na dare about the order of
actions in the path we are interested in. For example, censigraph which models
a transportation network, where the vertices are locatiortke network (e.g. city
attractions, bus stops, and so forth) and the edges areethbgimeans of transport
(e.g. bus, walk, airplane, subway). The reader is refelwdtlPWO09b, Figure 1] for
a specific example. One could, for example, be interestegkiohing a point from a
pointsin such a graph by taking at most one subway and avoiding lalsegether.
Observe that the order in which the actions take place ismpoitant for such a query,
which can therefore be expressed as a Presburger formula.

In general, Presburger-constrained graph reachabilgythiea same complexity as
evaluating Presburger formulas.

Proposition 7.4.8 Presburger-constrained graph reachability is completeli@ class
)

STA% 22" ).

To show this proposition, recall that the precise compjeaftevaluating Presburger
formulas is preciselp T Ax, 22”O<l) ,n), due to Berman [Ber80] (also see [Koz06]). To
derive the upper bound in Proposition 7.4.8, suppose tledhffut transition system is
S over the action alphabeCT = {ay, ..., a} with initial configurations € Sand final
configurationt € S. We treatS as an NWAAZ with initial states and final state, for
which we can compute an existential Presburger fornduba, ..., xy) for P(L(A4))

in polynomial time using the result of [VSS05]. If the inputeBburger formula is
(X, ..., X%,), then the problem reduces to checking whether

(N, +) = 3%, X (WK, - %) AD(Xigs -+ %, ),
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which can be solved by the procedure for evaluating Presbdiogmulas. This imme-

diately yields the desired upper bound. HardnessSfBﬁ(*,Zznom,n) can be easily

obtained by a polynomial reduction from the evaluation afdburger formulas. In

fact, hardness easily holds even for a fixed transition systeer the action alphabet
> = {a} with one configuration (both of which are initial and final).

The high complexity in Proposition 7.4.8 can be lowered loy, dxample, con-
sidering only existential Presburger formulas, in whickecthe complexity becomes
NP-complete (cf. [BHLW10]). Another way of lowering the cplaxity in Proposi-
tion 7.4.8 is by observing that the Presburger constrauuslly small in real life, i.e.,
practically fixed. In this case, it turns out that the compieaf Presburger-constrained
graph reachability becomes polynomial-time solvable.

Proposition 7.4.9 Presburger-constrained graph reachability is polynorttiate solv-
able for any fixed Presburger constraint.

Proof. Suppose that the fixed Presburger constraitxs, ..., X ). Then, the classical
result of Ginsburg and Spanier [GS66] says that there exis&milinear basi® such
that, for all(iy, .. .,ir) € NX, itis the case that

(N, +) = (in,....ir) & (in,....ir) € P(B).

Therefore, using Fact 7.4.6, we may assume an existengabBrger formula’(X)
that is equivalent withh(x). Let h be the (fixed) number of quantifiers ¢f.

Given a transition syster® = (S, {—a},cacT) OVErACT = {ay,...,a} (where
r < k), an initial configurations € S, and a final configuration € S let ACT' =
{a,...,ar,?} and define the automatoh= (ACT’,Q, d,qo,qr ) as follows:

¢ Q=5
o 8= (Ui_1 —a)u{(@,2d):3j € (rK(a—q 9)},
o go=s and

o O =t.

In other words, we relabel the actiaf (j =r +1,...,Kk) with the new action symbol
'?". Sincer is fixed, the NWAA has a fixed alphabet size. Therefore, using Theorem
7.3.1 and Fact 7.4.6, we obtain in polynomial time an exiséRresburger formula
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P(Xa, ..., %+1) with a fixed number + 1 of quantifiers for the Parikh image( L(4)).
Hence, the input&, s;t) is a positive instance of the problem iff

<N,+> ): E|X1,...,Xr+1(l]J(X]_,...,Xr+1> /\(I)/(X]_,...,Xr>).

By moving the existential quantifiers to the front of the faln(after variable renam-
ing), we obtain an existential formula with a fixed numbe#s2 + h of quantifiers and
of size polynomial in the size of the input (recall tijéthas a fixed size), which can be
evaluated in polynomial time by Lenstra-Scarpellini’'sa@ithm [Len83, Sca84] (also
see [Gra88])O

7.5 Applications to model checking

In this section, we shall show how the earlier results in thiapter can be used to
obtain better model checking complexities for reversalrzted counter systems and
their extensions with discrete clocks.

7.5.1 LTL with complex fairness

We shall first state our main result of LTL model checking withlti-regular fairness
constraints over reversal-bounded counter systems wstirete clocks.

Theorem 7.5.1 Model checking an LTL formulg with multi-regular fairness con-
straints over r-reversal bounded k-counter systéhwith n states and t discrete clocks
can be done in time polynomial in the size of each fairnesstecaint and in n, but ex-
ponential in the following parameters: the number of fagaeonstraints, r, k, t|¢||,
and the size (in binary) of the maximum absolute value okatomparison constant |
in M.

Observe that this theorem improves Theorem 6.2.10 by aesengdonential for almost
all parameters at the expense of not allowing a single fremteo. In fact, the time
complexity of this algorithm cannot be improved for the émling reasons. If we fix
all the parameters bui andn, we obtain LTL model checking over finite systems,
which is PSPACE-complete [SC85, VW86a]. If we fix all the parameters baind

n, we may still reduce in polynomial time the emptiness of dite-timed automata,
which arePSPACE-complete [CY92]. The same goes if we fix all parameters|but
andt, since emptiness of timed automat®&PACE-complete already for three clocks
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[CY92]. What if we fix all parameters except for ontyandr or only n andk? It
turns out that this problem is stilP-hard, as can be shown be a polynomial reduction
from theNP-complete emptiness problem of reversal-bounded counteneata with
a fixed number of reversals or with a fixed number of counteRRgH.

Let us now proceed to the proof of Theorem 7.5.1. This thearambe proved
by simply observing that Theorem 7.3.1 can be used to refiopd3ition 6.2.6 when
there is no free counter:

Proposition 7.5.2 We can compute a representation of the Parikh image of the lan
guage of a given r-reversal bounded k-counter automatbmwith n states as a union
of conjunctive queries ovelN, +) with linear equations consisting of at mos{r®)
summands (humbers are given in unary) such that each canjergquery has at most
O(rk) conjuncts and @k) variables. Furthermore, this can be done in time polyno-
mial in n, and exponential ink and r.

Notice that the complexity in this proposition is the samé&éasomplexity in Proposi-
tion 6.2.6, but the output existential Presburger formbukage some further structures,
which we have already seen in Fact 7.4.6. The crucial compaidroposition 7.5.2
is that the number of conjuncts and the number of existegtiahtifiers in every con-
junctive query is at mosD(rk) and does not depend on the numbeof states of
M. To prove this theorem, one simply replaces the use of thenpatial-time algo-
rithm from [VSS05] in the modified Ibarra’s algorithm by Them 7.3.1 following a
slightly more precise analysis of the structure of exis&mresburger formulas ob-
tained in Fact 7.4.6 (i.e. by using the fact that existemfiantifiers distribute across
disjunctions). The following proposition is now a directaltary of Proposition 7.5.2,
Proposition 3.1.2, Proposition 6.2.7, and Proposition3%.2

Proposition 7.5.3 The reachability relation of a given n-state r-reversal hded k-
counter system®/ with t discrete clocks is regular, for which an NWA can be cotag
in time polynomial in n, but exponential in r, k, t, and thees{in binary) of the
maximum absolute value of the clock comparison constarnté.in

Combining this proposition with our algorithmic metatheiorfor decidable LTL model
checking over word-automatic systems, Theorem 7.5.1 isimonediate.
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7.5.2 Branching-time logics

We now apply Theorem 7.3.1 t©F-model checking over reversal-bounded counter
systems. Our main theorem is a kind of fixed-parameter toditjeresult:

Theorem 7.5.4 Fix an EF-logic formula¢ and positive integers,k. Then, model
checkingd over r-reversal bounded k-counter systems is solvabRHn

The same result holds in the presence of finitely many disaietcks, where clock
comparison constants are represented in unary. To provéhthorem, we first apply
Proposition 7.5.2 and Lemma 6.2.4 to obtain the followingptary.

Proposition 7.5.5 The reachability relation of a given n-state r-reversal hded k-
counter system@/ can be represented by an existential Presburger formula @ftk)
quantifiers. Furthermore, this can be computed in time patyial in n, and exponen-
tialinr, k.

In particular, this algorithm runs in polynomial time for é¢id values of andk. Ob-
serve also that the number of quantifier©igk) (i.e. independent on the number of
states inM) since each of the conjunctive queries in the union of cactjue queries
that we obtain from Proposition 7.5.2 h@¢rk) quantifiers and that, if andz contain
the same number of variables, we can use the standard legjoadalence

Yo (X,y) VIze'(%,2) = Iy(H(X,Y) V' (X Y)).

To complete the proof of Theorem 7.5.4, we shall recall tHfong result by
Gradel [Gra88].

Proposition 7.5.6 ([Gra88]) Fix a number d> 0. Checking whether a Presburger
formula¢ in prenex-normal form with at most d quantifiers can be doneHn Fur-
thermore, this still holds in the presence of linear (in)atjons and numeric constants
represented in binary.

We are now ready to prove Theorem 7.5.4. The goal is to recueeitiginal EF
model checking problem into evaluating Presburger forsuigorenex-normal form
with a fixed number of quantifiers. This can be achieved a®vwal Convert the
fixed EF-formula ¢ into an equivalenfO(Reach) formula ¢’(x) in prenex normal
form. We then translate each formula of the foRmachr(y,z) into an existential
Presburger formula with at mo€X(rk) quantifiers using Proposition 7.5.5. In doing
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so, we also replace each variabledihwith a tuple of O(rk) variables (recall that
each configuration consists of counter values). Again, weg mave all the quantifiers
outside resulting in a formula with at mdstrk||¢’||) quantifiers (i.e. a fixed number).
Formulas of the form—4 can be translated into a quantifier-free Presburger formula
Altogether, we obtain a Presburger formuéx) with a fixed number of quantifiers

in polynomial time to which our original problem is reducetheorem 7.5.4 is then
immediate from Gradel’s result above.

Remark 7.5.1 Itis possible to give a matchirigH lower bound for this problem in the
sense that, for eache N, there exists two positive integarsandk, and areF formula

¢ such that the problem of model checkipgverr-reversak-counter systems is hard
for =5. This can be easily shown using the lower bound techniquéap@r 9l

Finally, what about the problem of model checking CTL overersal-bounded
counter systems? It turns out that this problem is undetaddin fact, this already
holds for 1-reversal 3-counter systems and very simple @Finélas.

Proposition 7.5.7 Model checking CTL over 1-reversal 3-counter systems igcide
able.

This can be proven by a reduction from the undecidabilityofm of checking empti-
ness of languages of deterministic O-reversal 3-countgenys thatay test equality
of the current values of two countefiSD"02]. The proof can be found in the ap-
pendix.



Chapter 8
One-counter processes

In this chapter, we shall study another decidable restnatif Minksy’s counter ma-
chines. It is well-known that two-counter machines are eidffit to obtain Turing-
powerful models of computation [Min67]. On the other hats ts not the case when
we restrict the number of counters to one since such macharesow be viewed as
a special case of pushdown systems with just one stack sypibsla non-removable
bottom symbol which indicates an empty stack (and thus alkowest the counter for
zero). Such machines are often referred tome-counter processes (OCP3he aim
of this chapter is to obtain a precise computational conmplef the EF-logic model
checking problem over one-counter processes and show l@weath be used to derive
an optimal complexity for the problem @feak-bisimilarity checking of one-counter
processes against finite systems

Recall that, although our generic approach is able to ddeeaability ofEF-logic
over PDSs (and hence OCPs), Theorem 5.5.1 shows that thisaabpwill not provide
an elementary upper bound for the problem. In contrast, theige complexity of
EF-logic model checking over PDSs is orffp PACE-complete [BEM97, Wal00]. The
PSPACE lower bound was first proven by Bouajjani, EsparzaMalér [BEM97]
even for a fixedeEF formula, and only later th®SPACE upper bound was provided
by Walukiewicz [Wal00]. This immediately gives RSPACE upper bound for the
combined complexity oEF-logic model checking over OCPs. On the other hand, the
best lower bound known for this problem was obly-hard [JKMS04], which is below
the second level of the polynomial hierarchy.

The first hint that the computational complexity of model atirg over OCPs
could be easier than the same problem considered over P[3esress result [Ser06]
that p-calculus model checking over OCPsHSPACE-complete. This is lower than

179
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the EXP complexity of the same problem over PDSs due to WalukiewigalQ1]. In
the case of equivalence checking, it is known that strosg¥hiarity checking against
finite systems is solvable in polynomial time for OCPs [Kulg@thich is lower than
the PSPACE complexity of the same problem when considered over PDSsOKM
MayO00].

In this chapter, we shall present the recent result of Gdllalyr, and the author
[GMTO9] that the problem of model checkirgr-logic over OCPs is iPNP, which
is below the second level of the polynomial hiearachy. THey ahowed thaPNP-
hardness can be obtained when the formula is representediag, although this
lower bound has recently been superseded by the recemtr@itl Lohrey'®NP lower
bound [GL10] for the standard representatioresfformulas. ThePN? upper bound
is derived by establishing a close correspondence of tHagrowith the membership
problem of a fragment of Presburger arithmetic, which wé kah-Max Arithmetic
(MMA), which we also show to b8NP-complete. We shall present this Min-Max
Arithmetic in Section 8.2 and prove that it ha®®" membership problem. In Sec-
tion 8.3, we show how to efficiently transform OCPs into aahi# normal form. In
Section 8.4, we provide a polynomial-time translation fribra model checking prob-
lems of OCPs in this normal form to the membership problem &A1 Combining
this translation with théNP upper bound for the membership problem of MMA, we
immediately obtain &\” upper bound foEF model checking over OCPs.

One of the most interesting applications of ##& upper bound for the problem
of EF-logic model checking over OCPs is an immediate applicatothe problem
of weak-bisimilarity checking of OCPs against finite systenin Section 8.5, we
show how aPNP upper bound for the latter can be derived. We shall show in Sec
tion 8.6 a matchind®N" lower bound for this problem. This complexity is lower than
the complexity for the corresponding problem for PDSs, Wh&PSPACE-complete
[KMO2, May00]. Finally, we shall conclude Section 8.6 wigh"l°d Jower bounds
for weak-bisimilarity checking of OCPs againstired finite system, and for model
checking dixedEF formula against OCPs.

8.1 Preliminaries

In this section, we shall fix some notations that we will usetighout this chapter.
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One-counter processes

We shall first use a more conveninent notation for one-coynmteesses.

Definition 8.1.1 A one-counter process (OCB)a tuple®? = (Q, 8, d-0), where Q is
a finite set ofstates(a.k.a. control location§ 6o C Q x ACT x Q x {0,1} is a finite
set ofzero transitionsandd-o C Q x ACT x Q x {—1,0,1} is a finite set opositive
transitions Thesizeof a one-counter process is defined|&@| = |Q| + |do| + [0 A
one-counter nes a one-counter process that additionally satisbgs_ 6-.¢.

An OCP? = (Q,8,0-0) defines a transition syste@, = (S, {—a}cacT) Where
S=QxNand(g,n) —4 (d,n+k) if and only if eithern = 0 and(q,a,d’, k) € &, or
n> 0 and(qg,a q,k) € 8-0. If (q1,n1) —a (02, N2) for somea € ACT, we also write
(0d1,n1) — 2 (g2,n2) (or even(gy,n1) — (d,Nnp) if P is understood). Notice that this
definition coincides with the definition of 1-counter sysssftom Example 3.1.4.

EF dag-formulas

We now formalize the intuitive notion dF formulas represented as directed acyclic
graphs (dag). AreF dag-formulaover ACT is a finite sequence of definitions=
(¢i)iep) for somel € N, where for each € [I] the definition¢; is exactly one of the
following, either:

1L¢i=T,

2. ¢i =—0¢; for somej € [i — 1],

3. ¢i = ¢ Ak for somej,k € [i — 1],

4. ¢i = (a)d; for somea € ACT and somg € [i — 1], or
5. ¢i =EFr¢; for somej € [i — 1] andl" C ACT.

For eachi € [I], we define thesize||¢i|| = 1 if ¢; = T and||¢i|| = [logi]| otherwise.
Thesizeof ¢ is defined ag¢|| = S|_; [|0i||. Define the partial orderyC [I] x [I] as
(j,1) €=¢ if and only if ¢; appears in the definition dafi. If j < i, we say thath;

is asubformulaof ¢;. Note thati is minimal with respect to<$ wheneverp; = T.
Observe that]l], <¢) is a dag. The standard definition BF formulas coincide with
this definition when([l], <) is a directed tree. In this chapter, we shall call them
EF tree-formulaso emphasize this fact. Next, we define the semantics. Fsy leti



Chapter 8. One-counter processes 182

S = (S {—a}acacT) be atransition system. Let us defififa]lc C Sfor eachi € [I]
by induction on<§ as follows:

L[Tle=S

2. [-bjlle =S\ 9],

3. [¢9j A dulle = [¢j]e N[k]e.

4. [(@¢jlle ={s€ & |3te[¢j]s:s—at}, and
5. [EFr¢jle ={se S|t e[¢j]s:s—rt}.

We define[[¢]le = [¢1]s. We also writeS, s = ¢; whenevers € [¢i]]g. We deal
with the model checking problem fd@&F-logic over one-counter processesfined as
follows:

MODEL CHECKING EF-LOGIC OVEROCPs

Instance: An OCP 2P, a configuration(g,n) of G with n in binary, and areF
dag/tree-formula.

Question: G, (q,n) = ¢?

8.2 Min-Max Arithmetic

In this section we introduce a suitable representation tfrahnumbers in terms of a
logic that we call MMA forMin-Max Arithmetic In fact, the sets definable in MMA
equal the sets definable in Presburger Arithmetic with oee Yariable or equivalently
the one-dimensional semilinear sets. MMA can be seen astactiwvariant of Pres-
burger Arithmetic that is tailored towards having a faiityd complexity PNP) of the
membership problem.

8.2.1 The definition

Formally, an MMA dag-formulais a sequence of definitiores = (a(j);c|; for some
| > 1, where for each € [I] the definitiona; is precisely one of the following, where
j,ke[i—1] and whereve {<,>}:

1. =m modn, wheren > 0 andm € Z/nZ,
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7.

8.

. ~n, wheren e N,

—|GJ'

. O AO,

~ minaj,

. N~ minaj, wheren € N,

~maxj,n), wherene N, or

m~ max(aj,n), wheremne N.

We calla; atomicin case it is of type (1) or (2). We will introduce usual abbations

<, >, and= with expected meanings. We formally put rig: co, max0 = —1. More-

over we puk < oo andk # o, k £ —1, andk > —1 for eachk € N. Define the binary

relation<qC [I] x [I] asj <q i if and only if a; occurs in the definition ofi; for each
i,j €[l]. Note that([l], <«) is a dag and hend@l], <) is a strict partial order. Recall
thati is minimal with respect te<¢ if and only if o is atomic. We say is a MMA

tree-formulaif ([I],<q) is a directed tree. Let us now define the semantics of MMA

dag-formulas. For eadh; we define the sefa;]] € N by induction oni w.r.t. <{ as

follows:
1. [=m modn] = {k e N | k=m modn},
2. [~n] = {keN|k~n},
3. [-oj] = N\ [[aj],
4. [aj Ao = o] N o],
5. [~mina;] = {ke N | K~ minfa[},
6. [ minct ] {N it~ mina )
0 otherwise
7. [~ maxaj,n)] ={ke N[k~ max[o;]N[0,n])},
8.

N if m~ max([a;]N[0,n])
0 otherwise.

[m~ maxaj,n)] = {
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Observe that MMA can be seen as a fragment of Presburgermdetib. We de-
fine [[a]] = [oq]]. We calla valid if [a]] = N, for example> 0 is valid. Define the
size||aj|| by case distinction as followgf=m modn|| = || ~n|| = [logn], ||-a;j|| =
flog 1, |aj Aay| = [log ] + [logk], | ~ minay|| = [log]],
[logjl, [[~max(aj,n)|| = [logj]+ [logn], and finally|m~ max(a;,n)| = [logm] +
[logj] + [logn]. Define thesizeof a as||af| = ¥ [|ail|. For better readability, we

n~minaj|| = [logn] +

will allow more complex definitions such as em.= —~aj A (x=3 mod 5.

8.2.2 Syntactic sugar: extended MMA

In order to ease our reduction from model checking OCP taatag MMA formulas,

we introduceextendedMMA formulas Extended MMA formulas allow definitions

of the kinda; = aj — 1 anda; = aj +1. For® € {+,—}, the semantics is defined

as[aj©1] = ([aj] ®1)NN. Observe that, in general, the two operators cannot be

interchanged, i.e. we generally dot have[[(a — 1)+ 1] = [[(a+1) — 1]]. On the

other hand, observe thi | = [[(a+ 1) —1]. Define thesizeof ||+ 1| = ||ja; - 1| =

[logj]+ 1. For each naturdd defineaj © k to be the abbreviation for
(...(aj@]_)...)@]_

N————
k many times

for each® € {—,+}.

