
Liveness of Randomised
Parameterised Systems

under Arbitrary Schedulers
Anthony W. Lin and Philipp Ruemmer

Summary of results

• Automatic method for proving liveness for
randomised parameterised systems, e.g.,
• Randomised Self-Stabilising (Israeli-Jalfon/Herman)
• Randomised Dining Philosopher (Lehmann-Rabin)

• Regular model checking as symbolic framework

• CEGAR/Learning to synthesise “regular proofs”

Background

Parameterised Systems
Definition: An infinite family of finite-state systems

Example: most distributed protocols in the verification
literature, e.g., for the Dining Philosopher problem

Randomised Parameterised
Systems

Definition: An infinite family of randomised
finite-state systems

Markov Decision Processes
1/2

1/2
1/2

1/2
1

Israeli-Jalfon Randomised
Self-Stabilising Protocol

1/2

1/2

Israeli-Jalfon Randomised
Self-Stabilising Protocol

1/2

1/2

Israeli-Jalfon Randomised
Self-Stabilising Protocol

Israeli-Jalfon Randomised
Self-Stabilising Protocol

1/2

1/2

Israeli-Jalfon Randomised
Self-Stabilising Protocol

Israeli-Jalfon Randomised
Self-Stabilising Protocol

Israeli-Jalfon Randomised
Self-Stabilising Protocol

Liveness (a.k.a. almost-sure
termination)

(1) Can be unfair
(2) Desirable property in
self-stabilising protocol
literature

Liveness for Parameterised
Systems

• Infinite-state verification (verify for each instance)

• Challenging esp. for probabilitistic systems, e.g.,
• Randomised Self-Stabilising (Israeli-Jalfon/Herman)
• Randomised Dining Philosopher (Lehmann-Rabin)

reachability games on infinite graphs

Regular Model Checking:
Symbolic Framework

Regular Specification
“Rich language for specifying parameterised systems

using automata”

Pioneered by:
* Kesten, Maler, Marcus, Pnueli, and Shahar (1997)
* Wolper and Boigelot (1998)
* Jonsson and Nilsson (2000)
* Bouajjani, Jonsson, Nilsson, and Touili (2000)

Premier of regular
specifications

Configuration: represented as a word

Set of configurations: represented as a regular automaton

Transition relation: represented as a transducer

Length-preserving

Israeli-Jalfon as a regular
specification

Configuration: a word over the alphabet {0,1,1}

10001

Israeli-Jalfon as a regular
specification

Configuration: a word over the alphabet {0,1,1}

10001

Israeli-Jalfon as a regular
specification

Set of configurations: a regular language over {0,1,1}

0*10*

All stable configurations

1+

All initial configurations

Israeli-Jalfon as a regular
specification

Nondeterministic transition relation: a regular language
over {0,1} x {0,1,1}

10001

10001

Israeli-Jalfon as a regular
specification

Nondeterministic transition relation: a regular language
over {0,1} x {0,1,1}

10001

10001

Israeli-Jalfon as a regular
specification

Nondeterministic transition relation: a regular language
over {0,1} x {0,1,1}

10001

10001

Israeli-Jalfon as a regular
specification

Nondeterministic transition relation: a regular language
over {0,1} x {0,1,1}

10001

10001

Israeli-Jalfon as a regular
specification

Nondeterministic transition relation: a regular language
over {0,1} x {0,1,1}

10001

10001

1
1

0
0

1
1+

* 0
0

1
1+

*

L =

Israeli-Jalfon as a regular
specification

Problem: How do you represent probabilistic
transitions as transducers?

Answer: almost sure liveness for finite MDPs, need only
distinguish zero or non-zero probabilities

Generalises to infinite family of finite MDPs (why?)

Proposition (Hart et al.’83): almost sure liveness =
2-player non-stochastic reachability games

Israeli-Jalfon as a regular
specification

Probabilistic transition relation: a regular language over
{0,1,1} x {0,1}

1
0

0
0

1
1+

* 0
0

1
1+

*
0
1

………. (~10 more cases)

Pass to right
(w/o Mars bar)

1
0

0
0

1
1+

* 0
0

1
1+

*
1
1

Pass to right
(with Mars bar)

Semi-decision procedure
Proposition (Hart et al.’83): almost sure liveness =
 wins non-stochastic reachability games
from each reachable state.

1/2
1/2

1/2

1/2
1

Semi-decision procedure

Prop (LR’16): ’s winning strategies can be
represented as “advice bits”

Inductive invariant Well-founded relation
that guides to win

Semi-decision procedure
• Advice bits are infinite objects

• Solution: represent by an automaton and
by a transducer (“regular advice bits”)

Prop: There exists a complete algorithm
for verifying regular advice bits

Regular advice bits often exist in practice

Regular advice bits for
Israeli-Jalfon

0

1
0
1u

1

1/1
0/1
0/0

21/0

0

0/0 1/1

3

0/1

0/1

1/1
1/0
0/0

1/1

1/0

0/1
0/0

Learning Regular
Advice Bits

Problem
Although regular advice bits exist, a naive

enumeration might take a long time to find them

Our monolithic learning
procedure

Learner Teacher
Regular

advice bits?

YES

DONE

NO

(cex)

Inside the learner

SAT-solving to guess smallest DFAs

Boolean formulas constraining candidate
regular advice bits

Inside the teacher

Automata-based algorithm

If incorrect advice bits,
return cex

(as a boolean formula)

The learner then …

Add the counterexample constraint
from Teacher to further restrict

And make another guess, etc.

The main bottleneck
The number of iterations

The number of candidate regular advice bits considered
~

Each iteration is quite cheap

Further optimisations

• Incremental learning algorithm: use
“disjunctive” advice bits

• Precomputation of inductive invariant with
Angluin’s L* algorithm

• Symmetries (e.g. rotations for rings)

Problem: When no “small” regular proof exists,
monolithic procedure becomes very slow

Experiments
(https://github.com/uuverifiers/ autosat/tree/master/

LivenessProver)

Experimental results

Experimental results

Conclusion

Summary of results

• Automatic method for proving liveness for
randomised parameterised systems, e.g.,
• Randomised Self-Stabilising (Israeli-Jalfon/Herman)
• Randomised Dining Philosopher (Lehmann-Rabin)

• Regular model checking as symbolic framework

• CEGAR/Learning to synthesise “regular proofs”

Future Work

• Embedding fairness in RMC

• New result (joint with O. Lengal, R. Majumdar)

• Extend the framework to encode process IDs

