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Abstract. The advent of transformers has in recent years led to pow-
erful and revolutionary Large Language Models (LLMs). Despite this,
our understanding on the capability of transformers is still meager. In
this invited contribution, we recount the rapid progress in the last few
years to the question of what transformers can do. In particular, we will
see the integral role of logic and automata (also with some help from
circuit complexity) in answering this question. We also mention several
open problems at the intersection of logic, automata, verification and
transformers.
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1 Introduction

Recent years witnessed the unprecedented emergence of Large Language Models
(LLMs), which have revolutionized many aspects of our lives. LLMs are based
on a new neural network model called transformers, which extends the classical
feed-forward neural network model via attention mechanisms for handling texts
of arbitrary lengths. Unlike Recurrent Neural Networks (RNN) [7] — which
predated transformers by decades — transformers have proven to be efficiently
parallelizable and able to capture long-range dependencies better in practice.
Despite the rapid adoption of transformers as a mainstream ML model, some
limitations of the transformer model have only been understood in recent years.
One good example of such a limitation is to perform counting in a text, e.g.,
determine whether there is an even or an odd number of occurrences of a given
token in a text.

In recent years, subareas of theoretical computer science — including logic,
automata, and circuit complexity — have featured in the rapid development
of the theory of expressivity of transformers (cf. [19]). Such a connection has
organically materialized because transformers are computational models that
process texts (i.e., strings) and can be studied just like formal models such as
finite-state automata, Turing machines, or logics like first-order and second-order
logics on strings. Multiple formal models have been developed by varying the
following aspects of transformers: attention mechanisms, positional encodings,



2 Lin and Barcelo

precision, and the so-called “chain of thoughts”. Guided by both theory build-
ing and experimentation, a picture on the expressive power of transformers has
slowly emerged. Although this picture is to date incomplete, a respectable body
of works have been produced in the so-called FLaNN (Formal Languages and
Neural Networks) community, consisting of logicians, automata theorists, and
computational linguists.

Why this article? This article has been written to recount some gems that have
been discovered at the intersection of logic, automata, circuit complexity, and
transformers. That is, we do not aim to be exhaustive. The choices of materials
are additionally based on our subjective taste*. The intended audience of the
article includes researchers in logic, automata, verification and programming
languages. In particular, we will mention several open problems, which we believe
are worth undertaking in the next years.

Highlight of key results. In its simplest form, a transformer can be understood
as a formal model that takes an input text (i.e. string) and outputs a token (i.e.
letter). More formally, a transformer gives rise to a function f : X* — X for
some finite alphabet X' of tokens. Moreover, one could think of f as a family of
formal languages {Lg }qex, where L, := {w € X* : f(w) = a}. This connection
underlines the bridge between formal languages and transformers: one can simply
study such formal languages L, generated (or recognized) by transformers.

The first set of results in the paper concerns the expressivity of transformers
with unique hard attention mechanisms (a.k.a. Unique Hard Attention Trans-
formers, or simply UHAT). Such an attention mechanism — which finds the
leftmost value that maximizes the attention score — is a simplification of soft-
maz attention, which is used in practice but has proven to be tricky to analyze in
theory owing to the use of such real-valued functions as e®. The first key result
that we discuss in the paper is from [2, 21]. It connects formal languages definable
in various fragments of first-order logic over strings extended with all numeri-
cal predicates (equivalently, subclasses of the circuit complexity class ACO) and
UHAT. In particular, the language

PARITY :={w € {a,b} : lw[, =0 (mod 2)}

is well-known [1] not to be in AC, therefore cannot be expressed by UHAT. We
cover this in Section 3.

