
Decidable models of integer-manipulating
programs with recursive parallelism

Matthew Hague and Anthony Widjaja Lin

1 Royal Holloway, University of London, UK
2 Yale-NUS College, Singapore

Abstract. We study safety verification for multithreaded programs with
recursive parallelism (i.e. unbounded thread creation and recursion) as
well as unbounded integer variables. Since the threads in each program
configuration are structured in a hierarchical fashion, our model is state-
extended ground-tree rewrite systems equipped with shared unbounded
integer counters that can be incremented, decremented, and compared
against an integer constant. Since the model is Turing-complete, we pro-
pose a decidable underapproximation. First, using a restriction similar
to context-bounding, we underapproximate the global control by a weak
global control (i.e. DAGs possibly with self-loops), thereby limiting the
number of synchronisations between different threads. Second, we bound
the number of reversals between non-decrementing and non-incrementing
modes of the counters. Under this restriction, we show that reachability
becomes NP-complete. In fact, it is poly-time reducible to satisfaction
over existential Presburger formulas, which allows one to tap into highly
optimised SMT solvers. Our decidable approximation strictly generalises
known decidable models including (i) weakly-synchronised ground-tree
rewrite systems, and (ii) synchronisation/reversal-bounded concurrent
pushdown systems systems with counters. Finally, we show that, when
equipped with reversal-bounded counters, relaxing the weak control re-
striction by the notion of senescence results in undecidability.

1 Introduction

Verification of multithreaded programs is well-known to be a challenging prob-
lem. One approach that has proven effective in addressing the problem is to
bound the number of context switches [36, 38]. [Recall that a context switch oc-
curs when the CPU switches from executing one thread to executing a different
thread.] When the number of context switches is fixed, one may adopt pushdown
systems as a model of a single thread and show that reachability for the concur-
rent extension of the abstraction (i.e. multi-pushdown systems) is NP-complete
[38]. This result has paved the way for an efficient use of highly optimised SMT
solvers in verifying concurrent programs (e.g. see [1, 18, 24]). Note that without
bounding the number of context switches the model is undecidable [37].

In the past decade the work of Qadeer and Rehof [38] has spawned a lot of re-
search in underapproximation techniques for verifying multithreaded programs,
e.g., see [1, 2, 4, 5, 7, 14, 18, 20, 22, 24, 27, 28, 31, 33, 35, 40, 42] among many others.



2 Matthew Hague and Anthony Widjaja Lin

Other than unbounded recursions, some of these results simultaneously address
other sources of infinity, e.g., unbounded thread creation [5, 22, 31], unbounded
integer variables [24], and unbounded FIFO queues [1, 2].

Contributions. In this paper we generalise existing underapproximation tech-
niques [23, 31] so as to handle both shared unbounded integer variables and re-
cursive parallelism (unbounded thread creation and unbounded recursions). The
paper also provides a cleaner proof of the result in [24]: an NP upper bound for
synchronisation/reversal-bounded reachability analysis of concurrent pushdown
systems with counters. We describe the details below.

We adopt state-extended ground-tree rewrite systems (sGTRS) [31] as a
model for multithreaded programs with recursive parallelism (e.g. program-
ming constructs including fork/join, parbegin/parend, and Parallel.For).
Ground-tree rewrite systems (GTRS) are known (see [21]) to strictly subsume
other well-known sequential and concurrent models like pushdown systems [11],
PA-processes [19], and PAD-processes [34], which are known to be suitable for
analysing concurrent programs. [One may think of GTRS as an extension of PA
and PAD processes with return values to parent threads [21].] We then equip
sGTRS with unbounded integer counters that can be incremented, decremented,
and compared against an integer constant.

Since our model is Turing-powerful, we provide an underapproximation of the
model for which safety verification becomes decidable. First, we underapprox-
imate the global control by a weak global control [26, 31] (i.e. DAGs possibly
with self-loops), thereby limiting the number of synchronisations between differ-
ent threads. To this end, we may simply unfold the underlying control-state graph
of the sGTRS (see Section 3) in the standard way, while preserving self-loops.
This type of underapproximation is similar to loop acceleration in the symbolic
acceleration framework of [8]. Second, we bound the number of reversals between
non-decrementing and non-incrementing modes of the counters [25]. Under these
two restrictions, reachability is shown to be NP-complete; in fact, it is poly-time
reducible to satisfaction over existential Presburger formulas, which allows one
to tap into highly optimised SMT solvers. Our result strictly generalises the de-
cidability (in fact, NP-completeness) of reachability for (i) weakly-synchronised
ground-tree rewrite systems [31, 41], and (ii) synchronisation/reversal-bounded
concurrent pushdown systems with counters [24].

Finally, we show one negative result that delineates the boundary of de-
cidability. If we relax the weak control underapproximation by the notion of
senescence (with age restrictions associated with nodes in the trees) [22], then
the resulting model becomes undecidable.

Related Work. Recursively-parallel program analysis was analysed in detail by
Bouajjani and Emmi [10]. However, in contrast to our systems, their model
does not allow processes to communicate during execution. Instead, processes
hold handles to other processes which allow them to wait on the completion
of others, and obtain the return value. They show that when handles can be
passed to child processes (during creation) then the state reachability problem
is undecidable. When handles may only be returned from a child to its parent,



Integer-manipulating programs with recursive parallelism 3

state reachability is decidable, with the complexity depending on which of a
number of restrictions are imposed.