8.2.3 Basic properties of MMA and extended MMA

We shall now prove basic properties that are satisfied by MM@A extended MMA
dag-formulas. We shall first prove a periodicity lemma foteexled MMA dag-
formulas, i.e., sufficiently large numbers which are saéhy extended MMA dag-
formulas have nice periodic behaviors. We shall also shaw¢ktended MMA are
neither more expressive nor more succinct by providing grpwhial-time translation
from extended MMA dag-formulas to equivalent MMA dag-foriai Using these
results, we shall show that the membership problem for ebeg@MA dag-formulas
can be solved ifeNP.

We shall start with a simple but important periodicity lemfoaextended MMA
dag-formulas. Letr = (a)ic be an extended MMA dag-formula. Defingto be
maximal numben such that is ~ n or ~ maxaj,n) for somej € [i]. DefineL; to
be the least common multiple of all> 0 such that the definition af; is =m modn
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for somej € [i — 1] and somen € Z/nZ, and 1 if no such formula exists. Observe that
i < jimpliesLi|L; and moreovek; € exp(||a||), thus polynomially (in|a||) many bits
suffice to represent eadh.

Lemma 8.2.1 (Periodicity Lemma for extendedVIMA) Let i € [I] and assume that
Ny, N2 > i-Lj+Vvj. Then the following implication holds:

n=n; modl; = (np€ai] & neai])

Proof. We prove the lemma by induction exf . For the induction base, assume that
i is minimal with respect te<{, i.e. a; is atomic.

Caseq; is=m modn, for somen > 0 and somen € Z/nZ. Observe that the implica-
tion holds since; is a multiple ofn by definition.

Caseq; is ~ n, where~c {<, >} and wheren € N. By definition we have; > n. The
implication clearly holds since natural numbers exceediage either all contained in
[ai]] or are all not contained iffa;]].

For the induction step, assume thas not minimal with respect te<; . For this,
we make a case distinction accordingo

Caseq; = —aj for somej € [i —1]. The required implication holds trivially due to
induction hypothesis and the fact thatLj +v; <i-L; +vj andL; = L;j.

Caseaj = aj Aag for somej, k € [i —1]. First, we have that bothy andL; divide L;.
Second, both) -Lj +vj andk- Lx + vy are at mosi- Lj 4-vj. Now letng,np > i -Lj +Vj
and assume; = n; modL;. Then we havey; € [a;] if and only if n; € [a;]] and
ny € [ok]l. By induction hypothesis, the latter is equivalennsce [a;] andn; € [ay]]
which is in turn equivalent tay € [[oj].

Caseq; is ~ minaj for some~c {<,>} and for somgj € [i — 1]. We claim that the
implication holds fori by distinguishing if[[a;]] is empty or not. In casg¢a;j] = 0,
(recall mind = ), then[a;] either equalN or 0, depending on-. The implication
obviously holds in this case. In cage;] # 0, then there exists sonrec [[a;] with
n<j-Lj+v;-+L; byinduction hypothesis. Observe that the latter is less ¢maqual
to(i—1)-Li+vi+Li=i-Li+vi. Again, depending or-, all naturals exceeding
(in particular naturals exceedingL; + v;) are either all info;]] or are all not ina;].
Thus, the implication holds.

Cased;j = n~ mina; for somen € N, some~c {<,>}, and somg < [i —1]. Since
[ai] either equal®N or 0, the implication trivially holds.
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Caseq; is ~ maxaj,n) for some~c {<, >}, somej € [i — 1], and soma € N. First
observe thah < v; by definition. Second, all naturals exceedm(n particular those
exceeding;) either all satisfyo; or all do not, depending or. Thus, the implication
holds.

Caseq; is m~ maxaj,n) for some~c {<,>}, somej € [i — 1], and somen,n € N.
Since[[a;] either equalN or 0, the implication holds trivially.

Caseaj =0a;j ® 1forsomej € [i —1] and some» € {+,—}. The implication follows
directly fromj-L;+vj+1< (i—1)-Li+vi+Lj =i-Lj+vj and induction hypothesis.
O

It turns out that extended MMA formulas are neither more egpive nor more
succinct than MMA formulas.

Lemma 8.2.2 The following problem is computable in polynomial time:
INPUT: An extende®MA dag-formulaa.
OUTPUT: AMMA dag-formulaP such thatja]] = [[B].

The proof of this lemma, which is not difficult but rather teds, is given in the ap-
pendix. Now, by a bottom-up computation and combining Len&2al and Lemma
8.2.2, we can deduceR'" upper bound for the membership problem for extended
MMA.

Proposition 8.2.3 The following problem is iPNP:
INPUT: np € N in binary and an extendeblMA dag-formulaq.
QUESTION: € [a]]?

Proof. First, itis easy to see thataef is an MMA dag-formula with no occurrence of
min and max then checking whethes € [[a]] can be done is polynomial time. We
shall make use of this basic fact in the proof. In a first stepapply Lemma 8.2.2 and
compute in polynomial time an MMA dag-formula formuBasuch that[f3]] = [[a].
Assumef = (Bj)ic))- In @ second step, we eliminate min and max operators that occ
in B inductively on<g.

For this, let € [I] be minimal with respect te<g such that the definitiofl; contains
either min or max. In casp; is ~ minf3j, we know that for eaclmy,n, > j-Lj +V;
with ny = n; modL; we haven; € [[B;]] if and only if np € [[Bj]] by Lemma 8.2.1. This
implies that mif(B;]] € [0, (j+1)-Lj+vj]U{e}. Moreover, observe thaj+1)-L;+
vj can represented using polynomially many bits|@j|. Furthermore, note that we
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can decide deterministically in polynomial time whether,d& givenmgiven in binary,
we havem € [B]], since neither the definition ¢ nor the definition of3, contains
min or max, for eachk *E j. Via a binary search method, we can compute

= min{me [0,(j+1)-Lj+v] | me B}

by some deterministic polynomial time bounded Turing maehhat has access to an
NP oracle. After that, we “symbolically” modiffs by replacindg3;’s previous definition
~ minBj by ~ . The cases wheflj = n ~ minfj, Bi =~ maxj,n), or i = m~
max(3j,n) can be dealt with analogously.

We repeat this replacement process yditiloes not contain any min or max oper-
ator. Finally, we check ifig € [[3]] in polynomial time.O

8.3 Saturations and small arithmetic progressions

For the rest of this section, let us fix some one-counter px®e= (Q,dp, d-0). For
technical reasons, we add a new transition labelACT that does not previously oc-
cur in &g U d-g and which we fix for the rest of this section. Our goal is to tsate”
? with A-labeled transitions so that we only have to consitgmmalized pathsi.e.
paths, where the sequence of counter values of the involeefigurations are first
non-increasing and then non-decreasing. Petlenote the resulting OC#&fter satu-
ration. Our saturation construction has the following motivatid) We can compute
in polynomial time all information needed for representmgmalized paths it®
in terms of few “small” arithmetic progressions, and (2) éveryEF dag-formulad
in which A does not occur we hav®,,s = ¢ if and only if 4,5 = ¢ for every
configurationse€ Q x N.

8.3.1 Saturation construction

Given a nonempty patit = (qi,n1) — ¢ (O2,N2) -+ —o (O, Nk) IN Sp, We callTt
mountain if ny = ng andn; > np for eachi € [k]. We callmtzerg if nj = 0 for some

i € k], otherwise we caltt positive Let (qi,n1),(dz2,n2) € Q x N be configurations.
Then, we write(qi,n1) [ (02,n2) (resp. (qi,n1) Te (02, n2)) whenever(qi,n) —o
(d2,n2) andny < ng (resp. andh, > ng). We now present a saturation construction that
allows us to shortcut mountain paths by addkagiansitions.
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Choosing control locationg, g € Q andd € {8, 0-0}, we now present rules (R1)
to (R4) that can be applied only(i§, A, ¢, 0) & 8. In this case, we can add the transition
(g,A,d,0) to dif at least one of the following conditions holds:

(R1) (g,a,d,0) € dfor somea € ACT.

(R2) (g,a1,01,+1) € dand(qp,az,q,—1) € 6. for someq; € Q and somey, ay €
ACT.

(RB) (q7 a1, q1, +1) S 6’ <q17}\7 gz, O) S 6>0| and(q27 ag, q/7 _1) S 6>0 for someqs, gz €
Q and somex,ay € ACT.

(R4) (g,A,q1,0) € dand(qs,A,q,0) € 6 for someq; € Q.

Formally, let?’ = (Q,&;,d. ) denote the unique one-counter process that we obtain
from P by applying rules (R1)—(R4) until it is no longer possibleheTfollowing
lemma, whose proof is in the appendix, shows that reachabilihis saturated OCP

P’ can be witnessed by a path, in which the changes in the coualtess is extremely
simple: monotonically non-increasing and then monotdlyiceon-decreasing.

Lemma 8.3.1 Let st € Q x N be configuration. Then, the following three statements
are equivalent:

1. S—>’,}t.
2. S—>Z,, t.

3. There exists some configuratiog @ x N such that § 7, u and ufy, t.

8.3.2 Computing small arithmetic progressions

Observe that if(qy,n1) 17 (d2,n2) andng > 0, then alsa(qy, Ny +1i) 75 (g2, N2 +1)
for eachi € N. Similarly, if (gi,n1) |7 (g2,n2) andny > 0, then alsdqy,ny +i) |7
(gz, n2+1i) for eachi € N. This motivates us to define, for eagh g, € Q, the following
sets of differences of counter values of monotone positatbg

07001, 02) = {d €N | (e, 1) 15 (02, d+1)}
A7%(qu.0p) = {d €N (qud+1) [j (d2. 1)}
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Analogously, we collect the sets of differences of countdues of monotone zero
paths:

A7%(0n,62) = {d €N (a1,0) 15 (G, )}
ATO(q1,02) = {d € N|(q1,d) |5 (d2,0)}

It turns out that these sets can be expressed as a union oflanemaer of arithmetic
progressions whose offsets and periods are also smalhdtarore, the computation
of these arithmetic progressions fraPhcan be done efficiently.

Lemma 8.3.2 Each of the setA?o(ql,qz), Afo(ql,qz), A?O(ql,qz), Afo(ql, g2) can

be represented as a union of |Q|?) arithmetic progressions with offsets bounded by
O(|Q|?) and periods bounded by(@)) that are moreover computable in polynomial
time.

This lemma can be proven by treati®@as NWAs over a unary alphabet and applying
the special case of Theorem 7.3.1 over a unary alphabet.

Proof. To obtain better polynomial upper bounds, we recall Chkeldartinez’s The-
orem [Chr86, Mar02, To09b], which is a previously known spkecase of Theorem
7.3.1 over unary alphabets: given an N\Aover the alphabeft} with n states, the
setP((L(Aut))) of the lengths of words in.(A4) can be represented as a union of
O(n?) arithmetic progressions with offsets bounded®y?) and periods bounded by
O(n); moreover, this can be computed in polynomial time. We sirdlf show Lemma
8.3.2 forATZO(ql,qz); the other cases can be proven analogously. Let

A= ({t},Qx{0,1},8,01,{(02,0), (d2, 1)})
be the NWA (withe transitions) such that
* 5((0,0),4) ={(d,1): Ja€ ACT: (q,a.d,1) € &},
* 5((q,1),8) ={(d,1): Fac ACT: (q,a,q,1) € & g},
e 3((0,0),€) = {(¢,0) : Ja€ ACT: (g,a,q,0) € 3}, and
* 8((9,1),e)={(d,1): Ja€ ACT: (q,a,¢,0) € &}

That is, 4 is obtained from?’ by regarding it as an NWA oveft} by removing all
pop-transitions, treating zero transitionseagsansitions, and treating push transitions
as reading the symbg@l Observe thatd simulates precisely paths @& from (qz,0)
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to some configuration ifg2} x N on which the counter behaves monotonically non-
decreasing. It is easy to see now tiR4t.(4)) coincides withATZO(ql,qz). Since we
may compute an equivalent NWA withogrtransitions and with the same number of
states in polynomial time, Chrobak-Martinez’'s Theoremliegthat we can compute
from 4 in polynomial time a union ofd(n?) arithmetic progressions, with offsets
bounded byO(n?) and periods bounded t(n), representin@?o(ql,qz). O

8.3.3 Characterization of zero paths and positive paths

Lemma 8.3.2 will now be used to obtain characterizationseob paths and positive
paths inG,. Letqs, gz € Q be control locations. Note that {fj1,n) |5 (03,1) 15
(g2,n) for someqsz € Q, then alsa(qy,n+i) |7 (a3, 1+1i) 17 (G2,n+1). Therefore,
we defined(q1,02) € NU{e} to be

min{n>0]3gs € Q: (qr,n) | (43, 1) 15 (d2,n)}.

Observe thatl(g,q) = 1 for everyq € Q. The following lemma, whose proof is in the
appendix, can be easily proven using Lemma 8.3.2 as a suf@out

Lemma 8.3.3 Either J(qy, q2) = o or 0 € O(|Q|?). Moreover(qy,gz) can be com-
puted in polynomial time.

We now obtain a characterization for zero paths.

Lemma 8.3.4 There is a zero path fronig,n) to (d/,n’) in &4 if and only if ne
Afo(q, q’)andr e A?O(q”,q’) for some § € Q.

Proof. “If”: Follows directly from definition of the set& ™ andATZO.

“Only-if”: Let 1= (Qg,n1) —¢ (O2,M2) --- — o (G, Nk) be a zero path fror(g, n)
to (d,n') in Sp. Letl =min{i € [k | nj =0} and letr = max{i € [k] | nj = 0}. Then
observe that sincég, n1) —5 (q1,0), it follows (g1,n) |5 (q1,0) due to the equiv-
alences of points (2) and (3) of Lemma 8.3.1 and the definiifojy. Analogously,
we have(qr,0) 17 (ak. Nk). Moreover, there exists a (mountain) subpafrom (g, 0)
to (gr,0) in Tt By again applying the equivalences of points (2) and (3) efina
8.3.1 the subpatp can be replaced by a path on which all states have countez Galu
Hence, altogether there exists sogie= Q such that we have

(a1,m) 1% (a1,0) 15 (4”,0) 1% (ar,0) 5 (aik, k).

Hence we obtaim; € A7°(q,q") andnk € AT(q, ) as requiredD
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The next lemma characterizes positive paths.

Lemma 8.3.5 Assume i< n'. Then there exists a positive path@y from (g,n) to
(d,n’) ifand only if n>0(q,q") and i —n e A?O(q”,q’) for some § € Q.

Assume > . Then there exists a positive path frgmn) to (d,n’) in &4 if and
onlyif > 0(q",q) and n—n' € Afo(q,q”) for some § € Q.

Proof. We only prove the case whan< n’. The case whem > n’ can be proven
analogously.

“If": Assume n > [J(q,q") andn’ —n e A?O(q”,q’) for someq” € Q. Then(q,n) |7,
(o,n—d) 77 (d’,n) for somegg € Q and somed € [0,n— 1] following immediately
from definition of J(q,q”). Moreovern’ —n A?O(q”,q’) implies (q”,n) 15 (o ,n').
Altogether, there exists a positive path of the kiwgn) |, (qo,n—d) 75 (d/,n’) in
G4 as required.

“Only-if”: Let 1= (g,m) —7 (02,M2) --- (0, Nk) be a positive path fronig, n) to
(d,n’). Letp=min{n; | i € [k} be the minimal counter value that appearsifRecall
thatp > 0 sincertis positive. Defind = min{i € k] | nj = p} andr = max{i € K| |
n = W}. Since(dy,n) —7 (a1, 1), it follows from the equivalences of points (2) and
(3) of Lemma 8.3.1 and the definition ¢f that(qr,n1) |} (i, ). Analogously, it
follows that(q, W) 17 (dk, Nk). Moreover the subpath froig;, ) to (g, W) in tcan be
replaced by a path of the kin@j, 1) |7, (au, 1) 75 (ar, ) for someqy, € Q by Lemma
8.3.1. Altogether, we have shown the existence of a patheofiafowing kind

(qv n) l}’ (quv p’) TZ” (qlv n/>'
Thus, there exists sont¥ € Q such that the previous path can be split up as
(@:n) 1 (G W) 15 (97,n) T3 (d,10).

This impliesn > 0(qg,q”) andn’ —n € A(q”,d) as required™

8.4 A translatonto MMA

In this section, we shall present a polynomial-time tramstafrom the problem of
model checkingF dag-formulas over OCPs to the membership problem of MMA. In
fact, the following theorem shows a stronger statement:s#teof configurations of
an OCP satisfying the giveBF dag-formula can be represented by MMA formulas;
moreover, they can be computed in polynomial time.
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Theorem 8.4.1 From a given one-counter procegsand a giverEF dag-formulag,
we can compute in polynomial time for each control locatioof ¢ an MMA dag-

formulaa(q) such thatja(q)] = {ne N | (S, (q,n)) =¢}.

By combining Theorem 8.4.1 with Proposition 8.2.3, thedwiing corollary is imme-
diate.

Corollary 8.4.2 The problem of model checkirgF dag-formulas over OCPs is in
PNP.

Therefore, it remains to prove Theorem 8.4.1. For the resftisfsection, let us fix an
OCP? = (Q, 8,9-0) and aneF dag-formulap = (¢i)ic)). For convenience, we shall
assume that each occurrence of Brg operator ing satisfies = ACT (or equiva-
lently EFr = EF); for the general case &f C ACT, the proof can easily be adapted by
first restricting ourselves tb-transitions in? when we se€&Fr operators. Assume
now thatQ = {qs,...,qk}. For technical convenience, we will identify each element
(di, J) € Q x [l] with the corresponding natural numbef (j — 1) -k € [k-1]. The goal

of this section is to present a polynomial time algorithmdmpute an extended MMA
formulaa = (0(qj))(q,j)eqxp] such thatfaq )]l = {neN|(Sp,(q,n)) = ¢} for
each(q, j) € Q x[l].

First, we saturat® in polynomial time. Then, we apply Lemma 8.3.2 and compute
in polynomial time the seTAfo(q, q9), A?O(q, q9), Afo(q, q9), andATZO(q, q), which are
each unions 00(|Q|?) arithmetic progressions with offsets bounded®yQ|?) and
periods bounded b(|Q|) for eachq,q € Q. By applying Lemma 8.3.5 we compute
in polynomial timeJ(q,q) € [ng] U {e} for eachq, d € Q, wheren € O(|Q|?).

Let us now present the computation of the MMA formala= (d (g j)) (q,j)cQx]1]-

We will do this by induction orj with respect to<$ and simultaneously for eadfe Q.

Base Case. Assumej is minimal with respect to<$. Then¢; = T and we put
0(q,j) = (= 0) for eachg € Q.

Induction Step.

Assumedj = —¢j for somej’ € [j — 1. Then we puti(q j) = —0/(q j/) for eachq € Q.

Assumedj = ¢j, A j, for somejy, j2 € [j — 1]. Then we putt(q j) = 0(qj,) AU(q,jy)
for eachq € Q.
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Assumed; = (a)¢j for somea € ACT and somg’ € [j — 1]. By induction hypothesis,

we have
A(q.jy ={NEN|(d,n) |= ¢}
for eachq € Q. By putting+ = — and= = +, we definen q j) as the conjunction of
(Z O) - \/u(q/J/)_l V \/a(q/J/)
deQ: qeqQ:
(g9, +1)€dy (g.aq,0)€8g
and

0= | VagpHol vVag,
qdeQoe{—+} qeq:
(a9 ,01)€d5 (g.ad,0)€d-¢

Finally, assumep; = EF¢; for somej’ € [j —1]. Let us first fix control locations

q,q € Q. By induction hypothesis

[ag.jn] = {neN|(d,n) =y}

By Lemma 8.2.1 we know that for eachi,n, € N which exceed a threshotgjq/J/)
such thaty =nz modL y ;1) we haven; € [[aq,j»] if and only ifnz € [y j]. Note
that this implies thafa q j] is infinite if and only if there exists somee [[o (g j)]
such that(y jy <N <ty in+L(q,j-

Let us now fix an arithmetic progressian- bN with b > 0 that is a subset of some
of the setsAfo(q,q’),ATw(q,q’), Afo(q,q’), or A?O(q,q’). Moreover, letc € Z/bZ
be some residue class. We aim at defining an MMA formuléginf’,c,b) that is
valid if and only if there are infinitely many naturals thatisy a4 j;) and that are
congruent modulob. Now observe that the latter is the case exactly whenevee the
exists somen € [0y j] such that jy < n <tq j)+L(g,j) and moreoven =c
mod gedb, Ly j)). Let us define the auxiliary MMA formula

w(d,j’cb) = ag jyA(=c mod gedb, Ly i)
and finally
inf(d, j’,c,b) =t j) < maxWw(d, j’,b,c),tq i+ Lg.j)-
Next, we aim at defining the set

{neN[3In eN:(q,n) —5 (d,n),(d,n) = ¢}
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in terms of an extended MMA formula. For this, assume thatetl®e a pathrt from
(g,n) to (of,n’) in &) such that(q/,n’) = ¢, wheren’ € N. We distinguish three
(not necessarily distinct) cases. Eitherfti$ positive anch < n’, (2) Ttis positive and
n>n', or (3)Tis zero. We will realize each of these cases by corresporektended
MMA dag-formulasBsi(q,q'), B2(9,q), andBs(q,q) respectively.