The second set of results concerns the expressivity of transformers with aver-
aging hard attention mechanisms (a.k.a. Average Hard Attention Transformers,
or simply AHAT). Such an attention mechanism — which averages all values
that maximize the attention score (unlike simply taking the leftmost value) —
provides another approximation of practical transformers, which use softmax
attention. In particular, AHAT is tightly connected to Linear Temporal Logic

4 Before working on FLaNN, the authors primarily researched in logic, automata the-
ory, automated reasoning, finite model theory, and databases.
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extended with counting and the circuit complexity class TC’. We cover this in
Section 4

Finally, we discuss the limitations of both UHAT and AHAT as approxi-
mations of practical transformers. In particular, we consider a recent promising
direction that restricts AHAT to uniform attention layers (i.e., each position
receives the same amount of attention). The resulting model, called AHAT|[U],
appears to be a good approximation of softmax transformers. We also discuss
the distinction between expressibility and trainability in Section 5.

Precision. Real-world transformers are implemented on a specific hardware that
allows fixed (bit-)precision and fixed memory. Of course, one can allow more
precision and more memory by upgrading the hardware. Therefore, researchers in
the theory of transformers has adopted a more practical approach by specifying
different precision model on a transformer 7:

1. Fized precision: there is a constant ¢ on the allowed number of bits for any
computation performed by 7.

2. Logarithmic precision: the number of allowed bits in the computation of 7
on a string of length n is O(logn).

3. Polynomial precision: the number of allowed bits in the computation of T
on a string of length n is O(n®) for some constant c.

4. Rational (resp. real) precision: this means rational (resp. real) computation
is allowed with an unbounded precision.

Although the distinction is important, it overcomplicates an introductory article.
For these reasons, we will assume the last precision model, and simply remark
that all of the mentioned results work also for polynomial precision (and often
also logarithmic precision).

Notation and assumed background. We assume familiarity with standard results
in logic and automata, and their connections to circuit complexity. All required
background could be found in the excellent book [13] by Libkin. In particular,
we will consider star-free languages (i.e. regular languages generated by regu-
lar expressions that use concatenation, union, complementation, but no Kleene
star), and their equivalent formulation using first-order logic over strings (i.e.
over the embedding of strings as logical structures, e.g., aba is encoded as the
structure with universe {1,2,3}, the order relation < C {1,2,3}2, and unary
relations U, = {1,3} and U, = {2} indicating which positions labeled by a and
b, respectively). By Kamp’s theorem [11], the logic is equivalent to Linear Tem-
poral Logic (LTL). First-order logic characterization of star-free languages can
be extended with all numerical predicates to give us a characterization of the
circuit complexity class (nonuniform) AC, which can be defined by a class of
problems that can be solved by a family {C,, },>0 of constant-depth polynomial-
sized (i.e. polynomial in n) boolean circuits (with unbounded fan-ins), wherein
C,, is employed to decide input strings of length n. Note that a k-ary numer-
ical predicate simply means a relation R C N*. In the sequel, we also use the
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fragment FO[Mon]|, which restricts the above use of numerical predicates only
to monadic (i.e. unary) numerical predicates. This is a strict subset of AC°.

The circuit complexity TC? extends AC? with majority gates, which effec-
tively allows one to encode all standard arithmetic operations on numbers in-
cluding addition, multiplication, etc. T C° problems are often construed in the
FLaNN (Formal Languages and Neural Networks) community as efficiently par-
allelizable problems. Note that TC is a subset of the circuit complexity class
NC', which contains all problems solvable by families of polynomial-sized cir-
cuits of logarithmic depth. It is known that NC' contains all regular languages.
[It is not known if all regular languages are contained in TCO]. In turn, NC! is
a subset of L, i.e., the class of problems solvable in logarithmic space.

2 Formal Models of Transformers

We define several formal models of transformers, which are based on the type of
adopted attention mechanisms (i.e. hard or soft attention). We first define these
semantically, and then instantiate them based on different attention mechanisms.