The work of Bouajjani and Emmi is closely related to branching vector addi-
tion systems [43] which can model a stack of counter values which can be incre-
mented and decremented (if they remain non-negative), but not tested. While
it is currently unknown whether reachability of a configuration is decidable,
control-state reachability and boundedness are both 2ExpTime-complete [17].

Another variant of vector addition systems with recursion are pushdown vec-
tor addition systems, where a single (sequential) stack and several global counters
are permitted. As before, these counters can be incremented and decremented,
but not compared with a value. Reachability of a configuration, and control-state
reachability in these models remain open problems, but termination (all paths
are finite) and boundedness are known to be decidable [30]. For reachability
of a configuration, an under-approximation algorithm is proposed by Atig and
Ganty where the stack behaviour is approximated by a finite index context-free
language [6].

Lang and Löding study boundedness problems over sequential pushdown
systems [29]. In this model, the pushdown system is equipped with a counter
that can be incremented, reset, or recorded. Their model differs from ours first
in the restriction to sequential systems, and second because the counter cannot
effect execution or be decremented: it is a recording of resource usage. These kind
of cost functions have also been considered over static trees [9, 13], however, to
our knowledge, they have not been studied over tree rewrite systems.

2 Preliminaries

We write N to denote the set of natural numbers and Z the set of integers.

Trees A ranked alphabet is a finite set of characters Σ together with a rank
function ρ : Σ 7→ N. A tree domain D ⊂ N∗ is a non-empty finite subset of N∗

that is both prefix-closed and younger-sibling-closed. That is, if ηi ∈ D, then we
also have η ∈ D and, for all 1 ≤ j ≤ i, ηj ∈ D (respectively). A tree over a
ranked alphabet Σ is a pair t = (D,λ) where D is a tree domain and λ : D 7→ Σ
such that for all η ∈ D, if λ(η) = a and ρ(a) = n then η has exactly n children
(i.e. ηn ∈ D and η(n+ 1) /∈ D). Let TΣ denote the set of trees over Σ.

Context Trees A context tree over the alphabet Σ with a set of context
variables x1, . . . , xn is a tree C = (D,λ) over Σ⊎{x1, . . . , xn} such that for each
1 ≤ i ≤ n we have ρ(xi) = 0 and there exists a unique context node ηi such
that λ(ηi) = xi. By unique, we mean ηi ̸= ηj for all i ̸= j. We will denote such
a tree C[x1, . . . , xn]. Given trees ti = (Di, λi) for each 1 ≤ i ≤ n, we denote
by C[t1, . . . , tn] the tree t′ obtained by filling each variable xi with ti. That is,
t′ = (D′, λ′) where

D′ = D ∪ η1 ·D1 ∪ · · · ∪ ηn ·Dn and λ′(η) =

{
λ(η) if η ∈ D ∧ ∀i.η ̸= ηi

λi(η
′) if η = ηiη

′ .



4 Matthew Hague and Anthony Widjaja Lin

Tree Automata A bottom-up non-deterministic tree automaton (NTA) over
a ranked alphabet Σ is a tuple T = (Q, ∆,F) where Q is a finite set of states,
F ⊆ Q is a set of final (accepting) states, and ∆ is a finite set of rules of the

form (q1, . . . , qn)
a−→ q where q1, . . . , qn, q ∈ Q, a ∈ Σ and ρ(a) = n. A run of T

on a tree t = (D,λ) is a mapping π : D 7→ Q such that for all η ∈ D labelled

λ(η) = a with ρ(a) = n we have (π(η1), . . . , π(ηn))
a−→ π(η). It is accepting if

π(ε) ∈ F . The language defined by a tree automaton T over alphabet Σ is a set
L(T ) ⊆ TΣ of trees over which there exists an accepting run of T .

Parikh images Given an alphabet Σ = {γ1, . . . , γn} and a word w ∈ Σ∗, we
write P(w) to denote a mapping ρ : Σ → N, where ρ(a) is defined to be the
number of occurrences of a in w. Given a language L ⊆ Σ∗, we write P(L) to
denote the set {P(w) | w ∈ L}. We say that P(L) is the Parikh image of L.

Presburger Arithmetic Presburger formulas are first-order formulas over
integers with addition. Here, we use existential Presburger formulas φ(x,y) :=
∃xφ, where (i) x and y are sets of variables, and (ii) φ is a boolean combina-
tion of expressions

∑m
i=1 aizi ∼ b for variables z1, . . . , zm ∈ x ∪ y, constants

a1, . . . , am, b ∈ Z, and ∼ ∈ {≤,≥, <,>,=} with constants represented in binary.
A solution to φ is a valuation b : y 7→ Z to y such that φ(x,b) is true. The
formula φ is satisfiable if it has a solution. Satisfiability of existential Presburger
formulas is known to be NP-complete [39].

3 Formal Models

In this section, we will define our formal models, which are based on ground-
tree rewrite systems. Ground-tree rewrite systems (GTRSs) [15] permit subtree
rewriting where rules are given as a pair of ground-trees. In the sequel, we use the
extension proposed by Löding [32] where NTA (instead of ground trees) appear
in the rewrite rules. Hence, a single rule may correspond to an infinite number
of concrete rules (i.e. containing concrete trees).