Let us first consider case (1), i.m.is positive anch < n’. Thenn > (g,q”) and
n—ne A?O(q”,q’) for someq” € Q by Lemma 8.3.5. Thug,n’ —n) € a+ bN for
some arithmetic progressi@y- bN C A?O(q”,q’). Furthermore, let € Z/bZ be the
residue class aff modulob. So altogether, we will fix the witnessg$, a-+ bN, and
c in the following. First, let us first assume that- 0. We now distinguish the cases
when there are either (i) infinitely or (ii) finitely mamy € N such than” = ¢ modb

and(q,n”) = 6.

e Case (i) is expressed by the formyla’, a, b, c). which is defined as

inf(d,j’,c,b) A >0(g,q") A =(c—a) modb.

e Case (ii) can be realized by saying that the maximal siicis reachable from
n via the arithmetic progressia-bN. For this, let the formulg(q”,a,b,c) -«
be defined as the conjunction of

—inf(d, j’,c,b) A >0(q,q")

and
= (C— a) modb A < max((x(q/?j/) — a,t(quj/)).

The last conjunct guarantees tmat a < n”’, which is necessary since we have
to have that” € n+a+ bN.

The case wheh = 0 can easily be realized by putting
v(q"a) ==0(a,9") A (a(q.j)—a).
Altogether, we put

Bi(a.d) = V  ovda)v

q'€Q | a+ONCAT%(q.q")

/! /!
\/ V(q » &, b7C)°°vy(q 7a7b7c)<°0
a+bNgAT>0(q,q”)
b>0,ceZ/bZ
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Let us now consider case (2), i.e. wheis positive andh>n'. Thenn’ > 0(q",d)
andn—n' e Afo(q, q’) for someq” € Q by Lemma 8.3.5. Hence,—n’ € a+ bN for
somea+ bN C Afo(q,q”). Firstly, let us assume that> 0. Recall thatc € Z/bZ
is the residue class af. Now the simple observation is that the witn@ésan be
replaced by the minimal” € N such than” =’ = ¢ modb, n” > 0(q",d), and
(d,n") = ¢j. We realize this by the formul(q”,a, b, c) defined as the conjunction
of =c+a modb and

> min ((z 0(d",q) A agg,jy A =c modb) -l—a) .
Secondly, let us assume that= 0. This case is realized by the formula
6(q",a) = > (0(q",d) +a) A (g jy+a).

Altogether, we defin@,(q,q) to be

\/ \/  e@.abc v \/ 8(q",a)

q'€Q | a+bncaOaq”) a+0NgAf°(q7q”)
b>0,ceZ/bZ

Finally, let us consider case (3), i.e. whais zero. For eacly’” € Q, define the
predicate
Ime N:me A", d) A (d,m) = .
In other words, case (3) can be rephrased easﬁfo(q,q”) andm(q”) for someq”’ € Q
by Lemma 8.3.4. Now check that the predicatg”) can be expressed as
\/ 0 < maX(E a modbA a(q’,j’)7t(q’7j’) + L(qﬂj’))

atbNcaTO(d’ o)
b>0

Vv \/  a=min((ag,j)—a)+a).
a+ONgAT:°(q”7q’)
DefineBs(a,d') = Vqreqm(d’) Ap(d”), wherep(q’) is
\/  (=a modb) Vv \V  (=a).

a+bNCAT(q,q) a+ONCAT(a,q")
We finally putaq j) = VgeoB(a,d) vV B2(a,d) v Bs(a,d').

This concludes the definition @f. It is straightforward to see that can be com-
puted in time polynomial irj|?|| + ||¢||. By additionally applying Lemma 8.2.2, we
obtain Theorem 8.4.1.

It turns out that a more precise analysis of our translatlmwa us to derive the
following polynomial time upper bound, when the one-couptecess is fixed.
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Theorem 8.4.3 The problem of model checkigF dag-formulas over a fixed OCP is
in P.

This is in stark contrast to the problem of model checkdfglogic over a fixed push-
down system, which can be shown to BEPACE-complete using the proof from
[BEM97, Wal00]. The proof of Theorem 8.4.3 can be found indbpendix.

8.5 Application to weak-bisimilarity checking

In this section, we use ol®\" upper bound from the previous section to derive a
PNP upper bound for weak-bisimilarity checking of OCPs agafimite systems. This
improves the previouBSPACE upper bound known for the problem [Kuc00]. In the
next section, we shall in fact giveRI'P lower bound for weak-bisimilarity checking
of OCPs against finite systems.

We shall first recall the definition of weak bisimulation (diKJ06]). LetS =
(S {—a}acacT) b€ a transition system and assume some distinguishedahtm-
bol T € ACT. Define theextended transition relatios>; C Sx Sfor eacha € ACT as
s=-,t if and only if eithera # 1 and there exist,t’ € Ssuch thas —; s —,t’ —1t,
ora=Tt ands—;t. Given two transition systemd = (S {—a}cacT) aNd&’ =
(S, {—=4}acacT) arelationrR C Sx S is aweak-bisimulatiorfor w-bisimulatior) if it
is nonempty, and whenevgs, s') € R, then for everya € ACT the following two condi-
tions hold (i) ifs—at for somet € S, thens = t’ for somet’ € S such tha{t,t’) € R,
and (i) if s —, t’ for somet’ € S, thens =4t for somet € Ssuch that(t,t’) € R.
For everys € Sand evenys € S, we say thas ands' arew-bisimilar, writtens~ s,
whenever there exists a w-bisimulatiBrC Sx S such tha{s,s') € R. We now define
w-bisimilarity checkingdf one-counter processes against finite systems as follows.
W-BISIMILARITY CHECKING: OCPS AGAINST FINITE SYSTEMS

Instance: A one-counter procesB, a statdq,n) of S, with n given in binary, a finite
systemT, and a statéof T.

Question: (g,n) ~t?

In order to derive our upper bound, we recall the followingls@own result from

[JKMO1] (a more recent presentation can be found in [KJO06]).

Lemma8.5.1Let 61 = <Slv{i>a}aeACT> be a (possibly infinite) transition system
andG; = (S, {ia}aeACT> be a finite transition system with k states. Then, given any
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state 3 € S, we can construct aBF dag-formulaps, s, in polynomial time (in k) such
that, for every state;sc S, it is the case thatisx~ s, if and only if&1,s1 = ¢s,. 6,

In other words, Lemma 8.5.1 implies that the w-bisimulatatecking problem is
polynomial-time reducible to the problem of model checkitigdag-formulas. Com-
bining this lemma with our results in the previous sectiahs,following theorem can
easily be derived.

Theorem 8.5.2 The w-bisimilarity checking problem is solvableRN”. The problem
becomes solvable idn when the one-counter process is fixed.

8.6 Lower bounds

We conclude this chapter with several tight lower boundstiier problem of model
checkingeF-logic over OCPs and weak-bisimulation problems of OCP$agéinite
systems.

Let us start with the problem of model checkigg-logic over OCPs. We have
managed to give " lower bound for this problem in [GMT09] when the input
formulas are represented as dags. This is achieved by aesiaghliction from the
PNP_complete problem called DSAT. On the other hand, we will repiroduce the
proof here since a matchir'" lower bound has recently been given by Goller and
Lohrey [GL10] forEF tree-formulas.

Proposition 8.6.1 ((GMT09, GL10]) The problem of model checkigg dag/tree for-
mulas over OCPs iBNP-hard.

We now proceed to the lower bound of weak-bisimilarity chieglof OCPs against
finite systems. We will show that this problemR8'P-hard by a reduction from a
problem called DSAT [Pap94], which takes the following ifipusequence of boolean
formulasF, ..., F, with variablesxy, ..., X, and sets of variablez,, ..., Z, such that
the formulak can take only variables frofxy, ..., x_1} andz;. The goal is to decide
whether there exists an assignment{x,...,xn} — {0,1} that sets, to 1 such that
the following are satisfied for alle [n:

ox)=1 < 3JZK(x1,...,%-1,Z). (8.1)

Notice that imposing the constraint in (8.1) ensures thaettetlexists ainiqueassign-
mento. The only question is whether this assignment satisfigs) = 1.
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Proposition 8.6.2 The problem of checking weak-bisimulation between a given o
counter net and a given finite system is hardROF .

To prove this proposition, we will have to be able to encodggasnents to boolean
formulas (i.e. a sequence of Os and 1s) as numbers. We shalvachis viaGodel
encodinggi.e. using the unigqueness of prime decomposition). Toehis, we shall
define the Godel functio® : Z-o — {0,1}® as follows: if p; is theith prime number
andn=[i-o pij‘, wherej; € N, then define5(n) = j{j5. .., wherej{ =0 if jj =0 and
ji=11if ji > 0. Since the proof of Proposition 8.6.2 is rather intricate,shall only
present a sketch of the proof (the full proof can be found enappendix).

Proof Sketch In this proof, we shall present the weak-bisimulation angsbetween
two players: Attacker and Defender (e.g. see [Sti98]). fBrieAttacker’s goal is
to prove that two given processes are not w-bisimilar, wbikgender tries to prove
otherwise. In every round of the game, there is a pebble @lacea unique state in
each transition system. Attacker then chooses one transtistem and moves the
pebble from the pebbled state to one of its successors bytiam ae,. Defender must
imitate this by moving the pebbled state from the other systeone of its successors
by the same action-4, possibly together with several intermahctions, i.e. he has
to move the pebble along-a-5-transition. If one player cannot move, then the other
player wins. Defender wins every infinite game. Two staesdt are w-bisimilar
(resp. not w-bisimilar) if and only if Defender (resp. Atkac) has a winning strategy
on the game with initial pebble configurati¢st).

We now present the proof sketch of Proposition 8.6.2. Weae@SAT to the w-
bisimulation checking problem by constructing a suitalsle-counter net and a finite
system. The finite system contains (among many otherss&asndP,, and the one-
counter net contains control-statgsfor 1 <i < n such that the following statements
are equivalent:

e (Fy,...,F) € DSAT.
o PL~sg(l)foralll € N.
e P> is not w-bisimilar tos (1) for somel in N.

In the particular case aof= n, this is the reduction we are looking for. The idea is that
checking the truth of every subformul;F (xy,...,%_1,Z) of the DSAT problem
is encoded into a complex w-bisimulation game Rar~ s (1). In this game, the
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defender player gets to choose (by a I@Tﬂgnove) a natural numbérwhich is stored

in the one-counter net. This number encodes (by Godel emgpthe assignment of
values to the boolean variables in the blagk Later in the game, these values can
be tested by special counter-decreasing loops, which immgié divisibility tests or’.
The variablesy are treated differently, because they depend on other subfaeF,
with smaller index numbels< i. If the value of somey (for k < i) needs to be tested,
then the w-bisimulation game jumps to some subgame whidh ¢gtherP; ~ sg (1)

or P, = s (I'), depending on whether the valuexgfis claimed as true or false.

The main technical difficulty of the proof is to restrict theédom of the players
in the w-bisimulation game, so that they exactly make thecdsoneeded in the veri-
fication game for the formuldz;F(x1,...,Xi—1,Z) in the right step, and do not make
a move that is reserved for the other player. This is rathiicate, because of the
asymmetry of the two compared systems, one infinite-stageconnter process and a
finite system. In particular, isomorphic copies of the fisystem are replicated in the
finite-control of the one-counter nefl

In contrast to KuCera'®P lower bound [Kuc00] which holds for a fixed one-counter
net, our proof of Proposition 8.6.2 requires that the finytstem is not fixed. Never-
theless, we can show that the w-bisimilarity checking peabfor fixed finite systems
is harder thaDP.

Proposition 8.6.3 There exists a fixed finite system for which the w-bisimyjatiteck-
ing problem is hard foPNP[l°d even for one-counter nets.

This lower bound proof, which is given in the appendix, isiaedd by a reduction
from a PNPllodl.complete problem called INDEX-ODD. Together with Lemm&.8,
we also obtain @NPI°9 Jower bound for a fixedEF formula (in this case tree/dag
representations are not important since the formula is fixed

Proposition 8.6.4 There exists a fixeHF formula$ such that model checkirggover
one-counter nets iBNPI°9l-hard.

In [GMTQ9], we gave a direct reduction which shows the sanrdress result when
only EFr operators satisfying = ACT are permitted.






Chapter 9
Networks of one-counter processes

In the previous chapter, we have studied one-counter pgesemnd several verifica-
tion problems over such systems. One-counter processeglsavever, a rather weak
model. They can only be used to model programs with boundagds®mns and one
unbounded integer variable (used as a counter). Let us nagima a more general
scenario when several integer-valued counters are usegiagrgam. Consider the
following code snippet written in a C-like language:

INT i, n, m [/ Initialized el sewhere
STRING s, /'l bounded | ength
L1:
n, sare used ...
FOR( i=n; i>0, i=i—1) Il Synch.
i,s are used
m=n-—2; I'l' Synch
L2:

This program has three unbounded integer variables and lod@ded data structures
(e.g. strings). The places where these variables synaeamthe form of simple vari-
able assignments are underlined. Notice that the synctatons take place outside
for/while loops. Within for/while loops, at most one integariable is used. Observe
that such a program already cannot be modeled by OCPs sintawedo keep track of
several integer counters simultaneously, e.g., the Variain this program is assigned
toi andm at different points of the program.

201
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FO(Reach) 5 _
4 FO“(Reach) EF-logic
FO"(Reach)
Combined| PSPACE PSPACE | in PNP & PNPllod_hard (Chap. 8
Expression| PSPACE inP in P (Chap. 8)
Data PH PH in PNP & PNPllodl_hard (Chap. 8

Table 9.1: Results for OCPs.

The approach that we will take in this chapter is to study rhodecking problems
over asynchronous products of OCPw&hich we denote by1OCP. They can also
be construed asetworks of one-counter processegh each component behaving
independently (i.e. the processes do not interact). Obgbat reachability foFlOCP
can trivially be reduced to the reachability problems ofrtbemponents. On the other
hand, when we consider the model checking problems of asgnohs products of
OCPs with more powerful logics likKeO (Reach) andEF-logic, asynchronous products
are sufficiently powerful for modeling bounded synchrotimas among the finite-
control units of the OCPs. This follows from a more generauteby Wohrle and
Thomas [WTO07] regardinfinitely synchronized productd infinite-state systems. In
order to permit some synchronizations amongst the coymtersiill also enrich these
logics with some simple synchronization predicates. Tiveileenable us to verify
interesting properties of programs with multiple integalued counters witbounded
synchronizationbetween the counters, i.e., @veryexecution of the program, the
number of times at which integer variables synchronize isnded a priori. Notice
that the example of a program that we saw above falls withexdftegory since it uses
only two synchronizations outside for/while loops.

The model checking problems ovEBIOCP that we will consider in this chap-
ter are with respect to the specifications in EQ)(Reach), (2) thek-variable frag-
mentsFOk(Reach) (k > 2) of FO(Reach), and (3)EF-logic, which is a fragment of
FO?(Reach). We also study these logics extended with simple compowés#-syn-
chronizing predicates testing whether componemisd j have the same counter val-
ues, which we denote RO g (Reach), FO‘é(Reach), andeFg-logic, respectively. The
goal of this chapter is to provide not only decidability resubut also the precise com-
plexity of these model checking problems.

The results of this chapter are summarized in Table 9.1 ablk a2 together with
the results from the previous chapter. Notice that OCPsiarglgthe special case of
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FO(Reach)
FO*(Reach) | FO?(Reach) EF-logic EFg-logic
FOg(Reach)
Combined| PSPACE PSPACE PSPACE PSPACE
Expression PSPACE in P inP PSPACE
Data PH PH in PNP & PNPlod.hard | PH

Table 9.2: Results for MTOCP.

MOCP with only one component. In particular, all our resuls within PSPACE,

in contrast to PDS whose expression complexity For(Reach) is nonelementary
[CH90]. Our upper bounds are shown by first introducing twotagtic restrictions

£ and £’ of Presburger Arithmetic, for which we give optimal quasmtifelimination
procedures, and showing that tR®OCP model checking problems are poly-time re-
ducible to either or £'. Note that, to obtain a sharp upper bound, we cannot consider
only OCPs (without products) and apgfgferman-Vaught type of composition meth-
ods(e.g. see [Mak04, Rab07, WTQ7]) as the resulting algorithittrun in time that is
nonelementary in the formula size. Concerning our lowemidnesults, in contrast to
the result from the previous chapter that model checkirdogic is in PNP, data com-
plexity of FOZ(Reach) over OCPs is already hard for every levelRH. On the other
hand, the expression complexity BOZ(Reach) overMOCP is inP. This general-
izes one of the key results from the previous chapter thagxpeession complexity of
EF-logic over OCPs (without products) is ih However, for eack > 3, we can show
that the expression complexity 5®k(Reach) is PSPACE-complete already for OCPs.
Also, notice that the combined complexitye#-logic become®SPACE, which holds
already for products of two OCPs. Finally, notice that addsimple synchronization
relations toEF-logic causes the expression and data complexity to inereagifi-
cantly.

What about model checking with respect to specificationsTih 6r LTL? We do
not consider them since they are easily shown to be unddeitigita simple reduction
from reachability of Minsky’s 2-counter systems, e.g., vam @ncode full synchro-
nizations of the counters in a CTL formula of the folp U Y) (synchronization is
embedded ). For monadic second-order logic, undecidability can beevaasily
obtained by an asynchronous product of two OCPs which omlgments their coun-
ters (i.e. this generates the two-dimensional infinite gvith an undecidable MSO
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theory [Tho96]).

This chapter is organized as follows. We start with the dedins of asynchronous
products of OCPs and logics with synchronizing predicateSdction 9.1. In Section
9.2, we define our two fragmenfsand £’ of Presburger arithmetic and give a reduction
from our model checking problems to the membership problefrikese logics. In
Section 9.3, we give optimal quantifier elimination procedufor£ and£’ and deduce
optimal upper bounds for all model checking problems in &bl and Table 9.2. We
prove the lower bounds in Section 9.4. The results in thiptErahave previously
appeared in [To09a].

9.1 Preliminaries

In this section, we first define the notions of asynchronoodyets of OCPs. We then
explain how synchronizing predicates can be added in oucsog

9.1.1 Asynchronous products

We now review the definition of asynchronous products ofditaon systems and asyn-
chronous products of OCPs.

Let ACTy,...,ACT; ber pairwise disjoint sets of actions. LACT be their union.
Foreach € [1,r], let®; = (Vj,{Ea} o« ACTi> be a transition system ovACT;. An asyn-
chronous producbf &y,...,&; is the transition systerfl]_; &; := (V,{Ea} ,cacT):
whereV :=Ti_,V; and, whenevea € ACTj, U= (Uy,...,Ur), andv = (vq,...,V), we
have (u,v) € Ea iff (ui,vi) € Ea anduj = v; for all j #i. Intuitively, the product is
“asynchronous” as each edge relatiorTify ;&; changes at most one component in
each vertex ofl{_, &, i.e., causing no interaction between different compahebee
[Rab07, WTO07] for more details.

An asynchronous producP of r OCPsis simply a tuple ofr OCPs®?s,..., %
over pairwise disjoint action alphabe&tST1,...,ACT,.The product? has action labels
ACT := ACT1U...UACT,. Then, the transition syste@®, generated by is defined
to be the transition system{_, &4 overACT. In the sequel, asynchronous products
of OCPs are abbreviated BOCP.

We define the model checking problems®®CP with respect t¢O(Reach) as
follows.
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MODEL CHECKING FO(Reach) OVER NOCP

Instance: A MOCP 2 over ACT, an FO(Reach) formula§(xy,...,xx) over ACT, k
configurationg(c ik:1 of P with binary representation of numbers.

Question: S = ¢(c1,...,0)?

For other logics IikeFOk(Reach) (k > 2) andEF-logic, we could define the model

checking problems in a similar fashion.

9.1.2 Synchronization predicates

So far, our logics cannot compare the values between twerdiit counters in the
system. We now introduce an extension that permits simpigeoison tests (osyn-
chronizing predicatésbetween counter values.