A transformer can be seen as a composition of several sequence-to-sequence
transformations. More precisely, a seq-to-seq transformation is a length-preserving
f: (RY* — (R")* for some positive integers [, h. That is, f maps an input se-
quence o of vectors of dimension [ to an output sequence f(o) of dimension
h of the same length, i.e., |f(c)| = |o|. We write iDim(f) (resp. oDim(f)) to
denote the dimension of the input (resp. output) vectors of f, i.e., I (resp. h).
A sequence i := f1,..., fr of seq-to-seq transformers is said to be well-typed if
iDim(f;4+1) = oDim(f;) for each i = 1,...,k — 1. We assume a finite alphabet X
of tokens (a.k.a. symbols or characters) not containing the end-of-string symbol
E0S. We write Yggs to denote X' U {E0S}. A transformer T over X can then
be defined as a triple (u,em,t), where p is a well-typed sequence of seg-to-seq
transformers as above, em : Xgs — R? with d = iDim(f1) is called a token
embedding, and t € R® with s = oDim(f)). The token embedding em can be ex-
tended to em : ¥* — (R?)* by morphism, i.e., em(w; - - - w,,) = em(w;) - - - em(wy,),
with wy -+ -w, € X*. The language L C X* accepted by T consists precisely of
strings w € X such that the last vector v in

fu(fe-a (- fi(em(wEDS)) - - ) (1)

— that is, at position |w|+ 1 in the sequence — satisfies (t,v) > 0, where (t, v)
denotes the dot product of t and v. That is, we first apply fi,...,fr (in this
order) to the sequence em(wEOS) of vectors, and check if a weighted sum of the
arguments in the last vector is positive.

Remark 1. The above setting of transformers does not admit Chain of Thoughts
(CoTs). With CoTs, a transformer T on input w will output symbols, which are
then continuously fed back into 7 until a specific output symbol is produced.
That is, on input w, 7 produces a symbol a;. We then run 7 on input wa; and
produce another symbol a5, and so on. It is known that transformers with CoTs
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are Turing-complete [16,5,15]. In the sequel, we do not consider transformers
with CoTs. O

We have thus far defined the notion of transformers only semantically. We
now discuss how to define a seq-to-seq transformation more concretely. To this
end, we employ the following ideas:

1. Use piecewise linear functions to modify a single vector in the sequence.
2. Use attention to “aggregate” several vectors in the sequence.

We will discuss these in turn.

2.1 Piecewise linear functions

A piecewise linear function is a function f : R™ — R® that is representable
by a Feed-Forward Neural Network (FFNN). More precisely, a piecewise linear
function can be defined inductively:

(Base) Each identity function I'd : R™ — R" is piecewise linear.

(Affine) If f : R” — R® is piecewise linear and g : R® — R' is an affine
transformation®, then the composition f o g : R” — R! is piecewise linear.

(ReLU) If f : R™ — R® is piecewise and i € {1,...,s}, then the function
g : R” — R defined as

g(v) = (w1, ..., wi—1, max{0, w; }, wit1,...,ws),
where f(v) = (wy,...,ws), is piecewise linear.

As before, we can extend each piecewise linear function to sequences of vectors
by morphisms, i.e., f: (R")* = (R%)* with f(vi,...,vn) := f(v1),..., f(Va).
Notice, however, such functions can only modify a vector at the ith position in
the sequence solely based on its values and not on the values of vectors at other
positions. An intra-sequence aggregation of values is enabled by the so-called
attention, which we discuss next.

2.2 Attention layers

To define an attention layer, we assume a weight normalizer wt : R* — R*,
which turns any d-sequence of weights into another d-sequence of weights. We
will define some common normalizers below, which will result in hard and soft
attention layers.

A seq-to-seq transformation f : (R")* — (R®)* generated by an attention
layer associated with wt is given by three piecewise linear functions A, B, C

AB:R"—=R" C:R* - R®.