Ground Tree Rewrite Systems with State and Reversal-Bounded
Counters. To capture synchronisations between different subthreads, we fol-
low [26, 31, 41] and extend GTRS with state (a.k.a. global control). The resulting
model is denoted by sGTRS (state-extended GTRS). To capture integer vari-
ables, we further extend the model with unbounded integer counters, which can
be incremented, decremented, and compared against an integer constant. Since
Minsky’s machines can easily be encoded in such a model, we apply a stan-
dard underapproximation technique: reversal-bounded analysis of the counters
[23, 25]. This means that one only analyses executions of the machines whose
number of reversals between nondecrementing and nonincrementing modes of
the counters is bounded by a given constant r ∈ N (represented in unary). The
resulting model will be denoted by rbGTRS. We will now define this model in
more detail.

An atomic counter constraint on counter variables C = {c1, . . . , ck} is an
expression of the form ci ∼ v, where v ∈ Z and ∼∈ {<,≤,=,≥, >}. A counter



Integer-manipulating programs with recursive parallelism 5

constraint θ on C is a boolean combination of atomic counter constraints on
C. Given a valuation ν : C 7→ Z to the counter variables, we can determine
whether θ[ν] is true or false by replacing a variable c by ν(c) and evaluating
the resulting boolean expressions in the obvious way. Let ConsC denote the set
of all counter constraints on C. Intuitively, these formulas will act as guards to
determine whether certain transitions can be fired. Given two counter valuations
ν and µ we define ν + µ as the pointwise addition of the valuations. That is,
(ν + µ)(c) = ν(c) + µ(c).

Given a sequence of counter values, a reversal occurs when a counter switches
from being incremented to being decremented or vice-versa. For example, if the
values of a counter c along a run are 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, then the number
of reversals of c is 2 (reversals occur in between the overlined positions). A
sequence of valuations is reversal-bounded whenever the number of reversals is
the sequence is bounded.

Definition 1 (r-Reversal-Bounded). For a counter c from a set of counters
C, a sequence ν1, . . . , νn of counter valuations over C is r-reversal-bounded for
c whenever we can partition ν1, . . . , νn into (r+1) sequences A1, . . . , Ar+1 (with
ν0, . . . , νn = A1, . . . , Ar+1) such that for all 1 ≤ i ≤ r there is some ∼∈ {≤,≥}
such that for all νj , νj+1 appearing together in Ai, we have νj(c) ∼c νj+1(c).

We define sGTRS with reversal-bounded counters (rbGTRS).

Definition 2 (sGTRSs with r-Reversal-Bounded Counters). We define
state-extended ground tree rewrite system with r-reversal-bounded counters
(rbGTRS) as a tuple G = (P, Σ, Γ,R, C, r) where P is a finite set of control-
states, Σ is a finite ranked alphabet, Γ is a finite alphabet of output symbols (i.e.
transition labels), C is a finite set of counters, R is a finite set of rules of the

form (p1, T1, θ)
γ−→ (p2, T2, µ) where p1, p2 ∈ P, γ ∈ Γ , θ ∈ ConsC , µ ∈ C 7→ Z,

and T1, T2 are NTAs over Σ.

In the sequel, we will omit mention of the number r in the tuple G if it is clear
from the context.

A configuration of an sGTRS with counters is a tuple α = (p, t, ν) where p is
a control-state, t a tree, and ν a valuation of the counters. We have a transition

(p1, t1, ν1)
γ−→ (p2, t2, ν2) whenever there is a rule (p1, T1, θ)

γ−→ (p2, T2, µ) ∈ R
such that: (i) (dynamics of counters) θ[ν1] is true and ν2 = ν1 + µ, and (ii)
(dynamics of trees) t1 = C[t′1] for some context C and tree t′1 ∈ L(T1) and
t2 = C[t′2] for some tree t′2 ∈ L(T2). A run π over γ1 . . . γn−1 is a sequence

(p1, t1, ν1)
γ1−→ · · · γn−1−−−→ (pn, tn, νn)

such that for all 1 ≤ i < n we have (pi, ti, νi)
γi−→ (pi+1, ti+1, νi+1) is a transi-

tion of G and for each c ∈ C the sequence ν1, . . . , νn is r-reversal-bounded for

c. We say that γ1 . . . γn−1 is the output string of π. We write (p, t, ν)
γ1...γn−−−−→

(p′, t′, ν′) (or simply (p, t, ν) →∗ (p′, t′, ν′)) whenever there is a run from (p, t, ν)
to (p′, t′, ν′) over γ1 . . . γn. Let ε denote the empty output symbol.



6 Matthew Hague and Anthony Widjaja Lin

Whenever we wish to discuss sGTRSs without counters, we simply omit
the counter components. That is, we have configurations of the form (p, t) and

transitions of the form (p1, T1)
γ−→ (p2, T2). The standard notion of GTRS (i.e.

not state-extended) [32] is simply sGTRS without counters with only one state.

We next define the problems of (global) reachability. To this end, we use a
tree automaton T (resp. an existential Presburger formula φ) to represent the
tree (resp. counter) component of a configuration. More precisely, a symbolic
config-set of an rbGTRS G = (P, Σ, Γ,R, C, r) is a tuple (p, T , φ), where p ∈ P,
T is an NTA over Σ, and φ(x̄) is an existential Presburger formula with free
variables x̄ = {xc}c∈C (i.e. one free variable for each counter). Each symbolic
config-set (c, T , φ) represents a set of configurations of G defined as follows:
[[(p, T , φ)]] := {(p, t, ν) : t ∈ L(T ), φ(ν) is true}.