To add synchronizing predicates to the logic, we first adddah@edicates in the
semantics of TOCP. Given an asynchronous prodit®CP ofr OCPs?y,..., %
overACT = [J{_, ACT;, we define a transition syste@@, as the transition syste»
expanded with the “synchronizing” edge relatiqns j }1<i+j<, that are defined as

=i j:={(c,c):ni=n;},

wherec = ((q,n1),...,(ar,0r)). In other words, the relatioe:; ; contains all self-
loops inG% restricted to tuples in which the counter values ofithecomponent and
the jth component agree. The graﬁ@ has action labelaCT U {(i, ) }i je[1,r-

The logicsFOg(Reach), FOE(Reach), andEFg-logic are simply defined to be
FO(Reach), FO¥(Reach), andEF-logic interpreted over this modified semantics. The
problem of model checkingOg(Reach) overMOCP can be defined as follows.
MODEL CHECKING FOg(Reach) OVER MOCP

Instance: An asynchronous produc® of r OCPSACT, an FOg(Reach) formula
b (X1, .., %) OVerACTU{(i, j) }i jenn: K configurations{c; }X_; of 2 with
binary representation of numbers.

Question: &3, = ¢(cy,...,C)?

We can similarly define the model checking problemst:@g(Reach) andEFg-
logic overlMOCPs.
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9.2 Two fragments £ and £’ of Presburger Arithmetic

We define our first fragmeri of Presburger Arithmetic, to which we will reduce the
model checking oFOg(Reach) overlOCP.

Definition 9.2.1 The syntax of the logi€ is as follows. Atomic propositions are of the
form:

e X~ Yy+cC, where~e {< > =},

e X~ C, Where~e {<, > =},

e X=y+c (modd), where cc [0,d— 1], and
e X=c (modd), where cc [0,d—1].

Here, x and y can take any variables, while ¢ and d are congtatiiral numbers,
given in binary representations. We then close the logiccubdolean combinations,
and existential and universal quantifications. The sencan8 given directly from
Presburger Arithmetic. The expressiomxy/ + ¢ (modd) is to be interpreted as the
Presburger formulalz( x=y+c+dz v x+dz=y+c).

Intuitively, the logicg is the fragment of Presburger Arithmetic that permits only i
equality tests, addition with constants, and modulo té&esnow impose some further
syntactic restrictions to our logi¢, to which model checkinEOZ(Reach) over[1OCP
is still poly-time reducible.

Definition 9.2.2 Define the logic2’ as follows. The only variables allowed areand
Yi, Where i€ Z-o. The atomic propositions of are given as follows for eachd Z-.¢:

e Xj~Yyi+candy~ X —+c,

e X,~candy~c,

e Xi=Y;+C (modd) andy =x;+c (modd), and
e X, =c (modd) andy =c (modd).

Here, c and d are constant natural numbers given in binary.tWga close the logic
under boolean combinations, and existential and univegsahntifications.
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Observe that the logi€’ allows only two variables; andy; to be related. In fact, if
we only allowx; andy; as variables, thefl’ coincides WithFO? fragment of¢.

We shall briefly discuss the expressive powelah terms of subsets dff¥ that
can be defined in the logics. Let us first briefly recall the didn of first-order
modulo counting logi¢Opop, Which extendd=O with the modulo counting quanti-
fiers 3P4, for eachq € Z~o and p € [0,q). When interpreted over ovélN, <), the
semantics ofOyop is defined ovelN, <) as follows: (N, <) = 3P (x,b) iff the
number := |[{a€ N: (N, <) = ¢(a,b)}| is either infinite or finite and= p (modq).
See [P&l92] for more details. It turns out thétcoincides with theFOypop theory
over (N, <). In fact, [P&l92] shows thetOmop theory over(N, <) admits a quanti-
fier elimination, when the vocabulary is expanded with coegce tests. Therefore,
£ subsume$Opop over (N, <). To show thatC C FOwop(N, <), observe that ex-
pressions of the form ~ y+ ¢ can easily be replaced by equival&@ formulas over
(N,<). Also, the atomic formula =y+c (modd) can be defined aAg;é(y =a
(modd) < x=a+c (modd)), and congruence tests= a (modd) can be defined
in FOpmop over (N, <) as329y(y < x). The expressive power #yop over (N, <)
was shown in [Pél92] to be strictly in betwe&6 over (N, <) and Presburger Arith-
metic. For example, it was shown that Presburger formuldkeformx = 2y is not
definable inFOmpp over (N, <). Finally, we shall emphasize that the proof in [P&192]
of quantifier elimination foFOupp over (N, <) expanded with congruence tests is
nonconstructive.

The membership problem of the logit is defined as follows: giveg(X) € £,
wherex = (xq,...,X,) and a tuplea € N" in binary, decide whethefN, +) = ¢(a).
The membership problem fa’ can be defined similarly. We now state a proposition,
which gives a reduction from model checking problem§I@CP to the membership
problem forg or £'.

Proposition 9.2.1 There is a poly-time reduction from the problem of model kimec
FOg(Reach) (resp.FO?(Reach)) overMOCPto the membership problem f@r(resp.
£'). Furthermore, the alternation rank of the output formuieti (resp. £') is the same
as the alternation rank of the input formulafi® g (Reach) (resp. FO?(Reach)) up to
addition by a small constant.

This proposition can be proved easily using Lemma 8.3.1,rhar.3.4, and Lemma
8.3.5. For this reason, we relegate the proof to the appendix
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9.3 Complexity upper bounds

In this section, we shall show that the combined and data texity of FOg(Reach)
overNMOCP are, respectively, iIRSPACE andPH. We then show that the expression
complexity ofFO?(Reach) is in P. To deduce &N upper bound for data complexity
of EF-logic overlTOCP, it suffices to invoke the Feferman-Vaught type of contjuos
method forEF-logic [Rab07] and use theNP algorithm for model checkingF-logic
over OCPs from the previous chapter. Observe that thesgmdlthe claimed upper
bounds in Table 9.1 and Table 9.2.

9.3.1 Combined and data complexity of FOg(Reach)

We start with the combined and data complexity0fg (Reach) overlMOCP.

Theorem 9.3.1 The combined and data complexi@g(Reach) over MOCPare in
PSPACE and inPH, respectively.

By Proposition 9.2.1, to deduce this theorem it suffices tw@the following propo-
sition.

Proposition 9.3.2 The membership problem afformulas is inPSPACE. Moreover,
fixing the alternation rank of input formulas, the problenmn$H.

The proof is done via a quantifier elimination technique .(esge [Koz06] for an

overview). Intuitively, our proof can be thought of as anessdion of Ehrenfeucht-
Fraissé games on linear orders (e.g. see [Lib04]) withulmtdsts. We first define an
equivalence reIationsE‘;Lrn on tuples of natural numbers.

Definition 9.3.1 Given two(k+ 1)-tuplesa = (ap, . ..,ax),b = (bo,...,bx) of natural
numbers such thatga= bp = 0 and two numbers > 0, we writea E'gm b iff for all
i, j € [0,K] the following statements hold:

1. | —aj| < pmimpliesa —aj| = |bj — bj|,
2. |bi —bj| < pmimpliesa — a;| = |bi — bj],
3. |ai —aj| = pmiiff by — bj[ > pm,

4. 3 =b (modp),

(62}

. 8 < q; iffbigbj.
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The first two conditions above state that if two elements aeal”, then the difference
for the corresponding two elements in the other tuple is #mees The third condition
is the opposite of this condition: if two elements are “faway from each other, then
so are the corresponding two elements in the other tuple elisy to check that, given
m > m> 0, we havea E‘;m b impliesa =¥, b. Similarly, if p|p/, thena El&?m b
impliesa Eifxm b. The following lemma can be used to eliminate a quantifier.

Lemma 9.3.3 Given two(k + 1)-tuplesa = (ay,...,ax),b = (bo,...,bx) of natural
numbers such thatpa= bg = 0 and two numbers pn > O, if a Ela?)m b, then for all
a €N, there existsbe N such that, a =K1 b,b'.

Proof. In this proof, for two numbers,d € N, we write d(c,d) to denote|c —d|.
Suppose that' € N. If & = g for somei € [0,k], then we simply selt/ = b and see
thata, & E‘E,fn} b,b’. Otherwise, there are two cases to consider:

(Case I) the numbe#g’ falls into a regiorR = (a,as) for some distinct integenss €
[0,K].

(Case Il) the number falls into a regionR = (a,,) for somer € [0,k] such that
there is ncs € [0, k] with &, < as.

Let us first consider Case I. Pick two indiaeands such that there is nloc [0, k] with
a € R. There are several subcases to consider:

1. d(ar,as) < 3pm In this case, assumption implies thdb,,bs) = d(a;, as).
Therefore, we may pickl =b; +d(a;,a'). Itis then easy to verify that, & E‘E,fn}
b,b'.

2. d(ar,as) > 3pm In this case, our assumption implies thiHb,,bs) > 3pm
There are now three further subcases to consider:

(@) d(a,a’) < pm In this case, it follows that we havd{a’,as) > pm Pick
b/ = by +d(ar,a). Itis then easy to check thata’ =K+ b,b.

(b) d(a,as) < pm This case is similar to the previous item; one carbset
bs—d(d,as).

(c) d(a,a’) > pmandd(a,as) > pm Sinced(a;,as),> 3pm, it follows that
there are at leagt consecutive numbers in the regifm + pmas— pm.
Likewise, sinced(by,bs) > pm there are at leagt consecutive numbers in
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the region[b, + pm bs— pm. This implies that for everg € [0, p), there
existsa’ € (a,as) with @’ = ¢ (mod p), d(a;,a”) > pm andd(a”,as) >
pmiff there existsh” € (by,bs) with b’ = ¢ (mod p), d(b;,b”) > pmand
d(b”,bs) > pm Therefore, ifa’ = c (mod p) for somec € [0, p), it fol-
lows that there exists' € (by,bs) with b’ = ¢ (mod p), d(b;,b’) > pmand
d(b',bs) > pm Itit easy now to check that a’ =i+ b,b'.

This completes our proof for Case I. Let us now turn to Cas&Hhere are two possi-
bilities:

1. d(a,@) < pm In this case, we séf = b, +d(a,&) and it is easy to see that
aa =Ki1bb.

2. d(a,@) > pm Inthis case, we may sbt=b; + pm+ (d(a;,&) modp). Since
we havea, = b, (mod p), it follows thata’ = b’ (mod p). It is easy now to
verify thata, a’ =K+ b, b

This concludes our proof

Let us consider only tupleg= (ay, ..., ax) of natural numbers satisfyiray = 0.
Given anz‘gsm-equivalence clas€ and an=k/1-equivalence clas§’, we say that
C’ is consistent with Gf there exist a tupl@ = (ay, . ..,ax) of natural numbers and a
numbera’ € N such thatag = 0,a € C, and(a, &) € C'. The following lemma shows
that we need not consider large numbers when eliminatingatdier.

Lemma 9.3.4 Leta = (ay,...,a) be a tuple of natural numbers and C beﬁ%m-
equivalence class. Then, eveeﬁr}-equivalence class has a representative in the set
{(a,d):0<d <maxa)+ pm+ p}.

Proof. This follows from the proof of Lemma 9.3.3, i.e., that we eewneed to add
more thanpm+- p from the maximal element ib. O

Definer(0,m) := mandr(n+ 1,m) := 3r(n,m), for n € N. By induction, we have
r(n,m) =3"m. Let us now define the notion affsetsandperiodsof formulas in£.
If ¢ are atomic formulas of the form~ y+c, X~ ¢, x=y+c (modd), orx=c
(modd), thenoffsets ofp are defined to be the integerlf ¢ is not an atomic formula,
then itsoffsetis the largest offset of atomic subformulasfoflf ¢ are atomic formulas
of the formx ~ y+ c or x ~ ¢, then itsperiod is defined to be 1. Ity are atomic
formulas of the fornk=y+c¢ (modd) or x=c (modd), then itsperiodis defined
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to bed. Otherwise, if is not an atomic formula, itperiodis defined to be the least
common multiple of the periods of each of its atomic subfdamu Forp,m € Z-,
defineLy m to be formulas ing, whose periods divide and whose offsets are smaller
thanm.

Lemma9.3.5Let pme Z-o. Supposeé@ = (ap,...,a),b = (bp,...,bx) are tuples
of natural numbers satisfyingpa= bp = 0 anda E'B,r(n,m) b. Then, given a formula
O (X1, ..., %) in Lpm of quantifier rank n,

(N,+) Ed(ay,...,a) < (N,+) = ¢(bg,...,by).

Proof. The proof is by induction op. Let us consider the base cases. There are four
cases:

e ¢ is of the formx ~ Xxj +c. Suppose thatl(a;,a;) < pm In this case, our
assumptiora E‘E,’mB implies that we havel(a;,a;) = d(bj,bj). Pick an integer
r such thataj = bj +r. Then, sinces; < aj < bj < bj, we haveaj = bj +r.
Therefore, for each-c {<,>,=}, we haveg ~ aj + ciff bj+r ~ bj +r +ciff
bi ~ bj+c. Let us now consider the case whi{®;,a;) > pm In this case, our
assumptiora Eﬁmﬁ implies thatd(bj, bj) > pm Then, sincey < a; < bj < b;
andc < m< pm it follows thata; < aj + ¢ < bj < bj 4 c. Furthermore, since
c<m< pm it follows thata; # aj +c andb; # bj +c. Altogether, these imply
thata; ~ aj +ciff b ~ bj+cfor each~e {<,>,=}.

e ¢ is of the formx; ~ c. This follows from the proof for the previous case.

e ¢ is of the formx = x; + ¢ (modd). Sincea = bj (modp) anda; = b;
(mod p), we also havey = bj (modd) anda; = b; (modd) asd dividesp.
It is then immediate thad; = aj +c¢ (modd) iff bj =bj+c (modd).

e ¢ is of the formx; = ¢ (modd). Same as the previous case.

We now turn to the inductive cases. The cases for boolean ioatidns are easy.
So, consider the case whenis of the form3x. 1W(X, X 1). Then, let us prove
that (N, +) = ¢(a) implies (N, +) = ¢(b); the converse is completely symmetric. If
(N,+) = ¢(a), then there exista1 € N such thatN, +) = Y(a, a1). Sinceaz'gvm

b, Lemma 9.3.3 implies that there exiis 1 € N such thag, a =<1 b,. By

—p,r(n—1,m)
induction, it follows thatN, +) = @(b,b’), which proves thafN, +) = ¢(b). O
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We are now ready to prove Proposition 9.3.2.

Proof of Proposition 9.3.2We now give a polynomial-time alternating Turing ma-
chineM which checks whethélN, +) = ¢(ay, . .., a,) for given aformulap(xy, ..., Xn)
and an+ 1-tuplea = (ao,...,a,), whereag = 0. First, push all the negations down-
ward to the atomic propositions level, which can be doneyeaSuppose thap and

m be, respectively, the period and offset of the input formMNaw if ¢ is an atomic
proposition (i.e. inequality, or modulo tests), it is easysee thatM can check it in
poly-time. If ¢ is YV Y/ (resp. Y A Y/'), then existentially (resp. universally) guags
or Y’ and check the guessed formula.¢lis of the form3axy(y, x) (resp. Vxy(y, X))
and has quantifier rank thenM existentially (resp. universally) guesses a number
an.1 not exceeding ma®) + pr(k,m) 4+ p < max@) + p3¥m+- p and check whether
(N,+) = W(a,ant1). The upper bound faa, 1 is sufficient due to Lemma 9.3.4.

To analyze the running time dfl, notice that the maximum number thét can
guess on any of its run on inpgitof quantifier rankh and a tuplea of natural numbers
(in binary) is maxa) +="_q(pr(j,m) + p) < max@) + p(h+1)3"m+ p(h+ 1), which
can be represented using polynomially many bits. [Note preatdm are represented
in binary and so the guessed number is polynomial iipp@nd logm).] This implies
that membership of-formulas is inPSPACE. Finally, notice that the number of al-
ternations used b corresponds to the alternation rank¢of Therefore, considering
only formulas of fixed alternation rank, the membership pgobfor £-formulas is in
PH. O

9.3.2 Expression complexity of FO?(Reach)

We now deal with the expression complexityR@z(Reach).

Theorem 9.3.6 The expression complexity B0?(Reach) overMOCPis in P.

Define £’p7m to be the set of all formulas i’ whose periods dividgp and whose
offsets do not exceenh. Let £}, ,(n) to be the set of all formulas g, , that use only
variables in{xs,....xn} U{y1,...,¥Yn}. For all fixed p,m,n € Z-o, the membership
problem ofg}, ,,(n) is as follows: giver(x,y) € £}, n(n) and two tuplesa,b € N" of
numbers in binary representation, decide whetert) = ¢(a,b). By Proposition
9.2.1, Theorem 9.3.6 follows from the following propositio

Proposition 9.3.7 For fixed pm, n € Z-.q, the membership problem 8f, ,,(n) is in P.
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This proposition can also be proved via quantifier elimmati The intuition that we
can obtain a poly-time algorithm is from a two-pebble Ehesicht-Fraissé games over
linear orders (see [Lib04]), which can only distinguish fiiaear orders (i.e. only
linear in the quantifier rank of thEO?(Reach) formula). The proof is similar to the
case foiFO(Reach), but is much more tedious, which we relegate to the appendix.

9.4 Complexity lower bounds

In order to facilitate our lower bound proofs in this sectiare shall define a 2-player
game, calledhe buffer gamewhich we shall prove to bBSPACE-complete. First, let
Lpiv be the set of quantifier-freé-formulas in 3-CNF (i.e. in CNF and each clause
has exactly three literals) with one free variakle/shose atomic propositions are of the
formx=0 (mod p) wherep is a prime number. The buffer game is played by Player
3 and Playery. An arena of the buffer game is a tugle k,$), wherev is a finite
and strictly increasing sequence of positive integleis,the number of integers ¥
and¢ a formula of£py. The buffer game with aren@, k,$), wherev = (vy,..., ),
hask+ 1 rounds and is played as follows. Each rourdkfines gositivenumberm,
which represents the current buffer value. At round 0, Rlayehooses a numbeny

to be written to the buffer. Suppose thak®r <k, andmy,...,m,_1 are the buffer
values chosen from the previous rounds. At even (resp. adohdr, Player3 (resp.
PlayerY) rewrites the buffer by a numben > m,_4 of his choosing such thay =
my—1 (mod [1i"; pj), i.e,m =m_1+c <|‘|‘j’f:1 pj) for somec € N. In particular, by
Chinese remainder theorem, this condition implies thatefh 1< j <v;, pj|m iff
pjlmr—1. In other words, each player is not allowed to “overwritefreodivisibility
information in the buffer. Playet winsif (N, +) = ¢(my). Otherwise, Playey wins
The problenBUFFER is defined as follows: given an arefiak, ¢) of the buffer game,
whereeach number is represented in unadecide whether Playef has a winning
strategy. For each € N, we define the problerBUFFER, to be the restriction of the
problemBUFFER which takes only an input arena of the fofmn, ¢).

Lemma 9.4.1 The problenBUFFER is PSPACE-complete. The proble®BUFFERy is
¢, ;-complete.

Loosely speaking, by applying Godel encoding (see Se@iénfor its definition)
one can encode each truth valuation for boolean formulasantumber. Therefore,
boolean formulas can be reduced to statements about ditysiBurthermore, @lock
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of 3 (resp.V) quantifers in a quantified boolean formula can be reducedarchoice
of number at a single round in the buffer game for Play&esp. PlayeY). The proof
of Lemma 9.4.1 can be found in the appendix.

We now use the buffer game to prove our first lower bound rdsuthe problem
of model checking OCPs.

Proposition 9.4.2 Combined complexity dfO?(Reach) on OCPs isPSPACE-hard.
For every ke N, there is a fixed formulé of FO?(Reach) with k+ ¢ quantifier alter-
nations, for some small constantdN, such that checkingy over OCPs isEf-hard.

To prove this theorem, we first state a standard lemma, whasd pan be found in
[JKMSO04] (similar proof techniques have been used eani¢kuc00], and were also
used in our lower bound proofs in the previous chapter).

Lemma 9.4.3 Given a£p)y-formula¢, we can compute in polynomial time an OCP
P with a fixed sel of action symbols and an initial state such that, for each positive
integer m, itis the case th&i,, (q,m) = a iff (N, +) = d(m), wherea is a small fixed
EF formula.

The crucial idea in the proof of the above lemma is that botfsitiility and indivisi-
bility tests of the formp|x or p /x can be reduced to a certain reachability question for
an appropriate OCP by embedding a cycle of lengthin 2.

Proof sketch of Proposition 9.4.2Ne give a poly-time reduction froBUFFER. Given
an arenad = (V,k,¢), we compute arFO?(Reach) sentencep’, and a OCPP =
(Q,d0,0-0) such that Played has a winning strategy it? iff Sp = ¢'. Letv=
(v1,...,V%). As we shall seed’ depends only ok and has quantifier rank+-c for
some small constawcte N, which by Lemma 9.4.1 will prove the desired lower bound
for data complexity.

We now run the algorithm given by Lemma 9.4.3 on inpuio compute a OCP
P, = (D, 83,81 ) with initial stateq; € D. The key now is to build on top af; and the
fixed formulaa (which can be thought of as aﬁ@z(Reach) formula) so as to encode
the initial guessing of numbers.