5 That is, given an input vector x, we output Ax+c, where A is a linear transformation
and c is a constant vector.
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defined as follows. On input ¢ = x1,...,X,, we have f(o) = y,,...,¥,, such
that

y; = C(x;,Vv)
where

vi=Y w(j)x;, (2)
w = wt({(Ax;, Bx;)}7_). (3)

In other words, an attention layer looks at a vector x; at each position ¢ and
decides “how much attention” is to be given to vectors {x;}7_; at any position in
the input sequence. To this end, one obtains a sequence of weights {(x;,x;)}7_;.
After normalizing this using wt, the result of the attention is v, which is a
weighted sum {x;}"_, over all the input vectors.

Soft Attention. Practical transformers use weight normalizers defined by the
softmax function, which turns a sequence of weights into a probability distribu-
tion. In particular, given a sequence o = z1,...,z, € R", define softmax(o) :=
Y1, -+ Yn, Where

eri

Yi = 722:1 pr

A SoftMax Attention Transformer (SMAT) consists of seq-to-seq transforma-
tions that are defined using the softmax weight normalizer.

Hard Attention As previously mentioned, softmax attention is sometimes
rather difficult to analyze, owing to the usage of exponential functions. This
led researchers to use other weight normalizers that led to the so-called hard
attention layers. More precise, there are two common flavors: unique hard atten-
tion and average hard attention. A unique hard attention uses the weight nor-

malizer uha that selects the leftmost maximum weight, i.e., uha(xy,...,x,) =
(Y1,-.-,Yn), where y; := 1 if ¢ is the leftmost position in x := z1,...,2, with
x; = max(x); or else y; := 0. An average hard attention uses the weight normal-
izer aha that selects all positions with maximum weight, i.e., aha(zy,...,2,) =

(Y1,---+Yn), where y; := 1/|P| if x; = max(x); or else y; := 0. Here P consists
of positions 7 in ¢ such that z; is maximum in x.

2.3 Positional information

Thus far, we have actually defined a rather weak class of transformers (called
NoPE-transformers) that cannot distinguish different positions in the input se-
quence. They recognize permutation-invariant languages, i.e., a string s is in the
language L iff all of the reorderings of s are in L. There are two common ways
to recover ordering: (1) masking and (2) Position Embeddings (PEs). We will go
through these in turn.



The Role of Logic and Automata in Understanding Transformers 7

Masking. Masking is used to “hide” some positions in an input sequence to
a layer with respect to a certain “anchor” position. The most commonly used
type of masking is called strict future masking, which we will focus on in the
remainder of the paper.

Intuitively, when attention is applied with respect to the position 4, we looked
at all positions and computed a normalized weight sequence accordingly. The
version with strict future masking modifies this by considering only positions
J strictly before i, i.e., 7 < . Formally, one simply modifies Equation 2 and
Equation 3 by the masked version:

i—1

v="> w(j)x; w = wt({(Ax;, Bx;)}'21).
j=1

Position Embeddings (PEs). A Position Embedding is an arbitrary function
of the form p : N x N — R?. The idea is that p(i,n) indicates the position
information of the vector at position i for a sequence of length n. Thus, to
extend transformers by PEs, we first apply both the token embedding and the
PE p to the input string w = w - - - w, before processing the resulting sequence
of vectors in the usual way. More formally, we modify the above acceptance
condition in the definition of transformers by using

fe(feaa(--- f1(0)) )

where, instead of Equation 1, we use
o:=em(wy) +p(0,n+1), - ,em(w,) + p(n,n + 1),em(E0S) + p(n + 1,n + 1).

At this point, it is appropriate to ask what types of PEs are reasonable.
In practice, PEs may use trigonometric functions (e.g. sin) and various other
information about the position in the sequence (e.g. the “absolute” position 4,
the length n of the sequence, etc.). Thus, researchers have studied transformers
with PEs without any restriction whatsoever on the PEs. Remarkably, some
interesting results can already be proven in this setting. We will mention some
restricted classes later. We end this section with an easy result:

Proposition 1. Each Masked UHAT (resp. AHAT) with PEs can be simulated
by UHAT (resp. AHAT) with PEs with no masking.