Global Reachability

Instance: an rbGTRS G and two symbolic config-sets (p1, T1, φ1) (p2, T2, φ2)
Question: Decide whether (p1, t1, ν1) →∗ (p2, t2, ν2), for some (p1, t1, ν1) ∈

[[(p1, T1, φ1)]] and (p2, t2, ν2) ∈ [[(p2, T2, φ2)]]

The problem of control-state reachability can be defined by restricting (i) the
tree automata T1 and T2 to accept, respectively, a singleton tree and the set of
all trees, and (ii) the solutions to the formulas φ1 and φ2 are, respectively, {ν0}
(where ν0 is the valuation assigning 0 to all counters) and the set of all counter
valuations.

Remark 3. When we measure the complexity of reachability for rbGTRS, the
number r of reversals is represented in unary, while the numbers in counter
constraints and valuations are represented in binary. This is consistent with
the standard representation of numbers in previous work on reversal-bounded
counter machines (e.g. see [23, 24]). The unary representation for r can be jus-
tified by the fact that bugs can often be discovered within a small number of
reversals.

Weakly-Synchronised Ground Tree Rewrite Systems The control-state
and global reachability problems for sGTRS are known to be undecidable [12, 21].
The problems become NP-complete for weakly-synchronised sGTRS [31, 41],
where the underlying control-state graph (where there is an edge between p1
and p2 whenever there is a transition (p1, T1)

γ−→ (p2, T2)) may only have cy-
cles of length 1 (i.e. self-loops), i.e., a DAG (directed acyclic graph) possibly
with self-loops. Underapproximation by a weak control is akin to loop accelera-
tion in the symbolic acceleration framework of [8]. We extend the definition to
rbGTRSs. The original definition can be easily obtained by omitting the counter
components.

We define the underlying control graph of an rbGTRS G = (P, Σ, Γ,R, C)
as a tuple (P,∆) where ∆ =

{
(p1, p2)

∣∣∣ (p1, T1, θ) γ−→ (p1, T2, µ) ∈ R
}
.



Integer-manipulating programs with recursive parallelism 7

Definition 4 (Weakly-Synchronised rbGTRS). An rbGTRS is said to be
weakly-synchronised if its underlying control graph (P,∆) is a DAG possibly
with self-loops.

4 Decidability

In this section we will prove the main result of the paper:

Theorem 5. Global reachability for weakly synchronised rbGTRS is NP-com-
plete. In fact, it is poly-time reducible to satisfiability over existential Presburger
formulas.

To prove this theorem, we fix notation for the input to the problem: an rbGTRS
G = (P, Σ, Γ,R, C, r) and two symbolic config-sets (p1, T1, φ1), (p2, T2, φ2) of
G. Let C = {ci}ki=1. The gist of the proof is as follows. From G, we construct a
new sGTRS G′ (without counters) by encoding the dynamics of the counters in
the output symbols of G′. Of course, G′ has no way of comparing the values of
counters with constants. [In this sense, G′ only overapproximates the behavior
of G.] To deal with this problem, we use the result of [31] to compute an existen-
tial Presburger formula ψ capturing the Parikh images of the set of all output
strings of G′ from (p1, T1, φ1) to (p2, T2, φ2). The final formula is ψ ∧ ψ′, where
ψ is a constraint asserting that the desired counter comparisons are performed
throughout runs of G′. We sketch the details of the construction below.

Modes of the counters. The first notion that is crucial in our proof is that ofmode
of a counter [23, 25], which is an abstraction of the values of a counter in a run of
an rbGTRS containing three pieces of information: (i) the region of the counter
value (i.e. how it compares to constants occurring in counter constraints), (ii)
the number of reversals that has been performed by each counter (between 0
and r), and (iii) whether a counter is currently non-decrementing (↑) or non-
incrementing (↓). A mode vector is simply a k-tuple of modes, one mode for each
of the k counters. We now formalise these notions.

Let d1 < . . . < dm be the integer constants appearing in the counter con-
straints in G. This sequence of constants gives rise to the set REG of regions de-
fined as REG := {A0, . . . , Am, B1, . . . , Bm}, where Bi := {di} (where 1 ≤ i ≤ m),
Ai := {n ∈ Z : di < n < di+1} (where 1 ≤ i < m), A0 := {n ∈ Z : n < d1}, and
Am := {n ∈ Z : n > dm}. A mode is simply a tuple in REG × [0, r] × {↑, ↓}. A
mode vector is simply a tuple in Modes := REGk × [0, r]k × {↑, ↓}k.

Building the sGTRS G′. We might be tempted to build G′ by first removing
the counters from G and then embedding Modes into the control-states G′.
This, however, causes two problems. First, the number of control-states becomes
exponential in k. Second, the resulting system is no longer weakly synchronised
even though G originally was weakly synchronised. To circumvent this problem,
we adapt a technique from [23]. Every run π of G from (p1, T1, φ1) to (p2, T2, φ2)
can be associated with a sequence σ of mode vectors recording the informa-
tion (i)–(iii) for each counter. The crucial observation is that there are at most
Nmax := 2mk(r + 1) different mode vectors in σ. This is because a counter can



8 Matthew Hague and Anthony Widjaja Lin

only go through at most 2m regions without incurring a reversal. For this rea-
son, we may use the control-states of G′ to store the number of mode vectors
that G has gone through, while the actual mode vector guessed by G′ will be
made “visible” in the output strings of G′. That way, we can use an additional
existential Presburger formula ψ′ (see below) to enforce that the run of G′ faith-
fully simulates runs of G. In addition, the shape of the control-states (DAG with
self-loops) of G′ is preserved. [The product graph of two DAGs with self-loops
is also a DAG with self-loops.] We detail the construction below.

