
Some Challenges in Algorithmic
Verification of String-Manipulating

Programs

Anthony W. Lin

(TU Kaiserslautern and MPI, Kaiserslautern)

TPSS’21
Invited Talk

Goal
Describe some of current challenges in string constraint solving
that arise from applications in string analysis of programs.

String analysis of programs:
1. Symbolic execution
2. Invariance checking

Symbolic Execution

x’+y+z’+a=5?

x’+y+z+a=5?

z’ = 2+c

Program

1: def foo(int a, int b, int c):
2: int x, y, z = 0, 0, 0
3: if a > 5:
4: x = -2+a
5: if a < b and b < 10:
6: if a + c >= 30:
7: y = 3-b
8: z = 2+c
9: assert x+y+z+a != 5

Symbolic Execution Tree

negated

a > 5?

a < b & b < 10?

x’ = -2+a

a + c >= 30?

y’=3-b
z’=2+c

x’+y’+z’+a=5?

x = 0,y = 0,z = 0

Symbolic Execution

Conjunct all constraints along the path

x = 0 /\ y = 0 /\ z = 0 /\
a > 5 /\ x’ = -2+a /\ a < b /\ b < 10 /\
a + c >= 30 /\ y’ = 3-b /\ z’ = 2+c /\

x’+y’+z’+a = 5

Formula in quantifier-free theory of linear arithmetic

Decidable (NP-complete)
Fast SMT solver

a > 5?

a < b & b < 10?

x’ = -2+a

a + c >= 30?

y’=3-b
z’=2+c

x’+y’+z’+a=5?

x = 0,y = 0,z = 0

Symbolic Execution

x’+y+z’+a=5?

x’+y+z+a=5?

z’ = 2+c

Program

1: def foo(int a, int b, int c):
2: int x, y, z = 0, 0, 0
3: if a > 5:
4: x = -2+a
5: if a < b and b < 10:
6: if a + c >= 30:
7: y = 3-b
8: z = 2+c
9: assert x+y+z+a != 5

Symbolic Execution Tree

a > 5?

a < b & b < 10?

x’ = -2+a

a + c >= 30?

y’=3-b
z’=2+c

x’+y’+z’+a=5?

x = 0,y = 0,z = 0

UNSAT SAT: (a=6,b=7,c=-7)

UNSAT

Can we do the same with
string-manipulating

programs?

Example

Many string-related bugs — hard to find by random testing

 ……
XSS

Ben

Dynamically generated by

Q: Does the sanitisation work?

Motivation
• Strings are a fundamental data type in programming languages,

esp. in popular languages like JavaScript, Python, etc.

• Many subtle bugs (some could have serious security
consequences, e.g., XSS, code injection) are caused by string
manipulation

• Perhaps the most actively investigated theory in SMT (e.g. 30
solvers developed in the past ~10 years alone)

• A long and beautiful history in logic and computation with many
as yet unsolved problems

Among many solvers …
Kaluza

Kudzu

HAMPI

S3

Norn

CVC4

Z3

PISA

Saner

Stranger

StrSolve

SUSHI

Z3-str

IBM AppScan

Sloth

STP

TRAU

OSTRICH

Which String Theory?
Domain = set of all strings

Problem 1: Which string operations should we allow in the theory?
Some useful string operations:
1. String concatenation
2. Regex matching (a.k.a. regular constraint).
3. Length constraints
4. Replace (first occurrence, all occurrence, etc.)
5. Transductions (e.g. toUpper, escape, …)
6. Substring/Indexof/CharAt
7. match + regex with capture groups?
8. String-number conversions
9. …

Quantifier-Free Theories (as common in SMT)

Which String Theory?
Problem 2: what is a letter?

An answer: take a finite alphabet like in automata theory

In practice, such a finite alphabet is large (e.g. unicode)

Although this doesn’t affect decidability, this raises important
implementation questions.

SMT over Strings
After many years of disagreement, an SMT file format for string theory
was formalized last year: http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

Some highlights:
1. Concatenation, length, regex matching, string-number conversions,

replaceall are added
2. Unicode alphabet

Theorem: SMT over strings (as specified above) is undecidable!

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

Main Challenge
Come up with decidable fragments of string theories. Delineate the
boundary of decidability, and pinpoint computational complexity.
Develop/implement good string solving algorithms for these fragments.