3 Unique Hard Attention Transformers

The first fundamental result concerning UHAT comes from [8,9], which show
that their class of languages is contained in the well-studied circuit complexity
class ACY, consisting of problems solvable by constant-depth, polynomial-size
Boolean circuits. More recently, this containment was proven strict [2].

Theorem 1 ([8,9,2]). UHAT with PEs is strictly subsumed in AC°.
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Proof idea. Let us quickly discuss the proof idea behind the containment in AC°.
Fix an UHAT T with, say, h layers. For simplicity, let us assume the alphabet
Y = {a,b}. The key idea is that there is a polynomial function p(n), for any
possible string length n, such that the set V,, of vectors — as well as the set
S, of possible attention scores — that can be generated in the computation
of the UHAT has size |V;,| = O(p(n)). More precisely, in the input layer after

application of em and position encoding, we can generate O(n) many vectors. In
the next layer, there are O(n?) many vectors. In the kth layer, there are O(anil)

possible vectors. Therefore, we may set p(n) to be O(n?").

Thus, we may represent each vector in V,, and each attention score in S,
using O(logn) bits. Therefore, using a constant depth polynomial-sized boolean
circuit (by a simple enumeration), we can represent the relation < C S, x S,
containing pairs (s, s’) such that s has a smaller attention score as s’. Similarly,
using a constant depth polynomial-sized boolean circuit, we can represent the
relation R C V,, x V,, x S, such that R(v,v’,s) iff (v,v’) = s. Together, this
allows us to represent — using constant depth polynomial-sized boolean circuits
— the function f; : V. x {1,...,n} — V,, such that fo((vi---vy),i)) = v iff,
whenever the ¢th layer has input sequence vy - -- v, the vector at position i at
layer #(¢+1) is v. All in all, this gives rise to a constant-depth polynomial-sized
boolean circuit C, for input strings of length n.

To conclude the theorem, we simply use the (non-uniform) family {C), },>0
of circuits to represent 7. O

Combined with well-known limitations of ACY (e.g. see [1,13]), the above re-
sult shows that some languages are not expressible by UHAT, including PARITY
and MAJ, where the latter is defined as:

MAJ = {w € {a,b}" : |w|, > |w|p}.

While this provides us a ceiling of what languages are expressible as UHATS,
the following two results show what UHATs are capable of. To this end, we
write FO[Mon| to denote first-order logic over strings extended only by monadic
numerical predicates (i.e. sets of numbers); recall that this would have yielded
AC? if extended with all k-ary (k > 1) numerical predicates; see [13]. An exam-
ple of monadic numerical predicates is Modg containing all numbers that are 2
(mod 3).

Theorem 2 ([2,21]). FO[Mon] is expressible by UHAT with PEs, as well as
by masked UHATs with finite-image PEs. In addition, masked NoPE-UHAT
coincides with FO, which in turn coincides with star-free languages.

Proof idea. To prove the containment of FO[Mon] in UHAT —either with PEs or
masked attention with finite image PEs— we use Kamp’s theorem [11]: FO[Mon]
coincides in expressivity with LTL[Mon], i.e., LTL formulas that also use monadic
numerical predicates as atomic propositions. Unlike FO formulas, which have
multiple variables, LTL formulas are unary, meaning that their semantics is a
set of positions over a string. This simpler structure of LTL aligns well with
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the expressive power of UHATS, allowing for a proof using structural induction.
In particular, we inductively show that for every LTL formula ¢ with unary
numerical predicates, there exists a UHAT T4 such that on input o = x1,...,Xy,
corresponding to the embedding of a word w = a1,...,a, € X7, it outputs a
sequence T4(0) = yq,...,y, over {0,1} that contains a 1 precisely in those
positions of w that satisfy ¢.