Define the weakly-synchronised sGTRS G′ = (P ′, Σ, Γ ′,R′) as follows. Let
P ′ := P × [0, Nmax]. The output alphabet Γ ′ is defined as Γ ×R× [0, Nmax]×
{0, 1}, where the boolean flag is used to denote whether the transition taken

changes the mode. We define R′ as follows. For each rule τ = (p, T , θ) γ−→
(p′, T ′, µ) in R, we add the rule ((p, i), T )

(γ,τ,i,0)−−−−−→ ((p′, i), T ′) for each i ∈
[0, Nmax], and ((p, i), T )

(γ,τ,i,1)−−−−−→ ((p′, i+ 1), T ′) for each i ∈ [0, Nmax). Since G
is weakly-synchronised and the mode counter never decreases, it follows that G′

is weakly-synchronised too. Note also that this construction can be performed
in polynomial-time.

Constructing the formula ψ∧ψ′. As we mentioned, ψ is an existential Presburger
formula encoding the Parikh image P(L) of the set L of all output strings of G′

from ((p1, 0), T1) to (S, T2), where S = {p2}× [0, Nmax]. More precisely, the set z
of free variables of ψ include za for each a ∈ Γ ′. Furthermore, for each valuation
µ ∈ z 7→ Z, it is the case that ψ(µ) is true iff µ ∈ P(L). Such a formula is known
to be polynomial-time computable since G′ is a weakly-synchronised sGTRS
[31].

Recall that ψ′ should assert that the desired counter comparisons are per-
formed throughout runs of G′. To this end, the formula ψ′ will have extra vari-
ables for guessing the existence of a sequence of Nmax distinct mode vectors
through runs of G′. More precisely, the formula ψ′ is the conjunction

φ1(x) ∧ φ2(y) ∧ Dom(m0, . . . ,mNmax) ∧ Init(m0)∧
GoodSeq(m0, . . . ,mNmax) ∧ Respect(z,m0, . . . ,mNmax) ∧ EndVal(x,y, z).

The set x consists of variables xi (1 ≤ i ≤ k) which contain the initial value of
the ith counter. Similarly, the set y consists of variables yi (1 ≤ i ≤ k) which
contain the final value of the ith counter. Each mi denotes a set of variables for
the ith mode vector defined as follows:

– regij (for each j ∈ [1, k]) — to encode which of the 2m + 1 possible regions
the jth counter is in.

– revij (for each j ∈ [1, k]) — to encode how many reversals have been used
up by the jth counter.

– arrij (for each j ∈ [1, k]) — to encode whether the jth counter is non-
incrementing or non-decrementing.

We detail each subformula below.
The subformula Dom asserts that each variable in mi (for each i) has the right

domain (i.e. range of integer values). More precisely, for each j ∈ [1, k], we add



Integer-manipulating programs with recursive parallelism 9

the conjuncts: (i) 0 ≤ regij ≤ 2m, (ii) 0 ≤ revij ≤ r, and (iii) 0 ≤ arrij ≤ 1. For
the first constraint, we use an even number of the form 2i to represent the region
Ai, and an odd number 2i − 1 to represent the region Bi. The last constraint
simply encodes non-decrementing (↑) as 1, and non-incrementing (↓) as 0.

The subformula Init asserts that m0 is an initial mode vector. More pre-
cisely, for each j ∈ [1, k], we add the conjuncts rev0j = 0.

The subformula GoodSeq asserts that m0, . . . ,mNmax forms a valid sequence
of mode vectors. More precisely, for each i ∈ [0, Nmax) and each j ∈ [1, k],
we add the conjuncts: (i) arrij ̸= arri+1

j ⇒ revi+1
j = revij + 1, (ii) arrij =

arri+1
j ⇒ revi+1

j = revij , (iii) reg
i
j < regi+1

j ⇒ arri+1
j = 1, and (iv) regij >

regi+1
j ⇒ arri+1

j = 0. For example, the first constraint asserts that a change in
the direction (non-incrementing or non-decrementing) of the counter incurs one
reversal. The other constraints are similar.

The subformula Respect asserts that the Parikh image z of the run of G′

respects the sequence m0, . . . ,mNmax
of mode vectors. In effect, this subformula

ensures that G′ faithfully simulates G. Firstly, we need to assert that the jth
counter values at the start and at the end of the ith mode of G′ (which are
encoded in z) are in the right regions regij . To state this more precisely, for each

rule τ = (p, T , θ) γ−→ (p′, T ′, µ) inR, we let µj(τ) denote the value µ(cj). For each
i ∈ [0, Nmax] and j ∈ [1, k], we denote by the notation StartCounterij the term

xj+
∑i−1

s=0

∑
(γ,τ,s,l) µj(τ)×z(γ,τ,s,l), where γ, τ , and l, range over, respectively, Γ ,

R, and {0, 1}. Similarly, we denote by EndCounterij the term StartCounterij +∑
(γ,τ,i,0) µj(τ)×z(γ,τ,i,0). We add the conjuncts: (i) regij = 2h⇒ EndCounterij ∈