A Logic for Symbolic
Execution

Symbolic Execution
Symbolic execution is a sequence of assignments/assertions:

Path Feasibility Problem: decide if there exist input strings whose
execution satisfies all the assertions

S ::= y := f(x1, . . . , xn) | assert(g(x1, . . . , xn)) | S1;S2

f : (⌃⇤)n ! ⌃⇤ g : (⌃⇤)n ! {0, 1}
where

x1 = x.aba.y /\
y1 = replaceAll(x1,a,c) /\
y1 in b*

Formula in string theory

x := x.aba.y;
y := replaceAll(x,a,c);
assert(y in b*)

Symbolic Execution

A symbolic execution is a formula in disguise:

Likewise, this is just satisfiability in disguise

Example

innerHTML
<a> <a>

htmlEscape
Tom’s Tom\’s

escapeString

Reduce to Path Feasibility

e1 = ……
nameElem has to match

x := R1(name);
y := R2(x);
z := w1 . y . w2 . x . w3;
nameElem_innerHTML := R3(z);
assert(nameElem_innerHTML matches e1)

These R1, R2, and R3 can be captured by finite transducers,
or finitely many applications of replaceAll

Examples of Transducers

q

1/ε
0/0

Erase all
occurrences of 1

Replace: < by <, > by >, and & by &

q

?/?

l1</&

g1

>/&

a1&/&

l2ε/l

l3

ε/t

ε/;

g2ε/g

g3

ε/t

ε/;

a2ε/a
a3

ε/m

a4

ε/p

ε/;

? 2 ⌃ \ {<, &, >}

Input is a suffix of output

p

ε/0
 ε/1

qε/ε

0/0
 1/1

Transducer models for htmlEscape,
innerHTML, … exist but more complex

Decidability
Case 1: theory of concatenation (a.k.a. word equations)

Operations: concatenation
Conditionals: string equality, and regular constraints

Decidable [Makanin’77, Schulz’90], and
PSPACE-complete [Plandowski’00,Jez’16]
Decidable with length constraints (e.g. |x| = |y|) is open

This does not capture our example above, and many other
examples from web applications (eg, which require encode/decode)

This theory is supported by most solvers (though not completely)

Undecidability
Proposition: Path Feasibility with equality, regex matching,
and replaceAll (pat/rep constants) is undecidable

1 2 3

a

baa

ab

aa

bba

bb

Easy reduction from Post Correspondence Problem

x in (1|2|3)* /\
y = replaceAll(x,1,a) /\ y’ = replaceAll(y,2,ab) /\ y’’ = replaceAll(y’,3,bba) /\
z = replaceAll(x,1,baa) /\ z’ = replaceAll(z,2,aa) /\ z’’ = replaceAll(z,3,bb) /\
y’’ = z’’

The Straight-Line
Framework

(L. & Barcelo 2016)

Inspired by (1) Solved-form Constraints (Ganesh et al.’12),
(2) Acyclic constraints over rational relations (Barcelo et al.’12)

Developed further by Chen et al., Abdulla et al., etc.

Main Benefit: capture most constraints from real-world programs
with many kinds of string functions, while allowing many decidability

Hypothesis (Strong Version)
(Using reformulation of Chen at al.’19)

Assertions are expressible as a bool. combination of regular constraints

(x ∈ aa* ∨ y ∉ (bab* + a*)) ∧ x ∈ (a7)*

Hypothesis (Strong Version)
(Using reformulation of Chen at al.’19)

Assertions are expressible as a bool. combination of regular constraints

x := x . aba . y;
y := replaceAll(x,a,c);
assert(y in b*)

v := x . ab . y
w := y . ba . x
assert(v == w)

√

X assert(len(v) == len(w))

assert(nameElem matches
 ‘ ……)

√

X
assert(len(v) >= 5)√

Metatheorem
Decidable path feasibility is possible for a rich class of
string functions, under this regularity hypothesis.

This is obviously not true for any string function!!

i.e. is regular => is effectively a bool. comb of regular constraintsL f −1(L)

(BClos) Regular constraints are closed under taking pre-image of f

Here is one extra assumption that ensures decidability:

Theorem: Under Hypothesis and (BClos), path feasibility is decidable

BClos is satisfied by lots of string functions: concatenation, replaceAll,
many kinds of transducers, …

Concat. satisfies (BClos)
. : (Σ* × Σ*) → Σ*

Proof by automata splitting

x ∈ L ∧ x = y . z and has states q0, …, qnL

Pre-image of L under . is:

n

⋁
i=1

y ∈ Lq0,qi
∧ z ∈ Lqi,qn

Exercise

$0.5 $0.5
$1

Double Espresso

Espresso

A =

Consider the constraint x = yz ∧ x ∈ L(A)

Give pre-image of under the concat aboveL(A)

Decision Procedure (as
implemented in OSTRICH)

1. Propagate each individual regular constraint backwards
(i.e. in terms of input variables)

2. Solve intersection of regular languages

has the following simple recipe …
https://github.com/pruemmer/ostrich

(See Chen et al’19 for more)

https://github.com/pruemmer/ostrich

Example
assert(z in aba)
x := x.z.y;
y := replace(x,a,c);
assert(y in b*)

assert(z in aba)
x := x.z.y;
assert(x in b*)

assert(z in aba)
assert(x in b*)
assert(y in b*)
assert(z in b*)