Let us give some intuition on how to do the aforementioned induction proof.
For the base case, we deal with only @, (saying that the current position has
letter a) or a monadic numerical predicate U C N. We need to set up the token
embedding function em and position embedding p with a large enough dimension
so that information on truth/falsehood of each atomic proposition in the given
LTL formula can be read off directly. For example, for a string w := abaa with
the LTL formula G(Mod3 — Q,), we would map w to the following sequence of
vectors:

(1,0,0),(0,1,1),(1,0,0),(1,0,1)

where the vector at position i corresponds to (Qq (i), Q(i), Mod2(4)). Note, we
omitted EOS and potentially other “information” in the PEs for readability.

For the inductive case, one introduces new arguments at each position (i.e.
increases the dimension) to encode truth/falsehood of the formulas higher up in
the parse tree. Note, we keep the information stored in the previous layer.

For boolean combinations, one can handle this with piecewise linear func-
tions. That is, ~¢ can be implemented by the function 1 — =z, where x, encodes
the value of ¢ at the same position in the string. For ¢ V 1, we can implement
it as ¢, + ReLU(zy — xy) = 2, + max(0, zy — ).

We next give an intuition how to do F¢ and show how to do this with PEs
(with no masking). For other temporal operators, the reader is referred to [2].
To this end, we assume by induction that the value z, and z-, are available
at every position in the sequence. The first step is to “nullify” the value z-, at
the last position n, i.e., -,[n] := 0. See the proof of Lemma 1 in [2]. We then
assume the use the following information at position i:

v; := (cos(m(1 — 27%)/10),sin(m(1 — 277)/10), 1, 2_,).
With an appropriate affine transformation B, we have
Bv; := {(cos(m(1 — 27%)/10),sin(7(1 — 27%)/10), —10.2-, 0).
Thus, we have
(vi, Bv;) := cos(m(27" — 279)/10) — 10.2—,.

The value cos(m(27% —277)/10) is maximized at position j > i and not at j < i.
In addition, the value —10.z-, is maximized at j = n (possibly also at j < 7).
Thus, it follows that (v;, Bv;) is maximized at position j > i. Furthermore,
it can be verified that among the value j > i the value cos(m(27% — 279)/10)
monotonically decreases in j. All in all, unique hard attention picks the vector v
at the leftmost position j > i such that w,j = ¢ (otherwise, it picks the vector
v at position n), with which we can forward the truth/falsehood of Fe. O
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Corollary 1. UHAT with PEs contain all regular languages expressible in AC®.

Proof. Regular languages in ACY are expressible in FO with unary numeri-
cal predicates [18] (more precisely, Mod? containing all numbers that are r
(mod d)). The corollary then follows from Theorem 2. O

Theorem 2 turns out to be powerful enough to show the following interesting
“non-regular” capability of UHAT with PEs.

Corollary 2 (|2]). Palindrome is in UHAT with PFEs.

Proof idea. Using PEs, it is possible to extend Theorem 2 with any desired
family {=<,}n>0, where <, deals with strings of length n. Therefore, on strings
of length n, we could use the ordering

1,n,2,n—2,3,n—-3,...

of the set {1,...,n}. This essentially turns the string abecba into aabbee, for
example. Therefore, using the unary numerical predicate Mod%, we can write an
LTL[Mon]| (or equivalent FO[Mon]) formula that says that at each odd position
1 the next position ¢ + 1 has to have the same label as that at position 1. O

We conclude our discussion of UHAT by the problem of verifying Masked
UHAT with no PEs. By verifying, this could mean checking the emptiness,
universality of the language, or its equivalence to (or containment in) another
Masked UHAT. By Theorem 2, each Masked UHAT can be effectively turned
into a finite-state automaton recognizing the same language. Owing to decidabil-
ity of emptiness, universality, equivalence, and containment for finite automata,
we obtain the same decidability results for Masked UHAT with no PEs.

Corollary 3 ([21]). The problem of verifying Masked UHAT with no PEs is
decidable.

Recently, Bergstrifer et al. [3] has derived a precise complexity for the prob-
lem, i.e., EXPSPACE-complete. This gives rise to a new interesting challenge
for verification.