Ah, for each h ∈ [0,m], and (ii) regij = 2h + 1 ⇒ EndCounterij ∈ Bh, for each
h ∈ [0,m). [Note that formulas of the form g ∈ A, for a Presburger term g
and a set S ∈ {A0, . . . , Am, B1, . . . , Bm}, can be easily replaced by quantifier-
free Presburger formulas, e.g., g ∈ A0 stands for g < d1.] To ensure that the
initial condition is correct, for each j ∈ [1, k], we add the following conjuncts:
(1) StartCounter0j ∈ Ah ⇒ reg0j = 2h, and (2) StartCounter0j ∈ Bh ⇒ reg0j =
2h + 1. Secondly, we need to state that the transitions executed in each mode
are valid (i.e. satisfy the counter constraints). More precisely, for each γ ∈ Γ ,
τ ∈ R, i ∈ [0, Nmax], and l ∈ {0, 1}, if θ is the counter constraint in τ , we add
the conjunct z(γ,τ,i,l) > 0 ⇒ θ(StartCounteri1, . . . , StartCounter

i
k). Next we

assert that, when the jth counter is non-incrementing (resp. non-decrementing),
only non-negative (resp. non-positive) counter increments are permitted. More
precisely, for each i ∈ [0, Nmax], j ∈ [1, k], l ∈ {0, 1}, and τ ∈ R, if µj(τ) > 0,
then add the conjunct arrij = 0 ⇒ z(γ,τ,i,l) = 0; if µj(τ) < 0, then add the

conjunct arrij = 1 ⇒ z(γ,τ,i,l) = 0.

Finally, the subformula EndVal simply asserts that, starting from the initial
counter value x and following the transitions z, the end counter values are y.
To this end, we can simply add the conjunct yj = EndCounterNmax

j for each
j ∈ [1, k].

This concludes the formula construction. It is immediate that G′ faithfully
simulates G iff ψ ∧ ψ′ is true. In addition, the formula construction runs in



10 Matthew Hague and Anthony Widjaja Lin

polynomial-time. Since satisfiability over existential Presburger formulas is NP-
complete [39], the NP upper bound for Theorem 5 follows. NP-hardness already
holds for the restricted model where the tree component is a stack [23].

5 Senescent Ground-Tree Rewrite Systems

A natural question arising from the result on weakly synchronised rbGTRS is
whether the “weakly synchronised” restriction can be relaxed while maintaining
decidability. It is known that allowing arbitrary underlying control-state graphs
leads to undecidability of reachability even without reversal bounded counters.
In this section we explore the notion of senescence [22], which is more general
than the weakly synchronised restriction, but still permits a decidable reachabil-
ity problem (without counters). After giving the formal definition of senescent
GTRS, we show the following result.

Theorem 6 (Control-State Reachability of Senescent rbGTRS). The
control-state reachability problem for senescent rbGTRS is undecidable.

5.1 Model Definition

Senescence allows the underlying control-state graph to have arbitrary cycles
(instead of only self-loops). For sGTRS, control-state reachability is decidable
under an “age restriction” that is imposed on the nodes that can be rewrit-
ten. That is, when the control-state changes, the nodes in the tree age by one
timestep. Once a node reaches an a priori fixed age r, it becomes fixed (i.e.
cannot be rewritten by further transitions in the run).

p

a 2

b 1 c 1

d 0

p′

a 3

b 2 a 0

b 0 c 0

(a) A transition changing the control-state.

p

a 2

b 1 c 1

d 0

p

a 2

b 1 a 0

b 0 c 0

(b) A transition that does not change the
control-state.

Fig. 1: Transitions of a senescent GTRS.

Before the formal definition, two example transitions of a senescent rbGTRS
are shown in Figure 1. A configuration is written as its control-state and counter
values ((p, ν) or (p′, ν′)) with the tree appearing below. In the tree, the label of
each node appears in the centre of the node. The ages of each node is depicted
as a subscript on the right. Dotted lines are used to indicate the part of the tree
rewritten by a rule. In Figure 1a the transition changes the control-state, causing
the age of the nodes that are not rewritten to increase by 1. The rewritten nodes
are given the age 0 as they are new, fresh, nodes. The situation when the control-
state does not change is shown in Figure 1b. In this case, the nodes that are not
rewritten maintain the same age. The senescence restriction disallows runs where
nodes older than a fixed age are rewritten.



Integer-manipulating programs with recursive parallelism 11

More formally, given a run

(p1, t1, ν1)
γ1−→ · · · γn−1−−−→ (pn, tn, νn)

of an rbGTRS, let C1, . . . , Cn−1 be the sequence of tree contexts used in the
transitions from which the run was constructed. That is, for all 1 ≤ i < n, we

have ti = Ci[t
out
i ] and ti+1 = Ci

[
tini+1

]
where (pi, Ti, θi)

γi−→ (pi+1, T ′
i , µi) was the

rewrite rule used in the transition and touti ∈ L(Ti), tini+1 ∈ L(T ′
i ) were the trees

that were used in the tree update.
For a given position (pi, ti, νi) in the run and a given node η in the domain

of ti, the birthdate of the node is the largest 1 ≤ j ≤ i such that η is in the
domain of Cj

[
tinj

]
and η is in the domain of Cj [x] only if its label is x. The age

of a node is the cardinality of the set {i′ | j ≤ i′ < i ∧ pi′ ̸= pi′+1}. That is, the
age is the number of times the control-state changed between the jth and the
ith configurations in the run.