The structure of our output OCP can be visualized as

Bo—B1... —» Bc— 7.
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1

Figure 9.1: The s —* t path-weights in this graph equals (14 2N)U (14 3N)U (2+

The numbek+ 1 of blocksB; in P corresponds to the number of rounds played in the
buffer game. The initial state is in blo@e. Our outputFO?(Reach) formula will have
k+ 1 leading (alternating) quantifiers so as to ensure that pkgler moves in their
designated rounds. One variable will be used for storindasiebuffer value from the
previous round, while the other is used for storing the bufédue after the designated
player has made his move. We now describe how to ensure teathtound (i > 0)
the player can only add numbers that are in thédset {c <|‘|‘j’i:1 pj) :ce N}. Define
the functiong: Z~o — Z~o asg(s) := |‘|]$:1 pj. Note thatg grows exponentially irs,
which is why we cannot simply embed a cycle of lengtl) in B;, for eachi € [1,k].
On the other hand, notice thidf is Z — L;, whereL; := (Ulgjgvi Uac(o.p) @+ ij) U
Z<o.

In turn,L; can be characterized as the set of weights of paths in a smtaldiraph
Gi from a vertexsto a vertext, where theweightof a path is the sum of the weights
of its edges (which we shall allow to be only either -1,0, ar b fact, G; will have
O(Z‘j’izlpj) vertices, which is polynomial in;. For example, the s+ 2N) U (1+
3N) U (2+3N)UZ-g corresponds to the weights ®* t paths in the graph in Figure
9.1.

Furthermore, the grap; can be thought of as an OCP. Adding the self-loop tran-
sitions(s,| oops, s,0) and(t,| oopy,t,0) on states andt, the binary relation

{((s,a),(t,a+b)):beH}

can then be expressedﬁ@z(Reach) as—(X—"Y) AE oop. (X, X) AE gop, (Y, Y). There-
fore, we shall embed the modified O@ into B;, wheret will be the entry state for
block Bj1 of P. [Bks1 shall be interpreted a8, .]

Finally, using this idea, it is not difficult to compute thesited FO?(Reach) sen-
tence by mimicking th&+ 1 rounds of the game by using at mdst c alternating
quantifiers (using only the variabl@sandy). The end buffer valuen, which needs to
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be checked againgt can be checked agairstinstead.C
We can also apply Lemma 9.4.1 to prove the following lowerrizbu

Proposition 9.4.4 The combined complexity of model checkiffglogic over an asyn-
chronous product of two one-counter processd3SBACE-hard.

The proof of this lower bound is given in the appendix. Inugly, instead of simu-
lating each alternation in the buffer game as values in tleevariablesx andy, we
can simulate them as values in two different counters. Wencake sure that the
divisibility information is not “overwritten” by encoding as a non-fixed formula.

We saw in the previous section that the expression comylekaOz(Reach) over
MOCP is inP. In contrast, we can show that this is not the casé@f(Reach) even
over OCPs (without products).

Proposition 9.4.5 The expression complexity BO*(Reach) (without equality rela-
tion) over OCPs i#SPACE-hard.

The fixed graph is in factN, <). The proof, which is given in the appendix, adapts
the technique in [GS05] of succinctly encoding additionthamietic on large numbers
using the successor relations and linear okdevith only four variables.

We already saw that the data complexityesf-logic overlOCP isPNP. In con-
trast, we can show the following proposition.

Proposition 9.4.6 For each ke N, there is a fixedeFg-logic formula ¢k such that
model checkingy over MOCPis Z}-hard.

Intuitively, by using the synchronization constraintsearan faithfully simulate two
variables<andy in any givenFOz(Reach) formula as values of two different counters.
Again this proof is given in the appendix. This idea can gas# adapted for showing
the following proposition by appealing to Proposition 9.4.

Proposition 9.4.7 The expression complexity &fFg-logic over MOCP is hard for
PSPACE.
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Chapter 10
Conclusions and Future work

In this thesis, we have presented several generic and spesafiniques for deriving

decidability for infinite-state model checking with optihea near-optimal complexity.

This chapter will conclude the thesis with a brief summarthefmain results we have
obtained in this thesis and some future work.

Summary

We first recapitulate the generic techniques that we hawngivthis thesis. We adopt
word/tree automatic transition systems as our genericdvaark for modeling infinite-
state systems. These classes of systems strike a good dddatveeen expressive
power and closure/algorithmic properties. The expresgoaxeer of this framework
easily yields undecidability even for simple safety prdigs: Nevertheless, we have
obtained several algorithmic metatheorems for showingddédity (with optimal or
near-optimal complexity) for various model checking peshk over these frameworks.
More importantly, we have shown that these algorithmic thetarems can be used to
uniformly prove many known or previously not known decidability réswlith op-
timal (or near-optimal) complexity. Our algorithmic médtabrems are for recurrent
reachability (possibly with generalized Buchi condispnmodel checking LTL (or
fragments thereof) with multi-regular fairness constigiand extensions of first-order
logic with reachability and extended recurrent reachgbdperators. Our algorithmic
metatheorems can be used to obtain decidability for (amangre) pushdown sys-
tems, prefix-recognizable systems, regular ground-tnegteesystems, PA-processes,
order-2 collapsible pushdown systems, reversal-boundedter systems (and their
extensions with discrete clocks), and many subclassestofriéés. For most of these,
we have been able to derive optimal or near-optimal comiylexi

219
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We now summarize the specific techniques that we have pezsanthe second
part of this thesis. Most of these techniques are specificiitaiclasses of counter
systems. In particular, we considered reversal-boundedteosystems (and their ex-
tensions with discrete clocks) and one-counter processgseversal-bounded conter
systems (and extensions thereof), we provide a new algafith computing Parikh
images of NWAs as semilinear sets with optimal complexitigjon we then use to-
gether with Ibarra’s algorithm [Iba78] to obtain an optinaddorithm for computing
the reachability relations of such systems. Together with dlgorithmic metathe-
orem from Part |, we obtain an optimal complexity for LTL mbadecking with
multi-regular fairness constraints over reversal-bodrmminter systems with discrete
clocks. We also provide a kind of fixed-parameter tractgbitsult for model check-
ing EF-logic over reversal-bounded counter systems. For oneteoyprocesses and
networks of one-counter processes, we obtain optimal cexitplby providing three
new fragments of Presburger Arithmetic with better comiyesanging fromPNP to
PSPACE. We have provided optimal complexity for nearly all modeécking prob-
lems over these subclasses of counter systems that we eethid

Future work

We close this thesis by several future research directions:

e Is it possible to develop semi-algorithms for computingchesbility relations
over word/tree automatic systems with natural and generdérga for com-
pletenessRecall that reachability for many subclasses of Petri nedscaunter
systems can be solved byesemi-algorithm given in [BFLS05, LS05a] for the
class of linear counter systems. In contrast, each of therppund that we
derive using our algorithmic metatheorems requires thentiaespecific known
result for computing reachability relations for a specifiss of systems. Such
a semi-algorithm, if exists, will enable us to perform logiodel checking over
many classes of infinite-state systems umgformway.

e Can our algorithmic metatheorems be extendedxautomatic transition sys-
tems?As we have mentioned, this class subsumes interestingeslaginfinite-
state systems including real-timed systems. Furthernsamj-algorithms for
computing a subclass afautomatic systems have also been developed [BLWO03,
BLWO9]. However, this problem appears to be rather diffiowling to its con-
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nection with the open problem on Ramseyan quantifiers @vautomatic struc-
tures (cf. [Bar07, BGR10, Rub08] for more details).

e Develop new algorithmic metatheorems with better comgylexier Presburger-
definable system@ur algorithmic metatheorems cannot be used to give optimal
complexity for LTL model checking over subclasses of coustestems. For
example, LTL model checking over one-counter proces9eSRACE-complete,
while our technique only yieldEXP upper bound. Restricting to Presburger-
definable systems (i.e. a subclass of word automatic syytn&l potentially
lead to better complexity.

e Obtain algorithmic metatheorems for branching-time logiodel checking with
good complexity.As we saw, the approach that we develop in this thesis can
only give nonelementary upper bounds for branching-tinggclonodel check-
ing. This is in contrast to the complexity for pushdown sgsteor one-counter
processes which are withiEXP. The challenge is to obtain sufficiently general
metatheorems but still with good complexity.

e Give extensions of the normal form theorem for Parikh imagfeNWAs, e.g.
to one-counter automataAs saw in Chapter 7, our normal form theorem for
Parikh images of NWAs cannot be extended to context-freegrars. There
are, however, subclasses of pushdown automata to whichooomahform theo-
rem could extend. In particular, an extension to one-cauntmata will imply
that our exponential time complexity for LTL model checkinger reversal-
bounded counter systems with discrete clocks also extetitetcase when one
of the counter in the system is free.
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Appendix A

Proofs from Chapter 4

A.1 Proposition 4.1.5 implies necessity in Lemma 4.1.4

We now complete the proof of necessity in Lemma 4.1.4 by itidely constructing
the desired sequencéq; }icn and{pBi}ien by using Proposition 4.1.5 at every induc-
tion step. In the following, a sequendeq;}icy of paths of4 is said to begood if
No(0) = qo andlast(n;) = first(n;+1) for all i € N. In other words, the sequence of
paths is good if they can be concatenated to form a rud.inThe same notion can
similarly be defined for sequences of pathsiaf So, given a word/ € Z*, suppose
thatv € Rec., (L(A4)) = CHAIN (L(A4), L(R)).

Claim. There exist two sequencés; }i>o and {p;}i>o of words, a good sequence
{ni}i>o of paths of, and a good sequend®; }io of paths ofR such thatig = v,
No = o, B0 = ¢, and for allk € N:

1. forall0O<i <Kk, |aj| > 0,

2. forall0<i <Kk, |Bi| = |ail,

3. forall0<i <k m:=no®...Onjisarunofqonfy...Bi_1,

4. forall0<i <Kk 1:=600...06;isarunofR on (Bo®Po) ... (Bi—1®PBi-1),
5. forall 0< i <k, 4 acceptsy; from q;, whereg; = last(Tg),

6. forall0<i <k, R accepts; ® Biai1 from ¢, whereq] = last(Tt),

7. forall 0<i <k, o € CHAIN(L(4%), L(RY)), whereq; = last(T;) andq] =
last(Tt).

245
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Observe that this claim immediately implies Lemma 4.1.4 asnay simply define
MT=No®N1®...andT = 0 ® 6, ®.... To prove this claim, we shall define these
four sequences inductively. For eakle N, we shall define four partial sequences
{ai }o<i<ks {Bi}o<i<ks {Ni}o<i<k, and{6;}o<i<k satisfying the conditions in the claim.
We shall first deal with the base cdse- 0. We defineng = v, no = do, and6p = qp,.

It is easy to see that statements (1),(2),(5), and (6) areowsc Statements (3)—(4)
are also true becausg (resp.qp) is a run of4 (resp. ®) one. Statement (7) is true
by assumption that € CHAIN (L(A4),L(R)). Assume now thak > 0 and the four
partial sequences have been defined satisfying the sevelitioos in the claim for
all natural numbers up tk. We shall now extend these partial sequences by defining
Ok+1, Bk Nkr1, @andBy 1. By induction, we haver, € CHAIN (L(,‘ZLQK),L(‘J{QL)) and
so Proposition 4.1.5 gives us a word”. We may se3x =V anday,1 =V'. ltis
immediate that condition (1) and (2) are satisfied. We deiing to be the prefix of
length |V/| of the runp of 2% on vV’ given by Proposition 4.1.5. We defirgg, 1

to be the runp’ of ®% of length |V/| given by Proposition 4.1.5. It is easy to see
now that condition (3)—(5) hold wheneviet k+ 1 and condition (6) hold whenever
I = k. Proposition 4.1.5 also implies thag,1 € CHAIN (L(,QIQk+1),L(17{qf<+l)), where
Ok+1 := last(pk; 1) andqy 4 := last(p;, ;). Finally, conditions (3)—(7) hold for other
smaller values of by induction. This completes our proof for the claim and #fiere
the proof of Lemma 4.1.4.

A.2 Proof of Lemma 4.2.2

Suppose thaf; = (D1,11) andT, = (D2, 12). Let us first prove existence. The context
treeT = (D, 1) is defined as follows. Let

D= (D1NDy)U{vie D1\ Dz:i€Y,ve Dy}.

In other words, the tree domald contains all nodes that are bothlin andD» and
additionally the children of the nodes D1 N D> with respect to the tre§ but which
do not belong td,. The node labeling is defined as follows: for eache D1 N Do,
T(v) :=T11(V); for other nodesly, ..., u, € D1\ D2, we assigr(u;) :=x;. Itis clear that
both conditions are satisfied.

To prove uniqueness, consider another contextffee (D', 1) satisfying the two
prescribed conditions. We shall now prove tiiat T’ up to relabeling of the context
leaves. We first show th&t = D’. To showD’ C D, observe that condition (2) implies
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thatD’ C D;. Letve D'. If ve Dy, then we are done; otherwise, condition (1) implies
thatv must be a context leaf i’ of the formui for someu € D, andi € Y. In any
case, we have € D.  Conversely, we also hau@ C D’. To see this, observe that
D1N D, C D’; for, otherwise, ifu € D; N D2 such thau ¢ D’ andv is the longest prefix
of u satisfyingv € D;"D>ND’ (which must exist since € D’), both conditions imply
thatv is a context leaf but then condition (1) implies thva¢ D, which results in a
contradiction. Furthermore, each node= D1\ D2 such that € Y andv € D, must
be inD’ as a context leaf i’ by condition (2). Finally, we note that this proof also
implies that the context leaves ©fare precisely the context leavesTof Thereforeg
andt’ coincide except when evaluated on the context leaves. Bhipletes the proof
of uniqueness.

A.3 Proof of Proposition 4.3.4

The proof is via a reduction from the nonemptiness problemtefiguage intersections
of DWAs, which isPSPACE-complete [GJ79]. More precisely, the problemis to decide
whether, given DWAs4,, ..., 4, over some alphabé, the language.(4;) N...N
L(4y) is nonempty.

The proofis rather simple. From the input automdia. . ., 4,, we constructa PDS
which simply guesses a wowde >* which witnesses the intersection of the languages
L(A),...,L(An). More precisely, letP = (ACT,I",Q, d) be the PDS defined as:

e ACT ={a},
o =>U{Ll},
e Q={q1,q},

e 0={((n,q,a),(qg,ab)):aelbez}u{(q,a,a),(q,a):qeQacl}.

For each4;, let B; be the DWA that recognizes the langugge L w:we L(4F)}. It

Is easy to see that eadh can be constructed in polynomial time. Observe now that
Nt L£(4) #0iff g1 Le Red L(By),...,L(By)). This is becauseveryinfinite run
from qg; L in the transition systen®, generated byP that visitSL(By), ..., L(Bn)
infinitely often must eventually self-loop at some configima of the formqgy L w

for some wordw € Z*. Conversely, the existence of a witness ward: (1 £(4)
implies the existence of a run i@, from q; L which visitsg, L w, which then self-
loops forever.
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A.4 Proof of Proposition 4.3.7

The proof is via a reduction from the nonemptiness problemefiguage intersections
of NTAs, which isEXP-complete [CDG 07]. More precisely, the problem is to decide
whether, given NTAs4, ..., 4, over TREEx(Z), the language. (A1) N...N L(Ay) is
nonempty.

The polynomial-time reduction is very similar to the prodfRroposition 4.3.4,
and hence we shall only sketch it. We shall construct a GZRS&er TREEx(Y'),
where’ is the union ofZ with a set containing a special “guessing” node laipgl
and a special “sink” node labgb. The GTRSP will start at a tree with only a single
node labeled);, and “guesses” a trek that withesses nonemptiness of the language
intersection problem. At any given point, each leaf wilheit be labeled; or g2. We
will also have rules of the forng; — g2 andge — . The input NTAsSA4y, ..., 4,
will be slightly modified by attaching leaf nodes labelgdto the leaves of each tree
recognized by these automata. The rest is identical to thaf pf Proposition 4.3.4.
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Proofs from Chapter 5

B.1 Proof of Proposition 5.4.6

We show that model checking the negations of kdlformulas over GTRS idP-
hard. Our reduction is from the problem HAMPATH of testingetier there exists
a hamiltonian path in a directed graph. Suppose the inpugisphG = (V,E) with
verticesV = {1,...,n} and edge& C V x V. Node labels for our trees in the output
GTRS? will draw from the se& := {X,root,eval} U{1,...,n}. The initial treetp to
be evaluated against the input Lgdformula is the tree drawn in Figure B.1. We have
action labelsACT := {1,...,n} U{eval fin}. We now describe the transition rule of
?. Foreach € {1,...,n}, we have arulX —; i. For each directed edda,Vv) € E, we
have a transition ruleval(u,v) —eyva U, Whereeval(u, V) is a notation for the tree with
three nodes with root labelexVal, left child labeledu, and right child labeled. For
eachi € {1,...,n}, we also have a transition ruteot(i) — fi, root(i), whereroot(i)
is the tree with two nodes with root labeleabt and only child labeled. Let ¢peya be
the formula

evalA X (evalA X(eval... A X (evalA fin)))

where the number of eval— 1. Let¢ be the formula

IAX(2...AX(NAXbeval))-

Claim B.1.1 (A(P),tp) [~ —¢ iff G has a hamiltonian path.

Itis not hard to see that the claim is true. A hamiltonian path iq,iz,...,inin Gwill
correspond to the tretg where thejth leaf is “evaluated” agj, and vice versa.

249
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r oot

Figure B.1: The initial tree tg with n leaf nodes.

Finally, it is not hard to see that the negation¢ofs an LTLge formula (and can
be computed in poly-time). To show this, it suffices to showat tthe negation of
Y := pAX(¢)is an LTLye formula, provided that¢ is an LTLge formula. In fact, if
p € ACT, the formulay is equivalent tgp A (—p Vv X(¢)), and hence-y is equivalent
to—pV (pAX(—=¢)) which is an LTLget (Since—¢ is an LTLget formula).
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Proofs from Chapter 7

C.1 Proof of Fact 7.3.3

The proof is by induction on the lengttt of the pathrt. Whenevelfti = 0 (it contains
only a single state), we may then take= mand seth = 0. Then, we haveP(m) =
P() + Zihzl P(C;). Suppose that Fact 7.3.3 holds for all paths up to lekgtii > 0.
We shall now show that it also holds for all paths of lengthLet 1t be a path of
lengthk. If Ttis simple, then we may sa&t := rtandh := 0, and the proof is complete.
Therefore, assume thatis not simple and lett= po. .. px, Wherepo = qandpx = (.
Leti > 0 be any index such that the staieappears imtmore than once, say, pt and
pj. Then, consider the path

Ty = PoP1-.-Pi-1RiPj+1Pj+2--- Pk

of length strictly smaller thak that is obtained by removing the segmeiit+ 1, j]
from . We will now apply the induction hypothesis twice. Firsthpplying the in-
duction hypothesis on the path, we obtain a simple patif and finitely many simple
cyclesCy,...,Cy possibly with duplicates such that

h
P(1y) = P(T0) + Zfl’(Ci).

We now apply the induction hypothesis again on the peith- 1, j| from p; to p; that
is of length smaller thak yielding a simple pathp; of length O (sincep; = p;j) and
finitely many simple cycle€;, .. .,C/ such that

r r

P(mi+1,j]) = P(p) +;fP(C{) = ;T(C{)-

251
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This clearly implies that
h r
B(1) = 2() + § 2(G)+ J #(C)).
i= =

which extends the validity of Fact 7.3.3 to valkeTherefore, by mathematical induc-
tion, Fact 7.3.3 holds for all values kf which completes the proof.

C.2 Proof of Lemma 7.3.5

We only show that if theM,[j,h] = 1, then so is théj,h)-component of the matrix
on the r.h.s. The converse can be proved by observing thtteatiteps below can be
easily reversed.

Lets= 1+ 3K ,ri. Suppose thatr= g 10, . ..bsqy is a path fromg; to g, with
P(m) = V. Thus, we havéy = j andls = h. We now decomposgas follows. Let be
the first position where the letter occurs inm, i.e.,by = a; andby # g for all t’ < t.
Let T :=q,b1...q,_,, T :=0q,_,bq,, ands == q,bt+1...0,. Letu:=P(m) and
w := P(13). Notice that thath entry ofu is 0 andw = v — g — u. Furthermore, we
haveMy[j,li—1] = Mg [lt—1,lt] = Mw|[lt,h] = 1. It follows that the( j, h)-component of
the matrixM, e Mg My is 1.