4 Logical Languages for Average Hard Attention

It is easy to construct an AHAT that recognizes MAJ. This takes AHAT beyond
ACP. The following result shows that TC? still upper-bounds the capability of
AHAT.

Theorem 3 ([9]). Languages recognized by AHAT are in TC®
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The main reason behind the TC® upper bound of AHAT is the ability of TC°-
circuits to simulate arithmetic, which is needed in the computation of average
hard attention.

For the time being no complete characterization for neither AHAT with PEs
nor masked NoPE-AHAT exists. That is, we do not have an extension of Theorem
2 to AHAT. However, it is still possible to specify a logic that expresses languages
that can be expressed by AHATs. The logic is called Counting LTL, as first
defined in [2]. Intuitively, Counting LTL extends LTL with linear counting terms
of the form:

C,C = c(ce) | ¥l | AlJ | C+C | C-C,

and formulas of the form C < C’, where C and C’ are linear counting terms.
The term #[ ] (resp. #[@]) counts the number of times ¢ holds at positions
before (resp. after) the one where we are evaluating the formula. The remaining
terms and formulas have an intuitive meaning.

We define the fragment K;[#] of the Counting LTL, which removes all tem-

poral operators of LTL, as well as terms of the form # . That is, only terms

of the form #[ | is allowed. For instance, if Q, and @y are formulas that check
whether a position in a word holds symbol a or b, respectively, then the K;[#]

formula <7;[621,] < ;[Qa] checks whether the word belongs to MAJ (if evaluated
on the last position of the word). Similarly, we can define Dyck-1, the language
of well-matched parenthesis words over the alphabet consisting of tokens ( and
). The K[#] that checks for this language over the last position of a word in
this alphabet is:

F100 = #1Q)] A F#FQ) > FlQJ] =

where we have used some standard logical abbreviations. It is possible to show
that the Counting LTL can express PARITY, whereas K;[#] cannot express
PARITY |[10].

Theorem 4 ([2,20]). Counting LTL extended with unary numerical predicates
is in AHAT with PEs. The fragment Ki[#] is expressible by masked NoPE-
AHAT.

The basic idea behind the proofs of these results is that AHATSs allow to
compute the uniform average value among all positions that maximize the at-
tention. This averaging mechanism allows to express many counting properties of
interest. The proof is, again, by structural induction on Counting LTL formulas.

We showed that UHAT contains all regular languages in AC°. We do not
know if this is true for AHAT. That said, Theorem 4 can be used to show the
following slightly weaker result:

Corollary 4 ([2]). If TC" is strictly contained in NC*, then AHAT with PEs
contains all reqular languages in TC°
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It turns out that, for the subclass of AHATs with no masking and no PEs,
the following complete characterization can be proven:

Theorem 5 ([17]). NoPE-AHAT recognizes precisely all permutation-invariant
languages with semi-algebraic Parikh tmages.

To explain this theorem, recall (see [12]) that the Parikh image P of a lan-
guage is a mapping from all strings in the language to their letter counts. For
example, P((ab)*) = {(n,n) : n € N}. Here, the tuple (3,3) simply denotes that
there are 3 occurrences of as and 3 occurrences of b’s. Parikh’s Theorem shows
that context-free languages have semilinear Parikh images, i.e., they are defin-
able in Presburger Arithmetic. In contrast, a relation R C NF is semi-algebraic
if it can be expressed as a finite union of nonnegative integer solutions to sys-
tems of multivariate polynomial inequalities. That is, the above theorem implies
(among others) that languages Ly, of the form {w € {a,b}* : |w|, > (Jw|p)*}, are
expressible by NoPE-AHAT; note that Lj has no semilinear Parikh images for
k > 2. Interestingly, this also shows that Counting LTL does not subsume NoPE-
AHAT, since the former can only express permutation-invariant languages with
semilinear Parikh images [17].