A lifespan-restricted run with a lifespan of r is a run such that each transition

(pi, Ci[t
out
i ], νi)

γi−→
(
pi+1, Ci

[
tini+1

]
, νi+1

)
has the property that all nodes η in touti

have an age of at most r. That is, more precisely, that all nodes η in the domain
of Ci[t

out
i ] but only in the domain of Ci[x] if the label is x have an age of at most

r.

Definition 7 (Senescent rbGTRS). A senescent rbGTRS with lifespan r is
an rbGTRS G = (P, Σ,R, C) where runs are lifespan-restricted with a lifespan
of r.

Note that the senescence restriction is weaker than the weakly-synchronised
restriction in that the number of times the finite control could change state
is unbounded. In fact, a node could be affected by an unbounded number of
control-state changes so long as it is always rewritten without becoming fixed
(i.e. reaches age r).

5.2 Undecidability

We show control-state reachability for senescent rbGTRSs is undecidable in the
full version, and give the intuition here. In the following, we refer to nodes whose
age is within the age bound as live. We refer to nodes that are not live as fixed.
Note, each time a node is rewritten, its age is reset to zero. Thus, we can keep
leaves of the tree live by allowing them to rewrite to themselves. That is, for
all symbols a we wish to keep live and all control-states p, we have a transition

(p, a, θ)
γ−→ (p, a, µ) where θ is a formula that is always satisfied, and µ assigns 0

to all counters (i.e. the rule does not depend on, nor change the counter values).
In addition, by omitting the above rules for certain control-states, we can prevent
a node from keeping itself fresh in certain situations.

We follow the proof that reachability for reset Petri nets is undecidable [3].
We simulate a two-counter machine. Testing whether such a machine can reach
a given control-state while having counters with value zero is undecidable.

Let the two counters be c1 and c2. In the tree, we track the value of a
counter c ∈ {c1, c2} by the number of live leaves labelled with the counter



12 Matthew Hague and Anthony Widjaja Lin

name c. E.g. the tree •(c1, •(c2, ∗)) represents the situation where both counters
have value 1, assuming these leaves are live. We will always use internal nodes
labelled •. The node ∗ is for adding new leaves when required. To increment
a counter we add a new leaf labelled c. To decrement a counter, we rewrite
a leaf labelled c to a null label. Thus, we can easily increment and decrement
counters. Zero tests, however, are more subtle. To help with this, we track, using
reversal-bounded counters, the number of increments made to each counter, and
in separate reversal-bounded counters, the number of decrements. That is, we
have reversal bounded counters

{
c+1 , c

−
1 , c

+
2 , c

−
2

}
. When we simulate an increment

of c1 we add a leaf and increment c+1 . When we simulate a decrement of c2 we
rewrite a leaf to a null character and increment c−1 . Similarly for c2. We simulate
zero tests as follows.

To simulate a zero test on a counter c we perform the following checks. First,
we “reset” the counter to zero by forcing enough control-state changes to fix the
nodes corresponding to the counter. That is, we move to a control-state p where
all leaf labels may rewrite to themselves, except those labelled c. After the move
to p all leaves will have age 1. Leaves not labelled c can refresh their age to 0 by
rewriting themselves. Leaves labelled c will stay aged 1. Then, we move to the
target control-state of the transition we are simulating. Thus, after these moves,
all leaves labelled c will reach age 2, while all other nodes will only reach age
1. Thus, if our lifespan is 2, nodes labelled c will no longer be live. That is, the
simulated value of c in the tree has been forced to 0.

After this reset operation, the counter value is definitely zero. However, we
did not enforce that the counter value was zero before the transition. Recall, we
track the number of increments and decrements to c in the reversal bounded
counters. If the counter was not zero before the test, there will be a discrep-
ancy with the reversal bounded counters: more increments will be recorded than
decrements. E.g. for counter c1 we will have c+1 > c−1 . This cannot be corrected
by the simulation. Thus, at the end of the run, we check whether the number
of increments is equal to the number of decrements. If not, we know the run
made a spurious transition. That is, it performed a zero test transition when
the counter was not zero. If no spurious transitions were made, we know the
two-counter machine has a corresponding run. This completes the gist of the
simulation of a two-counter machine.

6 Extensions and Future Work

We proposed sGTRS with counters as a model of recursively parallel programs
with unbounded recursion, thread creation, and integer variables. To obtain de-
cidability, we gave an underapproximation in the form of weak sGTRS with
reversal-bounded counters. We showed that the reachability problem for this
model is NP-complete; in fact, polynomial-time reducible to satisfiability of lin-
ear integer arithmetic, for which highly optimised SMT solvers are available
(e.g. Z3 [16]). Additionally, we explored the possibility of relaxing the weakly-
synchronised constraint to that of senescence, and showed that the resulting
model has an undecidable control-state reachability problem.



Integer-manipulating programs with recursive parallelism 13

One possible avenue of future work is to investigate what happens when local
integer values are permitted. That is, reversal-bounded counters can be stored on
the nodes of the tree. We may also study techniques that allow nodes to contain
multiple labels, permitting the modelling of multiple local variables without an
immediate exponential blow up.

Acknowledgments We thank anonymous reviewers for their helpful feedback.
This work was supported by the Engineering and Physical Sciences Research
Council [EP/K009907/1] and Yale-NUS College Startup Grant.