C.3 Proof of Lemma 7.3.6

This can be done using Lemma 7.3.5 and dynamic programming.algorithm has
n+ 1 stages. At stage=0,...,n, we compute alM, where the components insum
up to j. These will be saved in the memory for subsequent stage®dgfettation. As
base cases, we would obtd#y andMg, for each 1< i <k, directly from the input.
Notice that boolean matrix multiplication can be donedm®) and so each stage of
the computation can be performed@in®+4). Thus, the entire computation runs in
time 2(klogn)

C.4 Proof of Proposition 7.3.10

The automatord, = (Zn, Qn, dn, o, gr ), Where

Qn = {QO7QF}U{p07---7pn}U{pllw--ap/n},
5h = {abc}u{a,a:1<i<n}.
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Figure C.1: A depiction of the DWA A4,

We specify the transition functiody, in Figure C.1. Notice thafl, has an equivalent
regular expressios, of sizeO(n). For example, when = 2, we can define, to be

b(a(as(ah)"clagy(a;)"c))"b.

We now argue that the-component of some must be at least(n+1)/2. Letm
be the maximum entry over all vectorslifi_, S. Define

N := (max{\S\ 1<i< r}@m) +1.

For each 1< i < n, letC; be the cycleppapa. .. piaip/(a/p/)Ncpo. Consider the ac-
cepting pathit= (gobpy) ©C1 ©C2®--- ©Cr ® (pobae). We haveP(m) € P(vy; &)
for some 1< h <r. Observe also that occurs preciselfl ;i = n(n+1)/2 times in
TL.

Claim C.4.1 Each g-component o¥, (1 <i < n) is nonzero.

We now prove this claim. Le§, = {uy,...,us} and P(m) = vy + 2 tiu;. For

eachi € {1,...,n}, there exists a vectar; with a positivea’j-component and;, >

n(n+1)/2; for, otherwise, thej-component ofP(m) is at most|&|wm <N, a

contradiction. In particular, this implies that alfcomponent ofij;, wherea # & for
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allie{1,...,n}, is 0 as each such lettaroccurs at most(n+ 1)/2 times inTt. But
this means that eac-component o/, is nonzero; for, otherwise, we could consider
the vectorv, + uj;, which would not correspond to any accepting pathdinsince at
least one letteg; needs to read by, if & is to occur in the path. This proves our
claim.

Now consider each wondl = Wp...W € £L(4n) such thatP(w) = vy, Itis easy to
see that the number of occurencesadh w must be at least(n+1)/2. In fact, for
every 1<i <n, definej; = min{j : w; = &}. For each, the number of occurences of
ainw...wj,, wheret = max{ji : jy < ji,1 <i’ <n}, is atleast. The lower bound of
n(n+1)/2 on the number of occurencesain w immediately follows.

C.5 Proof of Proposition 7.4.2

DWA

We now give a poly-time reduction from the hamiltonian patbljpern to membership
problem for Parikh images of DWAs. The hamiltonian path peobasks whether a
given graph® = (V = {v1,...,vn},E) has a hamiltonian path fromwy to v, i.e., a
path fromvy to v, in & that visits each vertex i exactlyonce. Given®, we define

the DWA Ag = (2,Q,8,q0,0r) WhereQ :=V, 2 :={ay,...,an}, Qo := V1, O := Vp,
andd = {(vi,a;,vj) : (vi,vj) € E}. Then, it is easy to see thét has a hamiltonian
path fromvy to v, iff the Parikh imageP(a; . ..an) of the worday . .. an is in P(Ag) iff
(0,1,1,...,1) € P(As). This completes the proof of NP-hardness of the membership
problem for Parikh images of DWAs with unbounded alphabst.si

Regular expressions

One-in-three 3SATs the following problem: given a boolean formupain 3-CNF,
does there exist a satisfying assignmentdiathat additionally makes no more than
one literal true for each clause. We shall call such an satigfassignmeni-in-3.
This problem is NP-complete (cf. see [GJ79]). We shall redilnts problem to the
membership problem for Parikh images of regular expressi@ivenp =Cy A...AC,
whereC; is a multiset ovek := {X1, X1 ..., Xn, =Xn } With |Cj| = 3, we define a function
f:L—{1,...,k}" as follows:

o f(x):=a1...a¢whereg ;=i if x € Cj, anda; := € otherwise.
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o f(—x):=ay...a¢whereg ;=i if -x € Cj, anda; := € otherwise.

That is, the functiorf associates a literal with the indices of clauses that arsfieak
when the value 1 is assigned to the literal. The correspgn@igular expression over
>={1,...,k}is
& = (f(x)[f(=x1))... (F(Xn) | F(=Xn))-

Let 1 € {1}K. We claim thatd is a positive instance of one-in-three 3SAT iffc
‘P(L(ey)). To prove this, suppose thatis a positive instance with a 1-in-3 satisfying
assignment : L — {0,1} (i.e. a(x) =1 iff a(-x) = 0). Consider the worav :=
X1...Xn € 2, where

o { fx)  ifo(x) =1,

X 1= .
f(=x) ifo(x)=0.

Observe thatv € L(gy). Sinceo is a 1-in-3 satisfying assignment, it follows that
P(w) = 1and, therefore, we haviec P(L(ey)). The converse direction can be proved
by reversing the above construction of the wardFinally, observe that the construc-
tion of ey and1 can be done in time polynomial in the sizedof

C.6 Proof of Proposition 7.5.7

This result is almost immediate from the undecidabilitylod Emptiness problem for
deterministic O-reversal 3-counter systems thay test equality of the current values
of two countergISD™02]. More precisely, such a counter system is of the fém=
(ACT, X,Q,A) with X = {x,y,z} and instructiong(q,$(X)),a, (d,i1,...,ik)) of the
form:

e foreachj >1,i; >0, and
e §(X) is the (guard) Presburger formwa- x or z~ y, where~ is either= or #.

The semantics is similar to the usual notion of counter systeFor example, if the
instruction has a guard formula= x, the machine simply tests whether the current
values held by these variables coincide and then the irigingsccan be executed if the
test was successful. Theamptiness problemorresponds to the problem of deciding
whether the configuratioftp,0,0,0) of M, whereqop € Q is a designated initial state
of M, may reach a designated final stgtec Q.

We now give the reduction. On an input counter sysf@hof the above form, our
new counter syste’ = (ACT', X, Q,A’) will be 1-reversal and not have comparison
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tests between the values of two different counters. Intelij when simulating an
instruction inM of the form((qg,a ~ B),a,(q,i1,i2,i3)), the new counter systet’
will move from the state to the intermediate stat@],a ~ [3) and then move to the
stateq’ while modifying the counters using, i»,i3 andignoring the testt ~ 3. Our
CTL formula will later take care of the test ~ 3 using one extra reversal. More
precisely, the new counter systeWi = (ACT', X, Q’,A") is defined as follows:

e ACT = {%,5,succes,

e X={XY,2},

e Q' is a union ofQ, {(g,4(X)) : g € Q, and¢ is a guard formula i/}, and
{(test (X)) : ¢ is a guard formula itV }, wheretestis a new state (i.e. does
not occur inQ), and

e /\’ contains instructions of the form:

— ((ge, T),successqe, 0,0,0)).
- (0, T),5,((a,9),0,0,0)), if there is an instruction it of the form

((q,q)),a, (q/7i17i27i3))'

(0,0),T),9,(d,i1,i2,i3)), if there is an instruction i of the form

- ((

((0,9),a,(d,i1,iz,i3)).

- (((@.9), T),©.((test 9),0,0,0)).
- (

testa ~ ) may loop on the same state with the actiorwhile decre-
mentinga andf3 by 1.

— (testa =) may test whethem = 0 andp = 0 and loop on the same state
with the actionx without modifying the counters.

— (testa ~ ) may test whethem = 0 andf3 > O (ora > 0 andp = 0) and
loop on the same state with the actiowithout modifying the counters.

The desired CTL formula is

6 =E((0)(\/(test d) — EFx) U succesk
¢

where¢ is eitherx ~ zory ~ z, where~ is either= or #. The formula makes sure that
each guess made by the counter system regarding the coorptasss between values
of counters is correct. It is easy to check t&aj,,(q,0,0,0) = 0 iff (M, do,qr) is a
positive instance of the original problem. This completesreduction.
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Proofs from Chapter 8

D.1 Proof of Lemma 8.2.2

Let a = (ai)ic)) be an extended MMA formula.  Define the set(pbssibly) in-
voked pairs PC [I] x Z to be the se{(i,j) :i € [l],] € [ +i,l —i]} C [I] x [-1,1].

Now associate the s& with the usual lexicographic orderingyz for Z x 7Z (i.e.

(X,Y) <zxz (X,¥) iff (1) x < X, orx= X andy < y). We will now construct a MMA
formula

B = (Bia))idepr

such that
[Bial = {(xeN[x+d>0 A x+de[ai]} (x)

for each(i,d) € P.

Recall that we identify a dagjl], <4) with a and its corresponding strict partial
order<¢. In the following, we will give the definition oB(i,4) and directly prove that
equation(x) holds, for eaclfi,d) € P by induction oni with respect to</ . The lemma
will follow from the latter, since we will havéa]] = [[o]] ® [Bq1,0)] = [B]-

For convenience, we will allow formulas of the forsn—k for positive integek.
Such formulas, which arstrictly speakinghot MMA formulas by definition, serve
only as abbreviations. In particular, we can replace albiatien < —k by —(> 0) (not
satisfied by alk € N) and> —k by the formula> 0O (satisfied by alk € N). For the
induction base, assumé minimal with respect te<g . Take anyd € [—I,1] satisfying
(i,d) e P.

e Incasen; = (=m modn) for somem,ne N. Letv = (m—d) modn. Then,

257
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we put
Biig) = (> —d)A(=v modn).

It is obvious to see that equatidn) holds for(i,d).

e In caseqa; = (~ n), where~c {<,>} and wheren € N. Define the integer
v =n—d. Then we put

Bia)=(=—d) A (~V).
Again, it is obvious to see that equatiof) holds(i,d).

For the induction step, assumés not minimal with respect te</. Take any
numberd € [—I,l] satisfying(i,d) € P. Again, we make a case distinction according
to q;.

e Assumen; = —aj for somej € [i —1]. Then, we put

Bigy = (= —d)A(=Bj.a))-
Observe that this is possible, singed) € P. By induction hypothesis, we have

[Bij.a)] = {xe N|x+d>0Ax+d € [aj]}.
Hence,
[=B(ja)] = {xeN|x+d <0Vvx+d ¢ [aj]}

which equals
{xeN|x+d<0Vvx+de [ai]}.

The latter and the definition ¢%; o) yields that[[B; 4] equals
{xeN|x+d>0A(x+d<0Vvx+d e [ai])}.

which equals
{XeN|x+d>0Ax+d e [ai]]}.

delivering(x) for (i,d) as required.
e Assumen; = aj Aoy for somej,k € [i —1]. Then we put
Biiay = Bj.a) ABikay-

Again, this is possible, sindg, d), (k,d) € P. That equatior{x) holds for(i,d)
follows directly from induction hypothesis.
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e Assumen; = n~ minaj for some~ec {<, >}, j € [i — 1], andn € N. Then, we
put
B(Ld) = (2 —d) AN~ minB(LO).
Then,(x) is immediate by induction hypothesis.
e Assumeg; = n~ maxaj,n’) for some~ec {<,>}, j € [i—1], andn,n’ € N.
Then, we put
Bigy = (= —d) An~max(Bj g),n).
Then,(x) is immediate by induction hypothesis.
e Assumeaj =~ mina;j for some~ec {<,>} and for somg € [i — 1]. Then we

pUtB(Ld) as
(> —-dAd> minB(LO)/\ ~—=1)V

(> —dAd <minB; oA ~minB q)).

To see why this definition is correct, we first inspect the rrigaind side of the
equation(x). Observe that for ak € N, we havek+d ~ [[a;]] andk+d > O iff
either of the following two statements hold: @} d > 0,d > [aj]] andk ~ —1,
or (2)k+d >0,d < [aj], andk ~ min[a;]] —d. This is clearly because for all
k € N and a negative integéf we havek ~ —1 iff k~ k'. Our definition of; )
now implies thaf[; 4)] is a union of the set

{ke N:k+d>0Ad> min[[B(LO)]] AX~ —1}
and the set of akk € N such that

k4+d>0Ad< mln[[B(Lo)]] AK~ mln[[B(Ld)]]

By induction, we may assume that
[B(ja)l ={ke N:k+d>0Ak+d e [aj]}.
Similarly, by induction, we hav@B; )] = [[a;]]. Furthermore, we have
minfa;] —d = min{k—d e Z:ke [a;]}
= min{ke Z : k+d € [aj] }.

These imply that mijotj[] —d = [[B(j ¢)]] if min[a;]] > d. That(x) holds is then
immediate.
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e aj =~ maxaj,c) forsome~ec {<,>}, j € [i—1], and a constart € N. Then,
lettingv = c—d, we putB; q) as

(> —-dAd > max(B(Lo),c)A ~-=1)V
(= —dAd <maxBy;0),C)A ~ maxBq),V)-
The proof is identical to the previous case.

e Assumen; =aj — 1 for somej € [i — 1]. Then we put

Bia) = B(jd+)-
Notice that(j,d+ 1) € P sincej < i and(i,d) € P. By induction hypothesis,

[B(j,d+1)] equals

{xeN|x+d+1>0 A x+d+1¢€ [a;]}.
which is equivalent to

{xeN|x+d+1>0 A x+de [a; —1]}.
It follows now that[[B; ¢)]] equals

{xeN|x+d>0 A x+d € [ai] }.
and thugx) follows for (i,d).
e Assumen; = aj+ 1 for somej € [i —1]. We put

Biay = (=—d) A B(jd-1)-

Notice that(j,d— 1) € P sincej < i and(i,d) € P. By induction hypothesis we
have thal[[B(Ld_l)]] is

{xeN|x+d—-1>0 A x+d—-1¢€ [a;]}.

By definition off3; 4) we have that
[Bia)]l = {XeN[x+d>0 A xe[Bja-nl}
which hence equals
{xeN|x+d>0Ax+d>1Ax+d—-1€ [aj]}

which equals
{XeN|x+d>0Ax+d e [a;i+1]}

delivering(x) for (i,d) as requiredd
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D.2 Proof of Lemma 8.3.1

(1) = (2): Follows trivially since?’ is obtained fromP by adding\-transitions.
(2)= (3): Letm=s; =g S --- = S be a path irG,,. Formally, we calfrtnormal-
izedif

Stle -l s Te - T &
for somei € [k]. We claim that every shortest path fratot is normalized. To prove
the implication, assume, by contradiction, that there isatest patht= (g1,n1) — ¢
(O2,n2) --- —o (Ok, Nk) With s= (g1, N1) andt = (gk, Nk) that is not normalized. Then
there exists a subpath

(9,10) T (Ain,Misa) T -+ Tor (@5, N)) Lo (A1, Njs1)
in Tt such thamj 1 = niy» = --- = nj andnj = nj;1 = nj + 1. If, on the one hand
i +1=j, then by rule (R2), it follows thata,nj) — ¢ (dj+1,Nj+1) by whichp can
be replaced, contradicting the minimality j@f. On the other hand, if+ 1 < j, then
by successively applying rules (R1) and (R4), we obtain tat, ni11) —¢ (Qj,n;j).
Finally, by applying rule (R3), we obtain théd;, nj) — ¢ (Qj+1,Nnj+1) by whichp can
be replaced, contradicting the minimality |of.
(3) = (1): We prove that{q,n) —4 (d,n) for someq,q € Q implies the existence
of a mountain path frontg,n) to (q',n) in Sp. For proving the implication, this is
sufficient sinced;, (resp. &) only differs fromdg (resp. &-0) by adding transitions
of the kind (g,A,q’,0). So letn € N be arbitrary and led’ = &, (resp. 6 = &) if
n=0andd =&, (resp.d = d.0) if n> 0. We show thatq,A,q,0) € & implies the
existence of a mountain path frofg,n) to (q',n) in S, by induction on the height
of the shortest proof tree for applying the rules (R1) to (R4Jeducgq,A,q,0) € &.
For the induction base, assurhe= 1. Then, there are two cases. Firstly, in case
we applied rule (R1), we hav@,a,q,0) € & and thus clearlyg,n) —» (d,n) is a
mountain path. Secondly, in case we applied rule (R2), we b@a1,01,+1) € d
and(qi1,az,q,—1) € 0~ for someq; € Q and somea;,a, € ACT. Hence(q,n) —p
(g,n+1) —4 (g,n) is a mountain path i®». For the induction step, firstly assume
some shortest proof tree of heidght- 1 witnessing g,A,d’,0) € & has rule (R3) at its
root. Then(q,ay,q1,+1) € 8,(q1,A,02,0) € 8., and(gz,a2,q, —1) € 3. for some
J1,02 € Q and somey,ax € ACT. By induction hypothesis, there exists a mountain
path from(qi,n+1) to (g2,n+1) in &p. Thus, inG», we have a mountain path of
the kind

(a,N) =g (G1,N+1) = (G2,n+1) =4, (d,N).
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Secondly, assume that some shortest proof tree witne@gihgy’, 0) € &’ has rule (R4)
at its root. Ther(q,A,q1,0) € & and(qs,A,d,0) € & for someq; € Q. By induction
hypothesis, there is a mountain path fregan) to (q;,n) and from(qgg,n) to (q',n) in
S. Hence, there is a mountain path frgmn) to (g, n) in Se.

D.3 Proof of Lemma 8.3.3

By definition,0(q1,02) equals the minimal + 1 such that € Afo(ql, 03) ﬂA?O(qg, a2)
for someqgs € Q. By applying Lemma 8.3.2, we compute in polynomial time facle
g3 € Q the two unions arithmetic progressidn$a +biN | i € [K]} (resp.U{ci+diN |
i € [I]}) that equaIAfo(ql,qg) and (resp.AT>0(q3,q2)), where moreover witlk, | €
O(|QP?), ai,cj € O(|QJ?), andby,d; € O(|Q|) for eachi € [k] and eachj € [I]. Define
a=max{g |[i €K}, b=max{bi|iec[kl},c=maxc|iec][l]},andd =max{d |iec
[11}. Thus, for eachys, it boils down to computing

min U{ai+biN |ie [k]}ﬂU{ci-l—diN liell]}
which is easy, since it either equadsor it is less than or equal to
max{a,c}+b-d

and hence is bounded 16)(|Q|?).

D.4 Proof of Theorem 8.4.3

We shall now prove that, for every fixed one-counter proc2ss (Q,dop,0-0), the
following problem is inP: given a statéq,n) € Q x N, wheren is given in binary and
anEF dag-formulap, decide whethe{Sp, (q,n)) = ¢.

AssumeQ = {qy, ..., 0k} andd = (¢i)ic- We directly refer to the translation pre-
sented earlier in this section that allows us to compute ipnmonial time an extended
MMA dag-formulaa = (0 j))icqx such thatfa )] = {n€ N | (e, (qi,n))
¢j}. Note that in our translation, we liberately allowed the wi¢ibns o; ;) to be
complex. It is straightforward to see that we can computecarivalent formulg =
(Bi)ie[r]» Where the definitionf; are not complex along with a mappirg [K] x [I] —
[r] such thatfla; ;)] = [[Bei,jll for each(i, j) € [k] x [I]. Firstly, let us estimate. For
this, we look at the translation fror® and¢ to a more carefully. It will suffice to
estimate the definitions;; ;) whend; = EF¢; for somej’ € [j — 1]. A simple analysis
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shows that rewriting the complex definition; ;) in terms of non-complex definitions
requires an extended MMA formula ¢éngth (not size) at most the product of the
following

e O(k) (disjunction over all’ € k),
e O(k) (disjunction over ally’ € Q for eachBs(i,i’),s=1,2,3), and

e O(k?) (disjunction over all arithmetic progressionsfrsets determined either
by (qi,q") or by (g, qir) with offsets bounded b@(k?) and periods bounded by
O(K).

Since there ark-| such pairgi, j), we obtain that € O(1 -k%). One can easily observe
from the translation that all natural numbersuch that eithek = m modn or x ~ n
occurs in any definition of is bounded byO(k?), since it is at moshy plus the
maximal offset of any arithmetic progression that appeaaniy of theA-sets. Since
k is fixed, we obtain that; is a constant for eache [r]. Similarly, one verifies that
the largest offset that occurs @) that we denote big, is also constantly bounded by
0O(k?), since it is less than or equal to the maximal offset of arharetic progression
that appears in any of thie-sets. Hence there is some constart c(?) such that,
by Lemma 8.2.1, we can compute in polynomial time a thresholdi - c+v; and a
periodp; < ¢ such that for alhi, np > tj the following implication holds

n=nz modp = (N1 € [[Bill < n2 € [Bil)

for eachi € [r]. Next, we aim at estimating for eachi € [r]. A precise analysis of
the definition ofa shows that any constant that will occur in any definitiofiifs less
than or equal t@ plus the maximal periodicitp; of any[3; with j € [i —1]. Hence we
have

vi<max{ti+c|jeli—1]}

and
ti <i-cH+vi.

