
String Solving with Word
Equations and Transducers:

Anthony W. Lin (Yale-NUS), Pablo Barcelo (Univ. of Chile)

String Solving: A View
on the Landscape

What are String Solvers?

Domain: the set of all words over
Operations: concatenation, regex matching, length
constraints, replace, replace-all, string transductions, ...

A different combination of operations gives rise to a different
 theory over strings!! (Just as for integer domain)

Many string solvers: CVC, HAMPI, Kaluza, Kudzu, Norn,
Pex/Z3, PISA, S3, Saner, Stranger, StrSolve, SUSHI, Z3-str, ...

Why Develop String
Solvers?

• Static analysis of security vulnerabilities in web
applications against code injection and XSS

• Automatic test case generation for scripting
languages

• Path query languages for graph databases

String Solving: Theory vs.
Practice

• Faster heuristics each year

• Much less progress on theory

Which SMT over strings is decidable?
1. Word equations (Makanin’77)

2. Existential theory strings with concat (Buchi&Senger’90)

3. Word equations with regex matching (Schulz’90)

The need to add string
transductions

Cross-Site Scripting (XSS)

Sanitising Input Data

• Escape certain characters

• EVERY occurrence of < should be changed to <

• EVERY occurrence of > should be changed to >

A kind of “replace-all” operation

Adding Sanitisation

<script>…</script>

will be converted to

<script>…<script>

The script won’t be executed by Dilbert’s browser

Google Closure

A more tricky example

escapeString “backslash-escape” certain metacharacters

‘ is replaced by ' or \’
“ is replaced by " or \”

Q: Is this code vulnerable to XSS?

(Adapted from Kern’14)

Analysis of the code

INPUT 1: name being Tom & Jerry gives HTML markup
Tom & Jerry

INPUT 2: name being ‘);alert(1);// gives HTML markup
');alert(1);//‘

innerHTML “mutates” this string to
’);alert(1);//‘ XSS!

SWAP

Detecting XSS via a String
Solver

Step 1: Identify “sink variables” (innerHTML, document.write)

Step 2: Find “attack patterns” from known vulnerabilities (eg, OWASP)
e1 = /.*<\/a>/

Step 3: Express the program logic in a string logic:
1. x = R1(name)
2. y = R2(x)
3. z = w1 . y . w2 . x . w3
4. nameElem.innerHTML = R3(z)
5. nameElem.innerHTML matches e1

Step 4: Check for satisfiability

Which String Logic?
1. x = R1(name)
2. y = R2(x)
3. z = w1 . y . w2 . x . w3
4. nameElem.innerHTML = R3(z)
5. nameElem.innerHTML matches e1

R1, R2, R3 - replace-all kind of
operations

String transductions!

concatenation

Finite-state I/O Transducers
Just like finite-state automaton, but the transition

label is a pair of words:

Erases 1 Replaces some reserved characters
by HTML entity names

Relation recognised by is

Modelling sanitisation functions
and implicit browser transductions
Lots of works modelling these as FST or extensions

thereof:

- Saxena et al, S&P’10
- D’Antoni&Veanes, VMCAI’13
- Hooimejer et al., USENIX Security’11
- Veanes et al., POPL’11
- …

Is theory of strings with
concatenation and FST

decidable?

Undecidability
Proposition (BFL’13): Checking if the constraint

x = y.z & x = R(z)
for a transduction R, is satisfiable is undecidable

Proposition: Undecidability still holds when only
allowing “erasing” transducers (i.e. replace A with

an empty string)

The Straight-Line Fragment
(SSA Form)
Inductive Definition:

(Base) An empty set of conjuncts is in SL

(Inductive) If is in SL with variables

then is in SL, where

where the ’s are variables in or new variables

regex matching: a boolean combination of

Decidability of SL
Theorem: SATISFIABILITY for the class SL is decidable

in exponential space (double-exponential-time)

In fact, EXPSPACE-complete

Theorem (Bounded Model Property):
Every satisfiable constraint in SL has a solution

of double-exponential size

Provides some completeness guarantee of several existing string solvers

Under a reasonable assumption, we get a single-exponential bound

Proof idea for decidability (without regex
matching)

Step 1: Remove concatenation from the formula

where has states

Bound on the size of formula
without concatenation

“Doubling” Trick

Resulting formula uses

variables

Can use this trick to encode EXPSPACE Turing machines

Solving the final formula

Acyclic (straight-line)

Satisfiability for this kind of formulas is decidable

Post/pre images of regular languages under FST are regular

Improving the upper bound
The doubling tricks are artificial

Limiting them into a bounded height is reasonable in practice

All the examples we’ve seen in practice are of height at most 4

Theorem: SATISFIABILITY for the restricted SL is decidable
in polynomial space (exponential-time)

Theorem (Bounded Model Property):
Every satisfiable constraint in restricted SL has a solution

of exponential size

Extending the logic

Adding integer constraints

Constraints of the form

where
is a constant integer
is either:

1) an integer variable,
2) for some string variable
3) for some string variable

Decidability
Theorem: SATISFIABILITY for the class SL with integer

constraints is decidable in exponential space

In fact, EXPSPACE-complete

Theorem (Bounded Model Property):
Every satisfiable constraint in SL with integer constraints has a

solution of double-exponential size

Conclusion and Future Work
• Concatenation and string transductions are both important for

XSS applications

• Straight-line fragment of string logic with concatenation and
transductions (and even with integer constraints) is decidable

• Future work 1: an algorithm for computing a better estimate
of the maximum size of solutions

• Future work 2: study the extension with symbolic transducers

• Future work 3: A more precise model of sanitisation functions
and implicit browser transductions as transducers