References

1. P. A. Abdulla, M. F. Atig, and J. Cederberg. Analysis of message passing programs
using SMT-solvers. In ATVA, pages 272–286, 2013.

2. C. Aiswarya, P. Gastin, and K. N. Kumar. Verifying communicating multi-
pushdown systems via split-width. In ATVA, pages 1–17, 2014.

3. T. Araki and T. Kasami. Some Decision Problems Related to the Reachability
Problem for Petri Nets. Theoretical Computer Science, 3(1):85–104, 1977.

4. M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata
is 2etime-complete. In DLT, pages 121–133, 2008.

5. M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent
programs with dynamic creation of threads. Logical Methods in Computer Science,
7(4), 2011.

6. M. F. Atig and P. Ganty. Approximating petri net reachability along context-free
traces. In FSTTCS, pages 152–163, 2011.

7. M. F. Atig, K. N. Kumar, and P. Saivasan. Adjacent ordered multi-pushdown
systems. Int. J. Found. Comput. Sci., 25(8):1083–1096, 2014.

8. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbolic
model checking. In ATVA, pages 474–488, 2005.

9. A. Blumensath, T. Colcombet, D. Kuperberg, P. Parys, and M. Vanden Boom.
Two-way cost automata and cost logics over infinite trees. In CSL-LICS, pages
16:1–16:9, 2014.

10. A. Bouajjani and M. Emmi. Analysis of recursively parallel programs. ACM Trans.
Program. Lang. Syst., 35(3):10, 2013.

11. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR, pages 135–150, 1997.

12. L. Bozzelli, M. Kret́ınský, V. Rehák, and J. Strejcek. On decidability of LTL model
checking for process rewrite systems. Acta Inf., 46(1):1–28, 2009.

13. T. Colcombet and C. Löding. Regular cost functions over finite trees. In LICS,
pages 70–79, 2010.

14. W. Czerwinski, P. Hofman, and S. Lasota. Reachability problem for weak multi-
pushdown automata. Logical Methods in Computer Science, 9(3), 2013.

15. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
LICS, pages 242–248, 1990.

16. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

17. S. Demri, M. Jurdzinski, O. Lachish, and R. Lazic. The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–
38, 2013.

18. J. Esparza, P. Ganty, and T. Poch. Pattern-based verification for multithreaded
programs. ACM Trans. Program. Lang. Syst., 36(3):9:1–9:29, 2014.



14 Matthew Hague and Anthony Widjaja Lin

19. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interpro-
cedural parallel flow graphs. In POPL, pages 1–11, 2000.

20. P. Ganty, R. Majumdar, and M. Monmege. Bounded underapproximations. FMSD,
40(2), 2012.

21. S. Göller and A. W. Lin. Refining the process rewrite systems hierarchy via ground
tree rewrite systems. In CONCUR, pages 543–558, 2011.

22. M. Hague. Senescent ground tree rewrite systems. In CSL-LICS, pages 48:1–48:10,
2014.

23. M. Hague and A. W. Lin. Model checking recursive programs with numeric data
types. In CAV, pages 743–759, 2011.

24. M. Hague and A. W. Lin. Synchronisation- and reversal-bounded analysis of mul-
tithreaded programs with counters. In CAV, pages 260–276, 2012.

25. O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM, 25(1):116–133, 1978.

26. M. Kret́ınský, V. Rehák, and J. Strejcek. Extended process rewrite systems: Ex-
pressiveness and reachability. In CONCUR, pages 355–370, 2004.

27. S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In
DLT, pages 116–128, 2014.

28. A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of concurrent
programs under a context bound. In TACAS, pages 282–298, 2008. Springer-Verlag.

29. M. Lang and C. Löding. Modeling and verification of infinite systems with re-
sources. Logical Methods in Computer Science, 9(4), 2013.

30. J. Leroux, M. Praveen, and G. Sutre. Hyper-ackermannian bounds for pushdown
vector addition systems. In CSL-LICS, pages 63:1–63:10, 2014.

31. A. W. Lin. Weakly-synchronized ground tree rewriting (with applications to veri-
fying multithreaded programs). In MFCS, pages 630–642, 2012.

32. C. Löding. Reachability problems on regular ground tree rewriting graphs. Theory
Coput. Syst., 39(2):347–383, 2006.

33. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL,
pages 283–294, 2011.

34. R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. PhD thesis, TU-Munich, 1998.

35. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In PLDI, pages 446–455, 2007.

36. S. Qadeer. The case for context-bounded verification of concurrent programs. In
SPIN, pages 3–6, 2008.

37. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. Transactions on Programming Languages and Systems (TOPLAS), 2000.

38. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS, pages 93–107, 2005.

39. B. Scarpellini. Complexity of subcases of Presburger arithmetic. Trans. of AMS,
284(1):203–218, 1984.

40. D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-bounded
analysis of multithreaded java programs. In SPIN, pages 270–287, 2008.

41. A. W. To and L. Libkin. Algorithmic metatheorems for decidable LTL model
checking over infinite systems. In FOSSACS, pages 221–236, 2010.

42. S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In In LICS, pages 161–170. IEEE Computer Society, 2007.

43. K. N. Verma and J. Goubault-Larrecq. Karp-Miller trees for a branching extension
of VASS. Discrete Mathematics & Theoretical Computer Science, 7(1):217–230,
2005.