Theorem 5 yields immediately undecidability of verification of NoPE-AHAT
since solvability of Diophantine equations is well-known to be undecidable [14].

Corollary 5 ([17]). Checking whether a NoPE-AHAT recognizes a nonempty
language is undecidable.

5 Limitations of UHATs and AHATSs

Having gone through some body of results in the literature, we now discuss two
main limitations of these results.

Limitation 1: Soft attention vs. Hard attention. As we remarked, practical
transformers are based on soft attention. It is still unclear whether the theory
of expressivity of UHATs and AHATSs provides a good approximation of the
theory of expressivity of softmax transformers. For example, we do not know
where the expressivity of softmax transformers exactly lies (e.g. do they subsume
UHATS?). That said, it is known that PARITY can be captured by a softmax
transformer with PEs. Thus, softmax transformers are not subsumed by UHATS
[6]. Furthermore, the relationship between AHAT and softmax transformers has
also not been fully delineated (for more on this, see [22,20]).

One subclass of AHAT that seems to be a promising approximation of SMAT
restricts all layers to apply only uniform attention. More precisely, an AHAT
layer is uniform if the piecewise linear functions A, B : R” — R" ensure that there
exists a constant ¢ such that (Ax, By) = ¢ for all x,y € R". This can happen esp.
when the linear transformation components of A and B map x and y to 0. The
subclass is denoted by AHAT[U]. The following result is folklore and can easily
be shown by noting that softmax(si,...,s,) = aha(si,...,s,) = [1/n---1/n],
whenever s; = -+ = s,,, which can be guaranteed for uniform AHAT layers.
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Proposition 2. Language recognized by AHAT[U] are also recognized by SMAT.

The above observation was already used in [17,20] to show the power of
SMAT:

Proposition 3 ([20]). K;[#] languages are recognizable by SMAT.

Proposition 4 ([17]). Permutation-invariant languages with semialgebraic Parikh
images are recognizable by SMAT.

Limitation 2: Trainability vs. expressibility. Not all expressible languages
are efficiently trainable on transformers, i.e., by means of Stochastic Gradient
Descent (SGD). This applies particularly to PARITY [6], which seems to be
extremely difficult to train on transformers with any high enough level of accu-
racy, although it is expressible by a softmax transformer. This phenomenon was
very recently shown to be caused by sensitivity. Loosely speaking, PARITY is
sensitive since flipping one letter (i.e. a to b and vice versa) changes the parity
of any string. Contrast this with MAJ, where there are not so many strings that
change their memberships in MAJ, after flipping a letter. This was hypothesized
to be the reason why MAJ is efficiently trainable, whereas PARITY is not.

One interesting upshot of the research effort in understanding trainability
is the so-called RASP-L conjecture [23], which states that a concept is likely
to length generalize (i.e. when trained on shorter strings, generalize to longer
strings) precisely whenever it is expressible as a short RASP-L program. How-
ever, as noted by Huang et al. [10], this is not a precisely formulated conjecture.
The authors postulated a formal version of RASP-L conjecture by replacing
RASP-L with limit transformers and the logic K[#], for which they could suc-
cessfully prove and empirically verify a length generalization theorem. In partic-
ular, this ruled out PARITY (as it is not in K¢[#]), but admits MAJ. It remains
to be seen if K;[#] subsumes all concepts that admit length generalization on
transformers.

6 Conclusions

We have discussed several key results employing logic and automata for under-
standing what is expressible in/efficiently trainable for transformers. It must be
emphasized that these are only a handful of results in this rapidly growing field
of FLaNN (Formal Languages and Neural Networks); for a more comprehensive
(though less detailed) account of FLaNN, see the excellent survey [19]. Such a
survey is itself quickly becoming out of date with many emerging topics (e.g.
theory of transformers over time series [4]). It is our sincere hope that this arti-
cle could motivate more researchers in logic and automata, as well as verification
and programming languages, to take up some of the many pressing challenges
in FLaNN.
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