We claim thatt; < i2- ¢ by induction oni. For the induction base, i.e.= 1, observe
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thatt; = 0 sincea1 = T. For the induction step, assumg 2. Then, we have

t < i-ctv

i-c+max{tj+c|jeli—1]}

< i-c+(i—1)2-c+c  (byinduction hypothesis)
= (i+i2-2i+2)-c
< i%2.c

The latter inequality holds since> 2. Hence, sincé € [r] andr € O(I - k%), we
havet; € O(1%) and thust; € O(|$|?). Thus, logarithmically many bits if| suffice
to represent the periods Moreover, recall that each perigg is at mostc. It is
now straightforward to construct an alternating logspaaeng machine that checks

i (S, (0,10) = 6.

D.5 Proof of Proposition 8.6.2

We will reduce DSAT to the weak-bisimulation checking perbl Without loss of
generality, we assume that eaghis in 3-CNF and every assignment makes at least
one clause ofy true (this can be done by adding the clags® —x) for some new
variablex). Furthermore, we assume that e&¢ts nota tautology (this actually means
that some clauses &f do not contain two contradicting literals). We also assuinag t
all the formulagss have the same number of clauses; this can be done by dirgicat
clauses.

We are given an instandg, ..., F, of DSAT with variablesxs, ..., X, and seZ =
{y1,...,Yn } Of variables such thd take only variables ifxs,...,X_1} UZ. Suppose
thatF = Cy A... ACh, whereCj = (I} ; V1!, VI} 5) such that} ;, I} ,, 1} 5 are literals
over the variable$xy, ..., x,} UZ. As we will use Godel encoding technique, for each
integerl > O let us define a function; mapping boolean formulas over the variables
{Xt,...., % UZt0{T,L}. If &()=j1j2..., then definey;($) to be the truth value
obtained by replacing; by j; andx; by o(x;). It is easy to see that eadx;) = 1 iff
there exists an integér> 0 such thav|(F) = T.

The one-counter net and the finite system that we will constrill use the action
symbolsa, b, c,d, X1, X1, ..., Xm, Xm, T. Note that we abuse variable nanxe® also refer
to action symbols; however, the meaning is clear from thdaedn In the following,

a finite systenG = (S, {—a: a € ACT}) is also abbreviated as a tufl8, dc), where
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q | 3s(q.a) q | 3s(a,b) q 3c(q,d)
| (AA A {C) ClTTxX:1<i<n
P (A) Al o c| TxXii<i<n

Table D.1: Definition of dg on input a,b,d

dc 1 Sx ACT — 2Sis a function such that —, § iff § € dc(s). We construct a finite
systemG = (S &g) as follows:

o S={PLRAACCTTDIU{X X:1<i<n},

e The transition functiordg is defined as follows. On inpw, b andd, ¢ is
defined in Table D.1. We also define that

ds(a,¢) = {a},vqe {T,T,X,X:1<i<n},
6c(9,1) = {D},Vae {T,X,X:1<i<n},
dc(a,%) = {Pi},Vqe{T,T.X;:1<j<n}u
{Xj:1<j<nj#i},
5 (q,%) = {P.},vqe{T,T,Xj:1<j<n}U
{Xj:1<j<nj#i},
x) = {P}
) = {Pi}

(

O (X,
dc(X,

&

We construct a one-counter net= (Q, dp,8-o) as follows. Initially,Q, &, and
O~ are empty. For every £ i < n, we add all the states in

Q= {s,rcj:1<j<mp
If there is a literaly, or —yx appearing in the clauﬁé, then we add all the states in
{(Cyh):0<h< pe,
wherepy, is thehth prime number. We also add the states in
{X,X5:1<i<n}.

In addition, we add an isomorphic cof@/ of the above finite systef@ such that each
state inG is renamed with an extra prime symbol (eAbecomes\’). Now we add
the following transitions for eachd i < n:
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e add(ss,T,sr,+1) t0 8.0

e add(ss,T,sr,1) do,

e add(ss,a,ri,0) to b,

e add(ri,b,c},0) to 3¢ for every 1< j <m,

o ifgc {T’,X{,Z’ : 1 <i < n}, then we add the transitic(mij,d,q, 0) to d-0,

o if the literal x (resp. —xc) appears in the clausgl, then we add the transition
(¢}, d, X, 0) to (resp.(c},d, X, 0)) to 8-o,

e if the literal yi (resp. —yx) appears in the clauéq', then we add the transition
(Cij ) d7 <Cij7yk7 O>7O) to 6>0)

e add((Cl,yk.h),c,(Cl, v h),0) to 3= forall j,k h,
e add((Cl,yk,h),T,(Cl,y (h—1) modpy),—1)tod- forall j,kh,
e if y, doesnotappear positively ilti:ij, then ado((Cij .Yk, 0), ¢, (Cij .Yk, 0),0) to &,

e if yx does not appear negatively@, then add (C!,yk, h),c, (Cl,yk, h),0) to &
for every 1< h < px

e add((Cl,yk,h),%¢,P},0) for eachk’ € [n] to 8.0,
e add((Cl,yk,h), %, P},0) for eachk’ € [n] to 8.,

o if ((Cij,yk, h),0) has a self-loop with action label then adc((Cij,yk, h), X, P1,0)
and ((C, y, h),%e, P, 0) for eachk’ € [n] to &,

e add(Xy,x;,P;,0) to d-¢ for all j # k, add (X, Xk, S, 0) to 8-, and add the rule
(X, X}, P;,0)tod-p forall 0 < j.k<n,

e add(X,X;j,P;,0) tod-qforall0< j,k<n, add(X,Xj, P5,0) tod-o for all j #k,
and add X, X, Sr,, 0) t0 d-.0.

e add all the transitions i’ to d-¢ and &y, which are interpreted as internal
transitions.
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We claim that(Fy,...,F,) € DSAT iff P, ~ s, (0) iff P> is not weakly bisimilar to
S,(0). We prove a stronger version of this claim. In the followimgs definesg, to
be the statd’;, and use the convention that the empty sequéhaé formulas is an
instance of DSAT.

Claim D.5.1 For every0 <i < n, the following statements are equivalent:
e (Fi,...,FR) € DSAT.
o PL~sr(l)foralll e N.
e P is not weakly bisimilar tog(l) for all I in N.

We prove this claim by induction on Consider the base case- 0. Our convention
implies that() € DSAT. Observe also that each stateSiis obviously bisimilar to the
corresponding state i® after renaming with any given counter value (eAg= A'(j)
for any j € N). This is because no states @i ever reach a state that modifies the
counter values. In particular, we haRe~ P;(0) = sr,(0). Furthermore, it is easy to
see thaP; is not weakly bisimilar td%. This also means th& is not weakly bisimilar
t0 S, (0).

We now consider the inductive case- 0. We shall use the function that we
defined earlier in the proof. We now give several obvioussfdone easily follows
from the previous ones):

e For each > 0, if the variabley, appears in the cIauQ, then(Cij,yk,O>(I) =
(Cl,yi, ) (0) iff I =h (mod py).

e For each I< j <, itis the case thal ~ Xj(l) for eachl > O iff the unique
assignment : {Xy,..., %} — {0,1} for (Fy,...,Fn) satisfieso(xj) = 1. To see
this, observe first that Attacker cannot start the game byimdeany moves with
action labels other thax), which will take a pebble to eith& or G', as Defender
then has a response in the isomorphic copy in the other sySemAttacker is
then forced to makej-move in either of the system, which does not matter as
both of the stateX; and.Xj(l) has exactly one uniqug-successor. Defender has
a unique response which set up the next configurarss (1)). By induction,
Defender now wins ifPy ~ ¢, (1) iff o(xj) = 1.

e Foreach K j <i, itis the case thaf ~ Xj(1) for eachl > 0 iff o(x;) =0. The
proof is identical to the previous item.
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oV (C‘j) =Tiff Cx cij (). To see this, observe first that Attacker cannot matte a
move to any of the states {T, Xk, Xx: 1 <k <n}in Gor{T’,Xﬁ,E’ :1<k<n}
in G, as Defender then has a response in the isomorphic copyatitbesystem.
Attacker then has only two choices: (1panove toT in G, or (2) ad-move to
the states ir§ corresponding to the literals . Suppose thaE ~ c|(I). Then,
Defender has a responseSiior Attacker’'s move of type (1): either one of the
state(Cij .Yk, h) (1", or a statex, or a stateXy. For the first case, there is a literal
(—)yk that makesC; true undew,;. For the second (resp. third) casg,(resp.
—X) is a literal inCj with o(x) = 1 (resp. a(xc) = 0). Conversely, suppose
thatv|(Cj) = T. We shall prove thaC ~ c|(I). For Attacker's move of type
(1), Defender has a winning strategy that is similar to theveose case. Let
us consider Attacker’s move of type (2). Suppose that a birig appears in
Cij and Attacker makes d-move to <Cij,yk,0). Suppose first thag, does not
appear positively irC;. If vi(-yx) = L, Defender plays @-move toT; and if
vi(—yk) = T, Defender plays d-move toT. Similarly, Defender has a response
whenyy does not appear negatively@#. Suppose now that a literal appears
in C'j and Attacker makes d-move toXy. If o(xx) =1, it is easy to see that
Defender can makedmove toT and wins. Ifo(xx) = 0, Defender can make a
d-move toXy in G and wins since the uniqug-successor fronXy is P, instead
of P, (i.e. stateXy “inverts” the outcome of the stafé under the actiorxy).
Similarly, if the literalxy is contained ir(:ij and Attacker makes@move toXy,
then Defender has a winning response.

e v|(Cl) = Liff C~c/(l). The proof is similar to the previous case.

e vi(F)=TIiff Axri(l). To see this, observe that(F) = T iff v, (Cij) =T for
all j. By the previous items, this in turn is true @f~ cij(l) for all j.

e V|(F) = Liff A=rj(l). This can be proved in the same way as in the previous
item. Here, we need the extra assumption that every assigmmakes at least
one clause oF; true so that the transitioA —, C can be matched in(l).

Finally, it is easy to deduce the above Claim from the lastitenms. This is because
we assumed that none of the formulag-in. . ., F, is a tautology.
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D.6 Proof of Proposition 8.6.3

To prove this lower bound, we will make use of an algorithmegiby Kucera [Kuc00]
as a subroutine:

Lemma.([Kuc00]) There exists a fixed finite systef with states Pand B such
that, given a boolean formulg, we can compute iR a one-counter neD and an
initial configuration(qgp,0) such that(qo, 0) ~ P iff ¢ is satisfiable, anddo,0) ~ P,
iff ¢ is unsatisfiable.

The proof is by a polynomial time reduction from the probledDEX-ODD: given a
list F1,...,F, of boolean formulas in 3-CNF, does there exist an odd indexi K n
such that, ..., F are all satisfiable ang. 1,...,F, are all unsatisfiable? This prob-
lem is PNPlod_complete. APNPI°d ypper bound is immediate by a simple binary
search in the lisEy,...,F, by invoking anNP oracle at each step to determine the
rightmost satisfiable formulg. A PNPlogl_hardness for INDEX-ODD is also imme-
diate from Wagner’s sufficient conditions fBNPI°9-hardness [Wag87, Theorem 5.2]
(see also [SV00, Lemma 7]). For notational convenience, sgeirae that INDEX-
ODD accepts only lists of formulags, ..., Y, satisfying the following extra restric-
tions: (1)n> 3 is odd, and (2)b, is unsatisfiable. It is easy to see that the problem
remainsPNPl°d_complete, e.g., by adding at most two extra formulaso the end

of the input list of formulas. Therefore, we may assume thatdiven input is the
list Y, .., Yok, Wokr1, WhereWy 1 = L. Initially, we run Kucera’s algorithm sequen-
tially on inputsyy, . . ., Yk to obtain the one-counter ness, . . . , Py 1 With respective
initial statesqy, . .., 0.1 such that, for all € [2k+ 1], the following conditions hold
for the state®; andP; in the finite systen¥’ = (Qr/,d¢/) given by the above lemma.

1. (qi,0) ~ Py iff yj is satisfiable (*)
2. (q,0) ~ P, iff Y is unsatisfiable (**)

We will now define a one-counter n&t= (Q,d-0, %) and a fixed finite systerf =
(S,0F). We start with the definition ofr. We defineS= {to} U{ti j : i, ] € [3]} UQF.
Intuitively, if we pick an indexh € [2k — 1], then obviously the formulag, ..., are
either: (1) all satisfiable, (2) all unsatisfiable, or (3) ®omne satisfiable and the rest are
unsatisfiable. These three split cases correspond to the plussible left indiceisfor
ti j. We have also three similar split cases if we inspect the fdap 1, . . ., Worr1.
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[Actually, one of these cases are impossible as we alwaysrasthatpyy 1 IS unsatis-

fiable.] Hence, the right indicgsof t; j similarly correspond to the these three possible

split cases. We now define the transitions foeccordingly:

add each transitioto, e,t; j) to & for eachi, j € [3].

add each transitioft; j,L,Py1) to & for eachi € {1,3} andj € [3].
add each transitio(t; j,L,P,) to & for eachi € {2,3} andj € [3].
add each transitioft; j, R, Py) to &g for eachi € [3] andj € {1,3}.
add each transitio(t; j,R,P>) to & for eachi € [3] andj € {2, 3}.

add each transition idg/ to Of.

We continue now with the definition e#. We assume thag initially has neither states

nor transitions, and continue adding states/transitisrielbows:

Add the initial stategp and the states ifis : 1 <i < 2k andi is odd}.
Add the transitior(gp, e, 5, 0) to -9 and®o for eachs;,

Assume that the states &1, . . ., P« 1 are disjoint and add the states and transi-
tions of these one-counter nets ko

Add the transitior(s;, L, gj,0) to -0 anddo for eachs andj < [i].
Add the transitior(s;, R, qj, 0) to -0 anddg for eachs and X+1> j > i.

Add an isomorphic copy of ¥ into P; each new state i is renamed with an
extra prime symbol so as to distinguish from the stateg de.g. t1> in ¥ is
renamed ta; , in ).

Add each transitior{gp, & t; j,0) to d-¢ and o for eachi, j € [3], except for
(i,)) = (L2).

We want to prove thatqp,0) ~ to iff Y1,..., W1 iS an instance of INDEX-ODD,
which suffices to deduce our theorem.

We first make a simple observation. For each Q, (s,0) ~ ty > iff the formulas

l“l?"

., are all satisfiable and the formulas, 1,..., Y. 1 are all unsatisfiable. To

see this, note that by definition actitncan only take; > in F to Py (i.e. asserting
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satisfiability), while actiorR can only taket; » to P> (i.e. asserting unsatisfiability).
Also, by definition, actiorL. can only takes to gj with j <i, while actionR can only
takes to gj with j > i. This observation is then an immediate consequence of gyope
(*) and (**).

We now prove thatqo,0) = to iff there exists an odd index< 2k+ 1 such that
Ys,...,Y; are all satisfiable andi, 1, ..., .1 are all unsatisfiable. This suffices to
deduce our theorem. Let us first prove necessity. Assume(gpal) ~ to. Then,
Attacker can move the pebble fragttot; ». Note that there is no transition frogg to
tiz in . This means that Defender’s winning strategy must choosabthe states.
That is, we havés;, 0) ~t1 » and the rest follows from the previous simple observation.
Conversely, given the odd indéx we want to show thatqo,0) ~ to. If Attacker
chooseg; », then Defender can move the pebble frémg, 0) to (s,0) and win as in
the converse case. If Attacker chooses othewith (i, j) # (1,2), then Defender can
move the pebble fron(s;, 0) to (t/ ;,0) and win as obviouslyt/ ;,1) ~ t; j for all | € N.
Defender has a similar winning response if Attacker movegtbble fromqgp, 0) to
(t/ j,0) with (i, j) # (1,2). The remaining possible moves for Attacker are moves from
(0o, 0) to (s,0) for some odd indeX < 2k+ 1. If i’ =i, then Defender can move from
totots 2 and win. Ifi’ i, then we can look at the formulgs, . . ., g and the formulas
Wit 1,...,Wxyi1. Each of these lists contain either (1) all satisfiable fdesu(2) all
unsatisfiable formulas, or (3) both satisfiable and unsalikfiformulas. Considering
these two lists separately, this gives rise to nine possimhebinations, which are all
covered by the successorstgin 7. Therefore, by picking the appropriate successor
of tg, Defender can win.






Appendix E

Proofs from Chapter 9

E.1 Proof of Proposition 9.2.1

We shall now sketch a reduction from model checkiy; (Reach) and FO?(Reach)
overNMOCP to, respectively the logi¢ and £’. We will first deal with atomic propo-
sitions. To this end, we will state a lemma, whose proof imiatedly follows from
Lemma 8.3.1, Lemma 8.3.4, and Lemma 8.3.5.

Lemma E.1.1 Given an OCPP? = (Q, dp,d-0) over ACT with Q= {qo,...,0q«} and
a subsetACT’ C ACT, one can compute in poly-time a quantifier-freéeformula
¢ACT/(xl,xz,y1,y2) in disjunctive normal form (DNF) such that for ali aap, by, by €
N,

N = ¢(ag, 82, b1,b2) < (G, 82) =5 o/ (0o, D2).-

Although Lemma 8.3.1, Lemma 8.3.4, and Lemma 8.3.5 disculystibe reachability
relation—* without any labeling constraints, this lemma can be obthimefirst re-
moving transitions with labels iInCT — ACT’ from the given OCP (in the same way we
deal WithEF 5~ in the proof of Theorem 8.4.1). Note that formulas in DNF &fre o
alternation rank 2. Since the synchronization constraitsover transition systems
of the formep introduce only self-loops, the following lemma can be diyededuced
from this by taking a conjunction, which increases the aléon rank by 1.

LemmaE.1.2 Let P be an asynchronous product of r OCH,..., 7. Let Q=
{qo,...,0x} be the union of their control states. Suppose tﬁ@ has action la-
belsACT. Then, for eaclACT’ C ACT, one can compute in poly-time a quantifier-
free £'-formula¢ o~ (X,y) with alternation rank 3, whera = (xg,...,%zr) andy =

273
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(Y1,...,Y2r), such that for all two tuplea = (ay,...,ay ) andb = (by,..., by ) of nat-
ural numbers, it is the case that

(N, +) = dact (@) & ((day@2); -, (a1, 82r)) =5 ((0bys b2), -, (O s, D2r))
in the transition syster&?,.

This lemma shows that atomic propositions of the f&teach,~1/(X,y) can be dealt
with. Furthermore, it is not hard to give a quantifier-fréeformula ¢,(X,y) (resp.
¢— (% y)) with alternation rank at most 3 representing the atomippsdions of the
form Ea(x,y) (resp. x =i j y). For example, for formulas of the fora(x,y), one
simply needs to check only local transitions in each OCP astinduish the case
where the initial counter value is zero or not, all of whicim ¢ encoded i as a big
disjunction of these cases. An extra big conjunction in thieonost layer is needed
to encode the asynchronous product.

The inductive cases can be dealt with easily. The case oeboaombinations is
immediate. An existential quantifier for &g (Reach) (resp. FO?(Reach)) can be
replaced by a block of existential quantifiers, whereis the number of OCPs in the
given asynchronous product. Finally, it is easy to see tiaatternating rank of the
output formula equals the alternating rank of the input falarup to an addition by a
small constant factar (from our proof,c = 3).

E.2 Missing proofs from Subsection 9.3.2

Definition E.2.1 Givenic N, p,me Z-, and two2n-tuples(a, b), (c,d) € N, where
a=(ay,...,an), b= (by,...,by),c=(cCy,...,Cn), andd = (dy, ..., dn), we write

(@) ~pm (€.0)
iff for all j € [1,n] the following statements hold
1. d(aj,bj) < pmimplies daj, bj) = d(cj, d)),

2. d(cj,d;j) < pm implies da;, bj) = d(cj, d;),

w

. d(aj,bj) > pmiiff d(cj,dj) > pm,
4. @ < 2(i+1)pm implies a = ¢;j,

5. by <2(i+1)pm implies h =dj,
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6. ¢ < 2(i+1)pmimplies a = cj,

7. dj <2(i+1)pmimplies b= dj,

8. @ =c¢j (modp)and b =d; (modp), and

9. a <b;jiffc; <dj.
From this definition, it follows thafa,b) ~%, ., (c.d) iff, for each j € [1,n], it is the
case thataj, bj) ~4, , (cj.dj).

Lemma E.2.1 Suppose € Z-o anda,b,c,d € N". If (a,b) ~|, , (c,d), then the fol-
lowing statements hold:

1. Foralla € N, there exists’ € N" such that(@,b) ~} 7 (¢',d).

2. Forall/ € N", there existsl’ € N" such that(a,b/) ~i, 1, (¢, d').

Proof. We prove the first statement; the second statement can kedoio the same
way. Suppose tha = (a},...,a;). For each € [1,n] we shall definee:’j € N satisfying
(&,bj) ~5m (¢}, dj). This suffices for showingg’,b) ~}, % (¢',d). Furthermoreg’ will
be at most magd) +2pm There are two possibilities:

e Eitherb; < 2(i+1)pmord; < 2(i+1)pmholds. In this case, our assumption
that (a,b) ~}, m (c,d) implies thatb; = dj. If &} < 2(i +2)pm then choose
C;
2(i+2)pmand choose

— &, which would show thatal;, bj) ~j;% (¢}, d;). Otherwise, we have/, >

o - 2(i +1)pm+ pm+(aj modp) ,if pJa;
: 2(i +1)pm+ pm+ p if plaf.