Solve intersection of regular languages (decidable)

Remarks
Weaker version of hypothesis is available, e.g., allowing
length constraints (|x| = |y|), or disequality (x != y)

Handling large alphabets (e.g. UTF-16): use symbolic
automata/transducers

Decidability is still possible for many string functions
(L. &Barcelo’16, Chen et al.’20, Abdulla et. al.’19)

 (see CACM’21 article by D’Antoni and Veanes)

Two Open Problems
Problem 1: Decidability with real-world regular expressions

Possible unit-test: is #Knuth, Donald#Floyd, Bob# produceable?
Challenges: deterministic matching (greedy/lazy),
capture groups, references, … and complex functions
exploiting these features (see Loring et al.’19)

Problem 2: Decidability with string-number conversions

In general undecidable (Ganesh & Bezirk’16)
Useful operation (also can be found in SMT-LIB)

MOSCA’19
(Meeting on String Constraints and

Applications)
https://mosca19.github.io/

Excellent slides covering other
important topics (e.g. by
Berzish, Bjorner, Day, Diekert,
Jez, Kinder, Majumdar,
Murphy, Pasareanu, Tinelli,
…)

THANKS
• On Strings in Software Model Checking. In APLAS 2019. (P. Rümmer)

• Graph Logics with Rational Relations and the Generalized Intersection Problem. In LICS’12 (P. Barcelo, D. Figueira, L. Libkin)

• Sound regular expression semantics for dynamic symbolic execution of JavaScript. In PLDI’19 (B. Loring, D. Mitchell, J. Kinder)

• Decision Procedures for Path Feasibility of String-Manipulating Programs with Complex Operations. In POPL'19. (T. Chen, M.
Hague, A. Lin, P. Rümmer, Z. Wu)

• String Solving with Word Equations and Transducers: Towards a Logic for Analysing Mutation XSS. In POPL 2016. (A. Lin, P.
Barcelo)

• Recompression: A Simple and Powerful Technique for Word Equations. J. ACM’16 (A. Jez)

• Undecidability of a Theory of Strings, Linear Arithmetic over Length, and String-Number Conversion. CoRR 1605.09442/2016 (V.
Ganesh and M. Berzish)

• Word Equations with Length Constraints: What’s Decidable? In HVC’12 (V. Ganesh, M. Minnes, A. Solar-Lezama, M. Rinard)

• The Satisfiability of Word Equations: Decidable and Undecidable Theories. In RP’18 (J. Day, V. Ganesh, P. He, F. Manea, D.
Nowotka)

• Makanin’s Algorithm. In M. Lothaire: Algebraic Combinatorics on Words. Cambridge University Press, ’01. (V. Diekert)

• Automata Modulo Theories. In CACM’21 (L. D’Antoni, M. Veanes)

ANNEX

The ReplaceAll Function

In VIM: %s/pat/rep/g

replaceAll(subject,pat,rep)

The Road Not Taken

BY ROBERT FROST
Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

subject

pat = Two

rep = Three

Output: subject with *all* occurrences of strings matching pat replaced by rep

The Road Not Taken

BY ROBERT FROST
Three roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Three roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

%s/Two/Three/g

https://www.poetryfoundation.org/poets/robert-frost
https://www.poetryfoundation.org/poets/robert-frost

replaceAll in String Theory
x = replaceAll(subject,pat,rep)

Can be a string constant/variable

pat can be a regular expression (over string constants)
(semantics: leftmost/longest match)

Most common usage: pat/rep are constants

escapeString(x,z) := y = replaceAll(x,”,\”) /\ z = replaceAll(y,’,\’)

Not so uncommon usage: rep is a variable, pat is a constant

mustache(x,z,bio,userName) := y = replaceAll(x,{{bio}},bio) /\
 z = replaceAll(y,{{userName}},userName)

String replacements in
HTML templates

…
<h1> User <span
 onclick=“popupText('{{bio}}')">
 {{userName}} </h1>
…

HTML template (with Mustache)

…
bio = “John is 19”;
userName = “John”;
…

JSON files

HTML

…
<h1> User <span
 onclick=“popupText(‘John is 19')">
 John </h1>
…

String replacements in
HTML templates

…
<h1> User <span
 onclick=“popupText('{{bio}}')">
 {{userName}} </h1>
…

HTML template (with Mustache)

…
bio = “‘); attackScript(‘”;
userName = “Evil”;
…

JSON files

HTML

…
<h1> User <span
 onclick=“popupText(‘’); attackScript(‘’)”>
 Evil </h1>
…