Then, it is easy to check tha#|,b;) Nipjrﬁ (cj,dj). This also shows that our
choice ofc; does not have to exceedi2- 1) pm+2pm

e Bothb; > 2(i + 1)pmandd; > 2(i + 1)pmhold. First consider the case when
d(aj,bj) < pm Inthis case, choos® :=d; + (&] —bj). Observe thatj > 2ipm,
and we have; < bj < ¢j < dj. Furthermore, using our assumpti@b) ~},
(c,d), it is easy to use check théd’, bj) NiF;r}] (cj,dj). Consider now the case
whend(aj,bj) > pm There are several further possibilities:
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— aj < 2ipm. Choosec| = & and so we have(aj, bj),d(cj,d;) > pm To-
gether with our assumption théa,b) ~}, , (c,d), we have(a, bj) ~j
(cj.dj).

— aj > 2ipm. In this case, iff] < bj, we choose| := dj — p(m+1) +[(&] -
bj) modp]|. We havec| > 2(i + 1)pm— p(m+ 1) > 2ipmandd(cj,d;) >
pm It is easy now to check tha#’, b;) NiF;nlq (cj,dj). On the other hand,
if & > bj, we choose := d;j + p(m+1) — [(bj —&;) modp]. It follows
thatd(c},d;j) > pm It is easy to check thd#l, bj) ~; 7 (¢}, d;).

O

Supposé > 0. LetC andC’ be, respectively, a/ipvm-equivalence class andﬂdpjr}]-
equivalence class. We say ti@itis x-consistent with Gf there exist tuples,b,& € N
such that(@ b) € C and(a',b) € C'. Similarly,C’ is y-consistent with Gf there exist
tuplesa, b,/ € N such that@, b) € Cand(a,b/) € C'.

Lemma E.2.2 Leta,b € N"and C be the-}, ,.-equivalence class ¢#,b). Define

A = {(a,&...,a,b):Vje[1n] 0<aj <maxb)-+2pm}
B = {(abj,bs....00):Vje[ln 0<b)<maxa)+2pm}

Then, the set A (resp. B) contains a representative of evigj’&-equivalence class
x-consistent (resp. y-consistent) with C.

Proof. This follows from the proof of Lemma E.2.1, whaﬂF(resp. df) was always
chosen to be at most maX + 2pm (resp. maxc) + 2pm). O

Lemma E.2.3 Let pm,n € Z.o and ke N. Letab,c,d € N". If (a,b) ~K ., (c,d),
then for each formula € £}, ,(n) with quantifier rank at most k we have

(N,+) F6(a,b) & (N,+) = ¢(c.d).

Proof. The proof is by induction oh. First consider the base cases:

e Xj ~yj+candyj~xj+cfor ~c {<,>,=}. Same as in the proof of Lemma
9.3.5.
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o xj~c. If aj <2(i+1)pmorcj < 2(i+ 1)pm thena; ~K , c; implies that
aj = cj, and saaj ~ ciff ¢j ~c. If aj > 2(i+1)pmandc; > 2(i +1)pm, then
we also obviously havej ~ ciff ¢; ~ csincec < m< 2(i+1)pm

e yj ~ C. Same as previous item.

e Xj=Yyj+cC (modd),yj=x;+c (modd), xj=c (modd), andy;=c (modd).
Same as in the proof of Lemma 9.3.5.

We now turn to the inductive cases. Boolean combination®asy. So, leh be a
formula of the form3xjy. We now prove tha{N,+) = ¢(a,b) implies (N, +) =
¢(c,d); the converse is symmetric. (N, +) = ¢(a,b), then there exista| € N such
that (N, +) |= ¢(a,b), whered = (ay,...,aj-1,a},aj;1,...,a). Since(ab) ~§,
(t,d), Lemma E.2.1 now implies that there exisfsuch that, whenever

/
¢ = (Cl7'",Cj*].?Cj?Cijl?"',Cn)v

we have(@,b) N'E,jn} (c/,d). The quantifier rank of is at mosk — 1 and the induction
hypothesis impliegN, +) = y(c’,d), which in turn meangN, +) = ¢(c,d). If ¢ is of
the form3y;y, the proof is also the samel

Lemma E.2.4 Leta,b € N". Then, there exists d € [0, 2(i + 3)pm" such that

(3,b) ~pm (T,d).

Furthermore, for fixed pm,n > 0, on inputsa andb (represented in binary), and i
(represented in unary), a logspace machine can compatedd and store them in its
working tape.

Proof. We first show the existence ofindd. For this, it suffices to show that, for each
j € [1,n], there exists;,d; € [0,2(i +3)pm such thataj, bj) ~}, . (cj,d;). It suffices
to consider the case where eitlagr> 2(i 4 3) pmor b; > 2(i +3) pmholds. Ifaj = bj,
then it is easy to show that setting = d; = 2(i + 1)pm+ p+ (a; modp) satisfies
(aj,bj) ~bm (cj,dj). Now consider the case when < bj; the case when; > bj is
similar.

First, consider the casd(aj,bj) < pm In this case, we havaj > 2(i + 1) pm
for, otherwise,b; = a; + (bj —a;) < 2(i+1)pm+ pm< 2(i + 3)pm, contradicting
our assumption. Therefore, we sgt= 2(i +1)pm+ p+ (a; modp) andd; = 2(i +
1)pm+p+(a; modp)+(b; —a). Itis easy to check thaf, d; € [0,2(i +3)pm and
(ay,by) ~pm (c5,0))-
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Now consider the case wheltaj,bj) > pm If a; < 2(i +1) pm, then our assump-
tion implies thatb; > 2(i + 3)pm So, we setj = aj anddj = 2(i + 1) pm+ pm+ p+
(bj modp). Itis easy to see thalj € [0,2(i +3) pm and(aj, bj) NipJn (cj,dj). Finally,
if aj > 2(i +1)pm we setcj = 2(i +1)pm+ p+(aj modp) anddj = c¢j+ pm+p—
[((aj —bj) modp]. This means that; < 2(i+1)pm+3p+ pm< 2(i+3)pm Since it
is easy to check thatj = ¢; (mod p), it follows thatbj = d; (mod p). Furthermore,
itis easy to check thasj, bj) ~k , (cj,dj).

To show that there is a logspace machine computiagd d and store them in
the working tape, observe first that fixing the paramepers,n means that the size
of binary representations @fandd is O(log|i|), sincei is represented in unary, and
so can be stored in the working tape of a logspace machineedthat one requires
only logspace for actual the computation, recall that chreckvhethersit, given the
numberss andt as inputs represented in binary, can be done (e.g. see the survey
[AllO1]). Therefore, sinceis fixed, to compute the numbgs mod p) one can simply
sequentially go through=0, ..., p— 1 and check whethep|(s— j). Finally, observe
that the rest of the arithmetic operations above (i.e. &udt multiplications, and
(in)equality tests) can easily be done by a logspace maclwe the proof can be
directly translated into the desired logspace machine.

Proof of Proposition 9.3.7We give an alternating logspace Turing machMefor
solving the membership problem 8f, (n). Givena,b € N" and a formulap(x,y) €
£om(n) as input, note that the quantifier rankgofs bounded above by.= |||, i.e.,
the numbeli is represented in unary on the input tape. So, using Lemmd Bl
machine computes,d € [0,2(i + 3)pm" such that(a,b) ~% ., (c,d). Therefore, by
Lemma E.2.3M needs only check whethéN, +) |= ¢(c,d). The machiné checks
this by a (single) one-way top-down traversal of the parse tf¢ in the input tape
starting at the root, which is the formupa At each stepM keeps track of a valuation

e gof the variables irx,y, wheree = (e, ...,e,) andg= (g1, ...,0n)- Initially, e (resp.

0) is set tac (resp.d). Suppose that the subformuladpbeing traversed ig. If a is an
atomic proposition, themM can checlp easily since all the required numbers are loga-
rithmically bounded (or fixed). Ié is of the formy v §/, thenM existentially chooses
the next subformula’ to be eithenp or ¢/, and checks whethelN, +) = a’(g Q).

If ais of the form—y, thenM simply makes a transition into a not-state and checks
whether(N,+) = ((&,0). If a is of the form3xy, thenM will existentially guess a
numbere/j < gj+2pm Lettinge = (ey,...,€_1, (1 €j 41, - ,€n), the machiné then
checks whethe(N, +) = @(€,09). The machineM needs not guess a number bigger
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thang;j +2pmdue to Lemma E.2.2. The case whiers of the form3y;y is similar.

At each step, the machimé requires to keep track of: 1) which subformulapahe
machineM is currently at, for which we need(logi) bits, and 2) the current valuations
e, g for the variablex, y. Notice that at each step m@g) < max(c,d) + 2ipm, which
requiresO(logi) bits as well to represent]

E.3 Proof of Lemma 9.4.1

We first show upper bounds. Given an areha (v, k, ¢) and two positive integeist,
we writes~ 4 t iff s=t (mod |‘|E<:1 pj), Wherep is the largest prime appearinggn
Then, each equivalence classi¥ry has a representative that is at mﬂ#‘gl pi, whose
size when represented in binary does not exgegd|) for some fixed polynomial
p not depending on the input arena (recall that each numbdriggiven in unary).
As each atomic proposition i@ is only a divisibility test of the formp|x with p <
Pk, it is easy to check that a polynomial-time alternating figrmachineM solving
the buffer game need only simulate the game, while consigesnly the smallest
representative modulg '1'(:1 p; of each equivalence classes~y. For each guessing
step, the machink! will ensure that the important information from the earlieand
is not “overwritten”. When a representatiyey| of the last buffer value has been
obtained, the machini! will check whether(N,+) = ¢([my]). Checking these can
be done in polynomial time as divisibility of numbers remeted in binary can be
checked in polynomial time. Finally, observe that the nundjealternations used by
M on input4 is exactlyk+ 1 (starting with existential guess). This shows tBidfFER
is in PSPACE, andBUFFER is in =, ;.

To show lower bounds, we give a polynomial-time reductiamfrthe well-known
PSPACE-complete problem QBF. We assume that the leading quantifitre input
formulas is3. Moreover, if the input quantifier boolean formuiaghask + 1 quantifier
alternations, the resulting output arena is of the fdwk, ¢). In particular, this will
prove thaBUFFERy is ZE+1-hard, as the restricted QBF problem with a fixed number
k-1 of quantifier alternations starting with the quantifies ZE . 1-complete. Suppose
that the input is the formula

0 = Qux1...Qnxa
wherey is a boolean formula over the variables...,x, andQ; = 3. If 6 hask
quantifier alternations, parition the seque@ge. .., Q, into k+ 1 alternating blocks of
identical quantifiers accordingly. For eaich [1,k+ 1] we choose numbers> 0 such
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that the last variable quantified ith block isx;,. In this case, we hawg,, = n. For
eachi € [1,k], we also letQ, be the quantifier type of thigh block of quantifiers (e.qg.
Q1 = 3 by assumption). Let:= (r1,...,rx). Defined to be theCpy-formula obtained
by replacing each occurence of the boolean varigbile ) by the atomic proposition
pi|x. Itis then easy to check thé8tis true iff Playerd has a winning strategy in the
input arena(v,k,$). [That is, for each truth evaluatioh: {x,...,x,} — {0,1} and
eachm € Z- ¢ satisfying®(m) € f(x1)... f(xn)(0+1)®, it is easy to check thabp is
true underf iff (N,+) = ¢(m). To complete the proof, observe that the veatdos
defined in such a way that the quantifiersbirare faithfully simulated in the buffer
game.]

E.4 Proof sketch of Proposition 9.4.4

The proof is similar to the proof of Proposition 9.4.2 witle ttollowing modification.
We store the buffer values chosen by the PlayandV in two different counters. At
the roundr where Played acts, suppose that the current buffer valuegsand n;.
Playerd rewrites the first counter with a new valog, while making sure that for each
prime numberp € [1,v;] and any numbej € [0, p) it is the case thatg = j (mod p)

iff ng=j (mod p). Itis not hard to encode this as BR-formula (with respect to two
appropriate OCPs), whose size depends (polynomially} on

E.5 Proof of Proposition 9.4.5

We show that checkingO*(Reach) sentences with equality ovéX, succ) is PSPACE-
hard. We shall only make use of the varialseg u, v. Since it is easy to construct an
OCP generatingN, succ), it follows that the expression complexity 80%(Reach)
over OCPs isPSPACE-hard. To deduce the lower bound f60*(Reach) without
equality, observe first that we can define a strict inequatittion in FO%(Reach)
(without equality) ove(N, succ) as follows:

X <Y< 3Ju(succ(x,u) AReach(u,y)).

Therefore, the equality relation=y can simply be expressed agx < yVy < x).
In the following, we shall give a poly-time reduction from @BSiven a formula

¢ = Quxz...Qnxn
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where eaclQ; is eitherd or V, Q1 is 4, andy is a boolean formula ovex, ..., X,
we shall compute &0*(Reach) sentencen over (N,succ) such that is true iff
(N,succ) = a.

To prove this, we shall first show how to succinctly encoderéation

DIFF, = {(a,b) e Nx N : |a—b| = 2'},

for eachi € N, using only four variables. The technique is adapted fromh@&rand
Schweikardt [GS05]. We show how to define DJfir FO*(Reach) by induction oni.
For the base case, we shall define DI&kFy) and DIFK(u,Vv) to be, respectively, the
formulassucc(x,y) V succ(y, X) andsucc(u, V) V succ(v,u). Fori > 0, we define

DIFFi(X,y) :=X# YA JUW[(V=XVV=Y) — DIFF_1(u,Vv)],

which says that there exists a midpointn the region[x,y| or [y,x] (depending on
whetherx < y ory < X) whose distance fromandy is 2-1. Similarly, we can define
DIFF;(u,v) by interchanging every occurenceofresp.y) with u (resp. v). Notice
that the size of the formula DIFgrows only linearlyi.

From the relation DIFf; we can now succinctly define some simple arithmetic on
large numbers. Define the relation

PLUS; (X,y) & x < YyADIFF (X,y),
which asserts that= x+ 2'. We shall also define the weak minus relation

WMIN,i(X,y) = 3JuPLUS; (u,x) — PLUS; (Y, X)
A=3UPLUSi (2, X) — Xx=Yy

which is true if eithely = x— 2' andy > 0, orx—2' < 0 andx =Y. Itis easy to see that
the size of the formulas PLUSand WMIN,i grows only linearly ini.

We now construct the formula encoding the quantified boolean formudia In
the following, the (meta)variablg with odd (resp. even) indices will refer to(resp.
y). We first define &O*(Reach) formula (z,) such that, for each truth valuation
f:{x,....xa} — {0,1}, it is the case thab is true underf iff (N,succ) = B(m),
wherem is the number with binary representatié(x,) f (x,—1) ... f(x1). For this, it
suffices to show how to succinctly define the relation

BIT)(zj) & a€[0,2}) and theith bit of z; is 1
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for eachj = (i,n]. This is because if this is the case, then we can olfi&an) by
simply replacing each occurrence»fin Y by BIT!(z,). We first show how to define
BIT}+1 for eachi € [0,n). This relation can simply be defined as

BIT|"!(z,1) := ~3zZPLUS;-1(%,Z 1)) A 3z (PLUS, (7,7 41).
Now for eachj > i + 1, we may simply define
BIT)(zj) := 3z;_1[WMIN i (zj,zj_1) ABIT) "} (z;_1)].

Notice that BIT'(z,) grows polynomially im.

Now to define the formula, we shall define a sequenpe; (z) }I_, of FO*(Reach)
formulas with one free variable such that, for each valuafio{xs,...,x} — {0,1},
the formulaQ;j;1Xi+1...QnxaW is true underf iff (N,succ) = aj(m), wherem s the
number with binary representatidiix;) f(xi_1) ... f(x1). [If this sequence is empty,
then the numbem associated with itis 0.] In this case, we shall@et ap(y) Ay =0,
wherey = 0 is a shorthand for3xsucc(x,y). We construct the formulagi(z)}!
recursively. We obviously start by settiog(z,) := B(z,). For each < n, assume that
we have defined;1(z+1). Then, ifQ; = 3, we define

0i(z) = 3%41[(PLUS; (7,2 1) VZ11=2Z) AOi11(Z+1)]-
If Qi =V, we define
0i(z) = V241 [(PLUS:(Z,Z+1) VZ+1 = Z) — Qita(Zita)].

It is now easy to see that, for each valuatibn {x,...,x} — {0,1}, the formula
Qi+1%X+1 - .- QnxnW is true underf iff (N, succ) = aj(m), wheremis the number with
binary representatiof(x;) f (xi—1) ... f (x1). This is simply because assigning 1xt0;
corresponds to addind ® 7, as reflected in the definition of,(z).

Finally, it is easy to see that our construction above runmignomial time.

E.6 Proof of Proposition 9.4.6

Given eachp(x,y) € FO?(Reach) and each OCE = (Q, 8, 5-0) over actionsACT,
we compute in poly-time ag&Fg-logic formula¢’, an OCPP; = (Ql,éé,éio) over
ACT1, and an OCP, = (Qq, 6%, 6@0) overACT>, and a poly-time computable function
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f (resp. f’) mapping configurations aP to configurations ofP; (resp. %), such that
for any pair ofP-configurationgq, n) and(q',n’)

Sp = 9((a,n), (d,1)) & Spxm, (f(a,n), F(d,1)) = 9",

Therefore, by Theorem 9.4.2, there exists a fiigduch that model checkingy over
MOCP isz{-hard.

Suppose thadCT ={01,...,01}. LetACT1 ={ay,...,a }U{c1,l oop1} andACT, =
{by,...,b} U{cy,| 0op,} be two disjoint alphabets. Defin@ = Q> = Qu{g}. The
purpose of adding a new stajes to define a “global modality”. As we shall see, for
every (g,n),(dq,n’) € Q1 x N we have(q,n) —Tcul 0op1) (d',n’); a similar statement
also holds for?,. We now define the transition functions. The transition fiores3?
(resp. 62>0) can be obtained from. g by first renaming each actiam with a (resp.
bi), and then adding extra transitio(s c1,g,0), (g, 0oopy,9,+1), (g,l oop1,9,—1),
and(g,c1,q,0) (resp.(q,¢2,9,0), (9,1 00p2,g,+1), (9,1 00p,,9,—1), and(g, ¢2,q,0)),
for eachq € Q. Similarly, the transition function&} (resp. 6%) can be obtained from
dp by first renaming each actiomy with a (resp. bj), and then adding extra transi-
tions(qg,c1,9,0), (g,1 oopy,9,+1), and(g,c1,q,0) (resp.(q,c2,9,0), (g,l oop,,g,+1),
and (g, c2,q,0)), for eachg € Q. Also, defineACT; := Z1 — {c1,1 oop; }, ACT, :=
ACT, — {Cp,l 00p2}, ACTY :={c1,l oop1 }, andACTS := {cz,| oopy}.

We now define our formulé’ by induction ong. In particular, we shall construct
a function\A mapping formulas oFOZ(Reach) to EFg-logic formulas such that, for
eachy(x,y) € FO?(Reach) and(qg,n), (¢,n') € Q x N,

Sp = W((a,n), (d,1) < Sy, (A1), (1)) = AW) (%)

We then need only sét' = A(¢). In the following, recall that the formulaxy(x,y)
can be thought of asx(y(x,y)) Ax = x, and so the variables andy always occur
freely in the formula. First consider the base cases:

o §:=Reachx,y). We set () := Ry )(=12).
e §:=Reach(y.x). We set () := (Ryop) (=12).
o Y:=Eq(xy). We setA () := (aj)(=12).
o U:=Eg(y,X). We set\(U) := (bi)(=12).

It is easy to check that (*) hold for these. Now consider titutive cases:
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o Y:i=a(Xy)AB(XY). We seA(P) :=A(a) AA(B).
o U:=-0(XY). We set\(P) :=-A(a).

o :=a(X,y). We set\(Y) := <RACT/1/>()\(0() A =(l oopy)). We show that (*)
holds. Given(g,n),(d,n’) € Q x N, we haveG, = Y((q,n),(d,n')) iff there
exists(q”’,n") € Q x N such thatS» = a((q”,n”), (¢,n)) iff (by induction hy-
pothesis) there exist&)’,n”) € Q x N such thatSy, .2, ((9",1"), (d,1))
A(Q) iff S xp,, ((a,n), (d,1)) = A(W) since(Ryc7) is a global modality.

o P:=3ya(xy). We setr (V) := <RACT’2’>O‘(°‘> A= (1 00py)).

Finally, observe that our reduction runs in polynomial time



